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Michael Randall Koss

Semantic and Mathematical Foundations for Intuitionism

My dissertation concerns the proper foundation for the intuitionistic mathematics

whose development began with L.E.J. Brouwer’s work in the first half of the 20th

Century. It is taken for granted by most philosophers, logicians, and mathematicians

interested in foundational questions that intuitionistic mathematics presupposes a

special, proof-conditional theory of meaning for mathematical statements. I challenge

this commonplace. Classical mathematics is very successful as a coherent body of the-

ories and a tool for practical application. Given this success, a view like Dummett’s

that attributes a systematic unintelligibility to the statements of classical mathe-

maticians fails to save the relevant phenomena. Furthermore, Dummett’s program

assumes that his proposed semantics for mathematical language validates all and

only the logical truths of intuitionistic logic. In fact, it validates some intuitionisti-

cally invalid principles, and given the lack of intuitionistic completeness proofs, there

is little reason to think that every intuitionistic logical truth is valid according to his

semantics.

In light of the failure of Dummett’s foundation for intuitionism, I propose and

carry out a reexamination of Brouwer’s own writings. Brouwer is frequently inter-

preted as a proto-Dummettian about his own mathematics. This is due to exces-

sive emphasis on some of his more polemical writings and idiosyncratic philosophical

views at the expense of his distinctively mathematical work. These polemical writ-

ings do not concern mathematical language, and their principal targets are Russell

and Hilbert’s foundational programs, not the semantic principle of bivalence. The

failures of these foundational programs has diminished the importance of Brouwer’s

philosophical writings, but his work on reconstructing mathematics itself from intu-

itionistic principles continues to be worth studying.

When one studies this work relieved of its philosophical burden, it becomes clear

vi



that an intuitionistic mathematician can make sense of her mathematical work and

activity without relying on special philosophical or linguistic doctrines. Core intuition-

istic results, especially the invalidity of the logical principle tertium non datur, can

be demonstrated from basic mathematical principles; these principles, in turn, can be

defended in ways akin to the basic axioms of other mathematical theories. I discuss

three such principles: Brouwer’s Continuity Principle, the Principle of Uniformity,

and Constructive Church’s Thesis.

——————————————

——————————————

——————————————

——————————————
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Chapter 1

Reflections on the Revolution in

Amsterdam

A famous article by Hermann Weyl ends with a bold proclamation: “und Brouwer—

das ist die Revolution!” (Weyl 1921: p. 56) Since Weyl published this article in 1921,

the reader might expect the revolution to be a political one, but this would be a mis-

take. The revolutionary, Brouwer, was a professor of mathematics in Amsterdam and

the revolution incarnated in him was a mathematical one. The idea of a mathematical

revolution may seem alien. What could such a thing be and what would justify it?

Part of the task of the present work is to answer these questions.

Brouwer and his followers use the term ‘intuitionism’ to refer to their revisionary

approach to mathematics. They are also frequently called constructivists. In order to

dispel any confusion about mathematical intuitionism and mathematical construc-

tivism, a few words on their relationship are in order.

1.1 Varieties of Constructivism

When applied to mathematics and its attendant philosophical questions, the term

‘constructivism’ can mean several things. One of them is ontological. Constructivists
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in this ontological sense maintain that the objects studied by mathematicians, such

as numbers and sets, depend for their existence and properties on the creative activ-

ity of cognitive agents. The details of this account can vary among its proponents.

One might maintain that mathematical objects come into existence only when first

thought about; another might hold that properties of mathematical objects reflect

fundamental structures of human thought. We need not survey all the options avail-

able to ontological constructivists. It suffices to note the chief point of agreement: all

of them maintain that human cognitive activity plays a major role in determining

which mathematical objects exist and what these objects are like.

Understood in this ontological sense, constructivism is an ancient doctrine. In

Book VI of his Physics, Aristotle appeals to constructivism about geometric points

in order to challenge Zeno’s paradoxical arguments about motion. Somewhat more

recently, Kant endorses a kind of constructivism in the Critique of Pure Reason when,

in the Preface to the second edition, he celebrates Thales for advancing geometry by

discovering

that what he had to do was not to trace what he saw in this figure, or even
trace its mere concept, and read off, as it were, from the properties of the
figure; but rather that he had to produce the latter from what he himself
thought into the object and presented (through construction) according
to a priori concepts and that in order to know something securely a priori
he had to ascribe to the thing nothing except what followed necessarily
from what he himself had put into it in accordance with its concept. (Kant
1998: Bxii)

Later in the same work, Kant describes mathematical cognition as cognition “from

the construction of concepts.” (ibid., A713/B741, original emphasis) Mathematicians

have also endorsed such a view. In the preface to his famous monograph Was sind und

was sollen die Zahlen (Dedekind 1893), Richard Dedekind answers the question posed

by the title of his work: “numbers are free creations of the human mind.” (Quoted from

(Ewald 1996: p. 791)) The dependence of numbers on the mind is no idle speculation
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on Dedekind’s part; in Section 66 of the same work, he proves the existence of an

infinite set by appealing to the contents of his thought-realm (Denkebereich).

Another sense of ‘constructivism’ is more purely mathematical. This is the thesis

that classical logic does not provide the correct canon for mathematical reasoning.

Rather, this is given by intuitionistic logic. Constructivism in this sense comes in de-

grees. A mathematician might temporarily restrict her reasoning to intuitionistically

valid inferences as an exercise in restraint, akin to giving up fast food for a week or

writing a novel without using certain letters of the alphabet. In such a case, she is

doing constructive mathematics, but it would be a mistake to call her a constructivist

in any strong sense. It is better to reserve this meaning of the term ‘constructivism’

for those who think that mathematicians ought to reason intuitionistically. Brouwer

and some of his followers represent such a position, but they are not alone. The school

of constructive mathematicians founded by the Russian mathematician A.A. Markov

Jr. belongs to this category; so do Errett Bishop and some of his disciples.1

A difficulty facing any attempt to give a unified characterization of this properly

mathematical kind of constructivism has to do with what counts as intuitionistic

logic. This might refer to the formal intuitionistic logic first codified partially by

Kolmogorov and fully by Heyting (Heyting 1930, Kolmogorov 1925). This logic is

fixed in that its theorems are exactly the formulae that follow from the axioms using

the accepted rules of inference. In general, Bishop and his followers, as well as the

Russian constructivists, understand intuitionistic logic in this fixed, formalized sense.

1There seems to be an ambivalence in the Bishop school about whether classical mathematics
actually gets things wrong. The following remarks from some of Bishop’s more prominent followers
illustrate this ambivalence.

We [constructivists] have a message that implies, no matter how tactfully it is phrased,
that you [classical mathematicians] really ought to be doing mathematics is a different
way. (Richman 1996: p. 256)

At no stage in our presentation so far have we suggested that constructive methods are
the best, let alone the only proper, ones for mathematics. (Bridges and Mines 1984: p.
37)
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Brouwerian intuitionists, on the other hand, tend to have a more dynamic conception

of logic. While most of them accept the theorems of Heyting’s formal logic, they also

recognize that this system is incomplete. This leaves open the possibility that new

theorems or inference rules can be discovered that are not built into Heyting’s system

but should be accepted as universally valid. A third possibility is to think in model-

theoretic terms. That is, we could select some standard semantics, such as that given

by Kripke models, and maintain that intuitionistic logic is the collection of formulae

that are valid according to the semantics.

In the present work, we take intuitionistic logic to be that developed axiomatically

by Heyting and as a system of natural deduction by Gentzen (1935). In Heyting’s

case, the goal was to represent the inferences that Brouwer would admit into his

mathematical proofs; it was not, as is often thought, to characterize a special intu-

itionistic semantics for mathematical statements. Except for the unqualified deference

to Brouwer, we adopt the same attitude. This is because the principal task of a given

system of formal logic (intuitionistic, classical, or otherwise) is to capture precisely

which inferences are valid and which are invalid; φ is a logical truth just in case it can

be inferred validly from the empty set of premises. Semantic systems can be useful

technical devices for the development this inquiry, but the inferential aspect takes

priority.2

It will facilitate our discussion if we establish some terminological conventions.

The first sense of constructivism just discussed, according to which mathematical

objects depend for their existence and properties on human cognitive activity, will be

called ‘ontological constructivism’. When the word ‘constructivism’ is used without

2In the classical first-order case, the distinction between inferential and model-theoretic accounts
of logic is not important because soundness and completeness guarantee that both pick out the same
valid inferences and logical truths. Since intuitionistic logic is not complete with respect to any of its
well-developed semantic theories, the distinction between inferential and model-theoretic accounts
is real and will be important for us, particularly in Chapter 3. Classically inclined readers should
remember that classical second-order logic is also incomplete, so this is not a distinction peculiar to
intuitionism.
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qualification, or with the qualification ‘mathematical’, this will refer to the view that

mathematics should be done according to intuitionistic logic. Sometimes, one finds

Bishop’s mathematical method called ‘constructivism’ without qualification, but we

will avoid this: references to Bishop’s school will always mention his name explicitly.

Similarly, Markov’s school will always be referred to as ‘Russian constructivism’, even

though Slavic ancestry is neither necessary nor sufficient for adherence to it. Brouwer’s

school will, of course, be referred to as ‘intuitionism’.3

Mathematical constructivism is a radical thesis. According to it, classical mathe-

matics, i.e., the collection of results, methods, and principles used by most working

mathematicians and taught to legions of students, is severely flawed. This is because

classical mathematics is developed using classical logic, which permits inferences that

are invalid by the lights of intuitionistic logic. The constructivist therefore main-

tains that results obtained using these inferences are unjustified, even though most

mathematicians would accept the purported proofs as correct. In some cases, the con-

structivist even claims to be able to demonstrate that a certain theorem of classical

mathematics is false, e.g., because it entails the validity of an intuitionistically invalid

principle. Brouwer, Markov, Bishop, and their allies therefore think that mathematics

is in dire need of reform. The three schools disagree about the nature and extent of the

reform that is required. Every theorem of one of Bishop’s theories is a theorem of the

corresponding classical theory. By contrast, intuitionists and Russian constructivists

claim to be able to prove results that are false according to the classical mathe-

matician. If we set this internal conflict aside, however, it remains the case that a

committed constructivist takes on a revolutionary attitude toward mathematics.

3This catalog of constructivists leaves out several figures who influenced the development of
constructive mathematics, such as Kronecker and Poincaré. It is only with Brouwer, however, that
one finds attempts to develop a constructive mathematics from the ground up.

We also leave out the predicative mathematics of, e.g., latter-day Weyl and Feferman. This is be-
cause our focus is on Michael Dummett’s semantic foundation for intuitionism and constructivism,
and the immediate consequences of Dummett’s arguments concern logic. Predicativism has a con-
structive flavor, but in practice its advocates tend to use classical logic. Thus, Dummett’s arguments
threaten predicativism along with classical mathematics.
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In this respect, Brouwer et al. should be contrasted with the ontological construc-

tivists mentioned earlier. Neither Aristotle nor Kant nor Dedekind ever thought that

mathematics itself is in such desperate straits. Dedekind is an especially useful figure

for comparison. Like all good German intellectuals of his day, he was well aware of

his contemporary philosophical mileau, but he was first and foremost an outstanding

and prolific mathematician. He had plenty of opportunities to apply his philosophical

views about numbers to his mathematical work, and occasionally he did so (e.g., in

his proof of the existence of an infinite set). He also took positions on the mathemat-

ical controversies of his day, such as those surrounding the emergence of set theory,

but he was not looking to dismantle established results. This suggests that ontologi-

cal constructivism alone should not be taken to entail mathematical constructivism.

Dedekind was not infallible, of course; neither was Aristotle or Kant. Nevertheless, the

burden of proof is on the ontological constructivist if he thinks that his philosophical

thesis entails the need for mathematical reform.

What about the converse entailment? It might seem that any call for mathematical

reform must depend on a particular mathematical ontology. If the task of mathematics

is accurately to describe its objects along with their properties and mutual relations,

then to say that mathematics has gone wrong is to say that its descriptions are

mistaken. What evidence, however, could be mustered in favor of such a claim? A

good argument for ontological constructivism might do the job. If the ontological

thesis can be established, then mathematics had better conform and, if necessary,

reform itself so that it describes the real nature of mathematical objects.

Here, Bishop stands as a helpful contrast. He has nothing but disdain for the idea

that metaphysics might intrude upon mathematics. In fact, he criticizes Brouwer on

precisely these grounds.

Most important, Brouwer’s system itself had traces of idealism and, worse,
metaphysical speculation. There was a preoccupation with the philosoph-
ical aspects of constructivism at the expense of concrete mathematical

6



activity. (Bishop 1967: p. 6)

Bishop himself does think that classical mathematics has its flaws and should be

corrected. He just thinks that Brouwer was motivated by extraneous philosophical

considerations. In other words, he reads Brouwer as an ontological constructivist

whose call for mathematical reform was motivated by a particular metaphysics for

mathematical objects; Bishop’s criticism is directed at the motivation, not the result.

Just as Dedekind’s ontological constructivism and mathematical conservatism did

not conclusively demonstrate that the two views are independent, so too Bishop’s

aversion to philosophical intrusions into mathematics does not prove that we should

shun such influence. Still, Bishop’s attitude highlights that the mathematical con-

structivist is in a bind. He insists that classical mathematics is getting things wrong.

The only way to establish this, however, seems to require a peculiar understanding

of mathematical objects. From where does this understanding come? One option is

that we get it from a purported non-mathematical grasp into the structure of the

mathematical universe, but this quickly raises the specter of philosophical specula-

tion that seems to have no place in mathematics. Another option is that we get it by

examining mathematical results, but this is exactly where the constructivist and the

classical mathematician disagree, so any argument from these results risks begging

the question. Popular opinion is on the side of the classical mathematician, so any

appeal to mathematical practice will support the status quo (assuming there is some

kind of unified mathematical practice, which is doubtful). The situation looks bad for

the constructivist.

1.2 A Linguistic Rescue?

In view of this apparently insurmountable challenge, it is common for constructivists

to have recourse to language as a way of justifying their position. If one reflects
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on the historical setting in which Brouwer attempted his intuitionistic reconstruc-

tion of mathematics, this should not be surprising. His most fruitful period of work

lasted from 1917 until roughly 1928, although his first challenge to classical logic

and mathematics appeared in 1908. This same period saw the publication of Rus-

sell and Whitehead’s Principia Mathematica and Wittgenstein’s Tractatus Logico-

Philosophicus. Meanwhile, the members of the Vienna Circle were attempting to

carry out their own philosophical revolution. The au courant hope was that a pre-

cise analysis of language could be used to resolve or dissolve notoriously intractable

philosophical problems.

In this atmosphere, it is not surprising that intuitionism came to be regarded

as a linguistic doctrine. There are at least two reasons why this is the case. First,

Brouwer claimed to show that generally accepted principles of logic and mathematics

were false. Reflections on these fundamental subjects were what initially led to the

“linguistic turn” in philosophy, so of course a challenge to mathematical orthodoxy

was going to be interpreted linguistically at the time. Second, shifting the debate to

the linguistic arena gives the constructivist the resources for a new argument, one that

does not require settling an intractable metaphysical question. If one can show that the

meanings borne by mathematical statements entail that we should reason according

to intuitionistic logic, then the constructivist will have established his thesis. Hence,

in Heyting’s lecture “Die intuitionistische Grundlengung der Mathematik” (1931), we

find him arguing against classical logic on explicitly linguistic grounds.

We here distinguish between propositions and assertions. An assertion is
the affirmation of a proposition. A mathematical proposition expresses a
certain expectation. . . . The affirmation of a proposition means the fulfill-
ment of an intention. . . . Thus the formula ‘p ∨ ¬p’ signifies the expec-
tation of a mathematical construction (method of proof) which satisfies
the aforementioned requirement. (Benacerraf and Putnam 1983: p. 59,
emphasis added)

Heyting goes on to argue that we are not entitled to assert that certain principles of

8



classical logic are valid. He justifies this by an appeal to the meanings of statements

of these principles.

The constructivists’ emphasis on meaning is not isolated to the early part of the

20th Century. One sees it appear in Mark van Atten’s account of the evolution of

Brouwer’s thought concerning the principle tertium non datur (called ‘PEM’ here).

In his dissertation of 1907, Brouwer still accepted PEM as a tautology,
understanding A ∨ ¬A as ¬A → ¬A. Curiously, he did realize at the
time that there is no evidence for the principle that every mathematical
problem is either provable or refutable; this is the constructively correct
reading of PEM. (van Atten 2009: §2.4, emphasis added)

Later, we will argue that van Atten misinterprets Brouwer. For now, though, it suffices

to note that he takes Brouwer to be insisting on a special constructive meaning of

a statement of the tertium non datur. Furthermore, in the passage just quoted, van

Atten (who is an intuitionist) seems also to endorse this himself.

1.2.1 The BHK Interpretation

This linguistic understanding of constructive mathematics finds its general expres-

sion in the so-called Brouwer-Heyting-Kolmogorov (BHK) interpretation of the logi-

cal constants. An early version of this was introduced by Heyting in his (1934) and

independently by Kolmogorov in his (1932). Brouwer himself never articulated any-

thing like this. In Chapter 4, we will argue that the inclusion of his initial in the

acronym ‘BHK’ is due to a mistaken interpretation of his work.

Since we will have cause to discuss to the BHK interpretation frequently in what

follows, it will be helpful to set it forth now. The task is to characterize the meaning of

each logical constant in terms of what would count as a proof of a statement in which

that constant appears as the main connective or quantifier. Here is a statement of the

interpretation given by Troelstra and van Dalen (1988: §1.3.1). We have changed the

variables to conform to the conventions adopted in this work and discussed below.
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Here, φ and ψ range over all mathematical statements, A is an arbitrary mathematical

predicate, and D is an arbitrary mathematical domain.

∧: A proof of φ ∧ ψ is a proof of φ together with a proof of ψ.

∨: A proof of φ ∨ ψ is a proof of φ or a proof of ψ.

→: A proof of φ→ ψ is a construction that transforms a proof of φ into a proof of

ψ.

⊥: There is no proof of ⊥ (i.e., contradiction).

∀: A proof of ∀xAx is a construction that transforms a proof that d ∈ D into a

proof of Ad.

∃: A proof of ∃xAx is a proof of d ∈ D together with a proof of Ad.

Each of the constants mentioned above is taken as primitive; their meanings are given

by the associated proof descriptions. Using these, we can characterize a proof of a

negation in terms of → and ⊥:

¬: A proof of ¬φ is a proof of φ→ ⊥.

The goal of the BHK interpretation is twofold. First, it is supposed to give a

semantic theory for intuitionistic logic analogous to the classical semantics in terms

of interpretations and satisfaction that was first given by Tarski (1935). To succeed

in this task, the interpretation must entail that all and only the theorems of intu-

itionistic logic are valid when interpreted according to the BHK clauses. Second, it is

supposed to make explicit the way that intuitionists purportedly understand math-

ematical statements. Recall Heyting’s claim, quoted above, that the affirmation of a

mathematical proposition expresses the fulfillment of an intention. If mathematical
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intentions are fulfilled by proofs, then the BHK interpretation makes clear what we

are asserting when we assert a logically complex proposition.4

It is an open question whether the BHK interpretation accomplishes these goals.

For now, however, let’s assume that it does. Does this help the constructivist’s case?

Clearly it does not, at least on its own. By itself, the BHK interpretation might be

a useful heuristic device for a mathematician who decides to reason according to

intuitionistic logic, but it does not show that one ought to reason intuitionistically.

To establish this stronger conclusion, one must provide an argument showing that the

BHK interpretation gives the correct theory of meaning for mathematical statements.

A gesture at such an argument is given by Heyting in his “Grundlegung” lecture.

There, he claims that mathematical propositions express intentions and assertions

express fulfillments. A reference to the phenomenologists makes clear that he has

Husserlian categories in mind. If he is right about propositions and assertions, then

it it may follow that the BHK interpretation gives the correct theory of meaning

for logically complex mathematical statements. Still, he gives no argument that his

Husserlian view about propositions is correct, and this (or something like it) is needed

in order to establish the BHK interpretation as the correct theory of meaning for the

logical constants.

1.2.2 Dummett’s Contribution

The most influential attempt to provide the kind of argument just mentioned is

that made by Michael Dummett. In his (1975b), (1991), and (2000), among other

works, Dummett has argued for a proof-conditional semantic theory for mathematical

statements, a theory that yields the BHK interpretation as giving the correct account

4For now, we set aside certain difficulties surrounding the BHK interpretation, although we will
address them later. For one thing, different versions of the BHK interpretation can be found in
the literature, e.g., those given by Dummett (2000), Heyting (1934; 1966), Kolmogorov (1932),
Troelstra and van Dalen (1988), van Atten (2004). Their equivalence is nontrivial. In addition, there
is no clause to handle logically simple statements; in order for the BHK semantics to succeed in its
task, something must be said about atomic formula.
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of the meanings of the logical constants. A corollary of this result, he claims, is that

mathematicians should use intuitionistic logic in their proofs; those that depend on

intuitionistically invalid principles do not establish their conclusions.

Dummett’s argument and his followers’ adaptions of it are part of a more general

metaphysical-cum-linguistic project. The dispute between intuitionists and classical

mathematicians is, on this view, representative of a class of traditional philosophical

questions about the ontological status of entities of various sorts. In the mathemat-

ical case, the objects in question are sets, numbers, and the like. Another case on

which Dummett has written concerns the status of events that occurred in the past.

We might also include questions about material substrata of physical objects, about

unobservable entities posited by scientific theories, etc. (Dummett 1978a) contains a

fairly extensive list of the kinds of debates that may fall into this class

What these debates have in common is that, in their traditional form, they are

about whether the entities under discussion “really exist,” at least in some way that

is independent of human cognitive activity. Hence, Dummett proposes the general

term ‘realist’ for those who defend the affirmative and ‘antirealist’ for the realists’

opponents. Clearly, one mathematical version of the antirealist’s thesis is ontological

constructivism. Dummett suggests that Brouwer, because of his ontological construc-

tivism, challenged the way that we reason when we do mathematics. The result is

mathematical intuitionism, a central feature of which is the rejection of classical logic

in favor of intuitionistic logic. As we saw, however, it is difficult to argue for ontological

constructivism per se, and attempts to argue immediately for the use of intuition-

istic logic tend to preach only to the converted. Dummett’s proposal is to collapse

these two theses. His view is that the genuine content of ontological constructivism

is captured by mathematical constructivism.

The general hope of the Dummettians is that this approach can settle a number

of the seemingly intractable metaphysical questions mentioned above. The argument
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for the use of intuitionistic logic in mathematics is very schematic. First, one argues

for a verificationist theory of meaning for a certain class Σ of statements. If this is

established, then one simply adjusts the relevant notion of verification to fit the sub-

ject matter of the statements in Σ: mathematical statements are verified by proofs,

historical claims by testimony and archeological investigation, etc. What makes the

mathematical case special is that we already have a robust and rigorous alterna-

tive to the realist’s classical mathematics, namely, constructive mathematics and its

attendant intuitionistic logic.

1.3 The Present Work

Dummett’s argument is often taken to be the strongest that has been given for the

mathematical constructivist’s position. For instance, Geoffrey Hellman (1989: p. 48)

takes Dummett as a standard-bearer for what he calls an “extremist, revisionist stance

vis-á-vis classical mathematics;” in this article, only Brouwer receives the same honor,

and Hellman interprets even him as a proto-Dummettian. Similarly, according to Su-

san Haack (1974: p. 103, original emphasis), “Dummett’s arguments make admirable

sense of much that is fragmentary in earlier Intuitionist work; so that if they can be

shown to be inadequate, this thesis will be quite seriously discredited.”

A primary claim of the present work is that Dummett’s argument on behalf of

constructive mathematics does not establish its conclusion; more generally, the intu-

itionist should not try to argue first for the BHK interpretation or any other special

theory of meaning for the logical constants. The first portion of what follows will be

devoted to establishing this. Dummett’s argument is complicated and subtle, so we

defer a full presentation of it to the next chapter. This exposition is followed by a

series of challenges to the Dummettian position. Our focus there and throughout will

be on this position’s application to mathematics, although some of the discussion will
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apply to the more general project of resolving metaphysical questions via the theory

of meaning.

Once this portion of the work is complete, intuitionism will seem to be in trouble.

A position that already has little popular support will have lost its best theoretical

foundation as well. The remaining task is to rebuild the intuitionist’s tower on a

stronger foundation. To do this, we return to Brouwer’s own work, which is in need

of a close reexamination. First, we look at his earliest published challenge to the

principles of classical logic in (Brouwer 1908b). Secondary literature on Brouwer and

intuitionism often places undue weight on this argument. Insofar as it is supposed

to be a challenge to classical logic, it is not successful. We argue, however, that

Brouwer’s paper is best understood as a challenge to his rival David Hilbert, not

primarily to classical logic or mathematics. In this respect, the paper marks Brouwer’s

entrance into an important scientific dispute, one in which Hilbert was central but that

has often been ignored more recently because of later mathematical results. Besides

clarifying Brouwer’s initial motivation for intuitionism, our discussion of Brouwer’s

early argument (and its later manifestations) will allow us to dispel the mistaken idea

that Brouwer was ever driven by linguistic considerations. For a variety of reasons,

this mistake is common, to the point that it has affected translations of Brouwer’s

writings and interpretations of his more promising arguments.

With the ground cleared, we can consider the more powerful arguments found

in Brouwer’s work beginning in 1918, emphasizing two of their features. First, the

theorems Brouwer proves entail results contrary to classical logic and mathematics

(notably, but not at all exclusively, the invalidity of the tertium non datur). Second,

the theorems and their proofs are purely mathematical in content (they are about

things like numbers and functions) and form (they use accepted standards of mathe-

matical proof and appear in the leading mathematical journals of the day). In these

papers, we find Brouwer proving results the way any mathematician does: he starts
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from axioms and established results and deduces their consequences.

Another central claim of the present work is that Brouwer’s approach to mathe-

matics should continue to stand as a model for intuitionists, but not for the reasons it

usually so stands. Rather, the intuitionist should attempt to establish his results in a

familiar mathematical way, namely, by identifying more fundamental principles and

giving mathematical proofs from these principles. As for these principles themselves,

they should be treated like other proposed theoretical axioms. In the concluding

chapter, we discuss how such a treatment would proceed, what kinds of principles

the intuitionist might rely on in order to demonstrate his results, and what reasons

might be given for taking these to be true.

1.4 Intuitionism and its Rivals

One more word is in order about the relationship between intuitionism and construc-

tive mathematics. According to the terminological convention established in §1 above,

intuitionism is a version of mathematical constructivism insofar as its adherents rea-

son using intuitionistic logic. Indeed, the discussion thus far has used ‘intuitionism’

and ‘constructivism’ almost interchangeably; strictly speaking, this is a mistake, since

the two approaches to mathematics are not identical. Henceforth, our focus will be

on intuitionism, which brings forth two questions. First, what distinguishes intuition-

ism from its constructive brethren? Second, why focus on it rather than the equally

constructive alternatives?

Bishop’s constructive analysis is a proper part of both intuitionism and Russian

constructivism in the sense that all of its theorems are also theorems of the latter two

schools. In a sense, Bishop’s approach is the most purely constructive, insofar as the

only thing distinguishing it from classical mathematics is its use of intuitionistic logic.

Still, it is a striking feature of Bishop’s theories that all of their results are perfectly
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acceptable to the classical mathematician, since intuitionistic logic is strictly weaker

than its classical counterpart.

As a result of these relationships, Bishop’s analysis provides common ground

among all of the camps being discussed. In addition, many of the results he and

his followers proved are necessary for any constructivist who wants her mathematics

to be usable for natural science. Since this is a sine qua non of any approach to doing

mathematics, the intuitionist and Russian constructivist are in the debt of Bishop and

his disciples.5 On the other hand, Bishop’s own reasons for constructive self-restraint

are disappointing. In the preface to his primary textbook on the subject, he complains

about the lack of “numerical meaning” in classical mathematics, and a rare slip into

metaphysical speculation consists of assertion rather than argument.

A set is not an entity which has an ideal existence. A set exists only when
it has been defined. To define a set we prescribe, at least implicitly, what
we (the constructing intelligence) must do in order to construct an element
of the set, and what we must do to show that two elements of the set are
equal. (Bishop 1967: p. 2)

In a later lecture (Bishop 1985), one finds similar appeals to things like meaning,

meaningful distinctions, and common sense, but it is hard to see how to craft a

convincing argument for constructivism on this imprecise basis. The Dummettian

argument for intuitionistic logic in mathematics, based as it is on more nuanced

views about meaning and language acquisition, is the kind of argument that Bishop

seems to need, but Dummett himself argues (2000: §7.5) that his semantic proposal

might be used to justify principles that go beyond anything Bishop would accept. (Of

course, we contend that Dummett’s argument also does not establish its conclusion,

in which case the point is moot.)

In addition, there is something unsatisfying about focusing solely on Bishop’s

5According to the summary of Brouwer’s dissertation given by Mancosu (1998: p. 5), “it is the
application of mathematics in experimental science and logic that is exposed as the root of all evil.”
Needless to say, Brouwer’s philosophy has plenty of idiosyncratic features. Fortunately, one can be
an intuitionist without accepting the Brouwerian gospel as holy writ.
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analysis, precisely because all of it is acceptable to the classical mathematician. One

advantage to studying intuitionism or Russian constructivism is that they automati-

cally bring with them arguments against classical logic. This gives them a certain force

that Bishop’s approach lacks. His requires an extra-mathematical argument; without

one, there seems to be no reason not to return to the status quo of classical methods.

Intuitionism and Russian constructivism establish their divergence from orthodoxy

via recognizably mathematical methods.

What about those two schools and their relationship to each other? A useful sur-

vey of technical points on which they diverge is given by Bridges and Richman (1987:

§6.1). For our present purpose, it suffices to note some sociological phenomena. First,

much discussion of constructive mathematics focuses on intuitionism. This includes

Dummett’s work, such as his book Elements of Intuitionism (2000), which is conspic-

uously not titled ‘Elements of Constructivism’. A standard textbook on constructive

mathematics is that by Troelstra and van Dalen (1988), who are both intuitionists

and students of Heyting, although their book includes discussions of alternative ap-

proaches.

Second, intuitionism seems to be the only approach that has been the subject of

robust philosophical discussion. In part, this is due to an overemphasis by philosophers

on the place of logic in the controversy. By the time Russian constructivism emerged

in the 1950’s, philosophers tended to think that intuitionistic logic represents an

interesting formal system, but that no good reason had been given why a full-scale

reform of mathematics was required. Since the Russian approach called for a similar

reform, it was relegated to the same pile as full-blown mathematical intuitionism.

Also, Brouwer himself articulated a philosophical picture that serves to motivate his

mathematical revisionism, giving later philosophers some raw material to study in

their investigations of intuitionism. By contrast, neither Markov nor his followers
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seem to have articulated such a system.6 For these reasons, then, we have chosen to

focus on intuitionism.

1.5 Conventions Adopted in the Present Work

We conclude our introduction with a few words about conventions that we have been

adopted concerning notation, vocabulary, and textual matters.

1.5.1 Notation

As far as possible, we have attempted to use standard logical and mathematical sym-

bols. The following symbols are used in their familiar ways to denote the corresponding

logical constants:

∧,∨,→,↔,¬,∀,∃.

In addition, since contradiction is frequently taken as a primitive notion in intuition-

ism (particularly in the context of the BHK interpretation), we will use the symbol

‘⊥’ to denote it. The reader who is uncomfortable with the idea that contradiction is

primitive is free to treat “⊥” as an abbreviation for some standard contradiction like

‘∀φ(φ)’.

The use of letters of the Greek and Roman alphabets will generally be explained

when necessary. With one exception, therefore, we will not set down any uniform

convention for their use. The exception concerns the use of lowercase Greek letters

‘φ,’ ‘ψ,’ and ‘χ,’ which will be reserved as variables ranging over truth values. In

particular, we allow for quantification over these truth values, e.g.,

∀φ(φ↔ φ).

6Kushner (2006: p. 560) alludes to Markov’s “mathematical worldview” but says little about
what this worldview is or what Markov’s motivations were for adopting it.
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The reader concerned with quantification over truth values should bear in mind that in

both the classical and the intuitionistic case, truth values are identified with elements

of P({0}), the power set of the singleton set containing 0. (Incidentally, this illustrates

our notation for the power-set operation.) In classical ZF set theory, this is just the

set {0, 1}. In IZF, the intuitionistic version of ZF, the set in question cannot be finite,

but Gödel (1932) showed that intuitionistic logic must be infinitely valued, so we do

not want the set-theoretic object containing all of the truth values to be finite. In any

case, quantification over truth values poses no threat if we allow ourselves a modicum

of set theory. On that note, set theoretic notation is also standard.

Other notation will be explained as it appears. In quotations from other authors,

we have occasionally modified the notation to conform to the conventions described

here. This facilitates discussion of the quotations without abrupt changes in notation.

When such modifications occur, a note will indicate this.

1.5.2 Vocabulary

One important terminological ambiguity has already been discussed above. This con-

cerns our uses of the term ‘constructivism’ in the context of mathematics and its

philosophy. To reiterate, our primary, unqualified use of this word (or its variant

‘mathematical constructivism’) will be to refer to mathematical approaches that in-

sist on reasoning according to intuitionistic logic. Particular varieties of constructivism

will be referred to by their more precise names, as in the previous section. ‘Ontological

constructivism’ will be used for the doctrine that mathematical objects are created

by, constructed by, or otherwise dependent on the human mind.

Another range of terms for which some stipulation is necessary is that concerning

Dummett’s position and argument for it. As mentioned above, Dummett’s proposal is

to understand metaphysical questions in semantic terms. In particular, metaphysical

antirealism about x’s, according to his suggestion, collapses to the view that the
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correct semantic theory for statements about x’s is in terms of what would verify

those statements. (A corollary is supposed to be that we should reason about x’s

using intuitionistic logic.) For this reason, one who adopts a verificationist theory of

meaning (about x’s) is sometimes called a semantic antirealist (about x’s), while the

contrary position is sometimes called semantic realism.

The problem with this vocabulary is that Dummett’s proposal is still a conjecture.

It is neither obvious nor established that every such metaphysical debate can be recast

in semantic terms. Indeed, Dummett himself concedes that the debate over universals

may not fit this mold.

It does not appear that the anti-realists in this case—the nominalists—
who denied the existence of universals and the referential character of
general terms, were anti-realists in the sense of the characterisation I have
now adopted: that they were necessarily committed to a different view of
the kind of truth possessed by statements containing general terms (that
is by all statements) from that of the realists. (Dummett 1978a: p. 147)

Nevertheless, our primary concern in this work is with the mathematical case, which

Dummett takes to be a paradigm for how his program can be applied to settle tradi-

tional questions in metaphysics concerning realism. Thus, we will adopt the expression

‘semantic antirealism’ (about x’s) to refer to the view that the correct theory of mean-

ing (about x’s) is a verificationistic one and the correct logic for reasoning (about x’s)

is intuitionistic logic.

This raises the question of the terms ‘semantics’ and ‘meaning’. Philosophers

(Davidson, for example, and Dummett himself) have observed that there are two

forms that a theory of meaning might take. One would be a theory relative to a given

language. In this way, we might give (in English, say) a theory of German meaning.

The other would be a philosophical characterization of what counts as the meaning of

linguistic items in any language. Thus, one might say that the meaning of a statement

(in any language) is given by the way in which it would be verified.

Following Dummett’s proposal (1991: p. 22), we will refer to theories of the first
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kind as meaning-theories and theories of the second kind as theories of meaning. For

the sake of stylistic variety, we will also use the term “semantic theory” as a synonym

for “theory of meaning” in the sense just described. Since our focus in this work is

on a proposed semantic theory (i.e., a theory of meaning) for any language in which

mathematics can be expressed, we will have little reason to refer to meaning-theories,

but it will be helpful to bear this distinction in mind nevertheless.

Finally, there is the matter of logical principles, many of which have multiple

names. In particular, intuitionists are most notorious for their rejection of a principle

variously called the law (or principle) of the excluded middle (or third). Whatever we

call it, this logical principle says that

∀φ(φ ∨ ¬φ).

This is sometimes mistakenly identified with the semantic principle of bivalence, ac-

cording to which every well-formed statement is either true or false. In fact, one might

accept the logical principle but reject the semantic one by denying that a true dis-

junction must have at least one true disjunct. To treat the two as equivalent therefore

requires some additional theory in the background.

Still, in light of this confusion and the variety of English names for the logical

principle under discussion, we have elected to refer to the principle by its traditional

Latin name, the tertium non datur. The same will apply to other logical principles

whose Latin names are standard and familiar, such as ex falso quodlibet :

∀φ(⊥ → φ).
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1.5.3 Citation and Translation

The publication history of some of Brouwer’s and Dummett’s writings raises special

issues that we will discuss here. The most readily available source for Dummett’s

early papers on language, logic, and mathematics is his (1978b). In such cases, it will

always be stated explicitly which article is being quoted, although the citation will

refer to Dummett (1978b). Full information for the original publication is available

in the bibliography.

Similarly, Brouwer’s papers are more easily available in collections rather than

in their original places of publication. Also, Brouwer wrote primarily in Dutch and

German (occasionally in French and English), so the matter of translation must be ad-

dressed. For our purposes, the most valuable collections are Brouwer (1975), van Hei-

jenoort (1967), Benacerraf and Putnam (1983), Ewald (1996), and Mancosu (1998).

Except for the first, all of these contain English translations of the writings contained

therein. In the case of the Collected Works, only the Dutch papers are translated;

those in German are left in the original language.

We have adopted a citation policy like the one adopted for Dummett. When an

English translation of a paper is available, we quote it and refer to the collection

in which it can be found, making explicit which paper is being quoted. Again, full

bibliographic details for the originals are given. On occasion, we found reason to quote

one of the German-language papers that appears only in the Collected Works. In such

cases, an English translation from the German is given with the original German in

a footnote. Also, at one point in Chapter 4, we emphasize a small but important

error in Heyting’s translation of one of Brouwer’s early Dutch papers. There, we give

Heyting’s translation from the Collected Works, together with the original Dutch and

our own more accurate English rendering.

Quotations from and references to other writings do not involve nearly as much

complexity. They are left as self-explanatory.
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Chapter 2

A Semantic Foundation for

Intuitionism

In his (1975b), Michael Dummett asks how somebody might defend intuitionism as

the uniquely correct foundation for mathematics. The answer he proposes, in the

remainder of that article and elsewhere, is that such a defense must be based on

considerations concerning the meanings of mathematical statements. According to

Dummett, reflection on these statements, especially on how we come to understand

them, reveals that they cannot have the meanings that classical mathematicians treat

them as having. Rather, Dummett argues, the statements mean precisely what is

needed in order to justify the major results of intuitionistic mathematics and logic.

We will begin by examining exactly what kinds of meanings Dummett thinks are

presupposed by classical and intuitionistic mathematicians. After that, we will con-

sider how Dummett argues for intuitionistic mathematical (including logical) princi-

ples on the basis of his preferred theory of meaning.1 Then, we will examine Dum-

mett’s arguments for his underlying semantics. The purpose of this chapter is simply

1In keeping with the spirit of L.E.J. Brouwer, who maintained throughout his life that logic is
a branch of mathematics and not vice versa, we will treat logic as a part of mathematics alongside
algebra, analysis, etc.
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to expound the Dummettian position; we will delay our evaluation of it until the

following chapter.

2.1 Realism versus Antirealism

Dummett’s attempt to give a semantic defense of mathematical intuitionism is an

effort to carry out one component of a larger project concerning a common kind of

metaphysical debate. There are and always have been disputes in philosophy about

whether the members of a certain kind X of entity “really exist” (whatever that might

mean when spelled out). Let us stipulate that the term ‘(ontological) realist’ about

X describes those who defend the affirmative in these disputes about the existence of

entities in kind X. Then we can find, throughout the history of philosophy, realists

about universals, numbers, the external world, matter, etc. Let us stipulate further

that the term ‘antirealist’ will describe the opponents of the realists; then there will

be antirealists about the members of various kinds. Immediately, this vocabulary

demands justification. For instance, it is hardly obvious that realism about numbers

has anything to do with realism about matter. This is reflected in the tendency

to use more precise “-isms” when conducting these various disputes. Mathematical

realists, for example, are usually called ‘Platonists’, and their opponents ‘(ontological)

constructivists’. Realists about matter are materialists, and they argue with idealists.

And so on.

Is there anything to justify assigning every player in each of these disputes to one

or the other of two large groups, realists and antirealists? Dummett’s overall project

can be understood as an attempt to provide such a justification by identifying a

single semantic issue at the core of all realism/antirealism controversies. As he puts

it (1978b: 146, original emphasis),

The dispute thus concerns the notion of truth appropriate for statements
of the disputed class; and this means that it is a dispute concerning the
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kind of meaning which these statements have.

The two competing notions of truth conflict about whether a statement’s truth, and

therefore its meaning, is tied in an essential way to a human being’s capacity to verify

it. When the statement is mathematical, the realist insists that it is true or false even

if nobody is able to prove or refute it. The antirealist, by contrast, maintains that

its truth-value must depend in some central way on a person’s capacity to produce

a proof or refutation of it. More generally, realists insist that a statement about a

certain kind of entity is either true or false even if nobody could in principle figure

out which alternative holds. Antirealists, by contrast, insist that a statement is true

only if it is possible for a person to verify it and false only if somebody can falsify

it. In general, the appropriate techniques for verifying a statement will depend on its

subject matter. Empirical observation, for example, will play a role in determining

whether a statement about a physical object is true, but it is widely thought to be

irrelevant to a statement about mathematical entities; in the latter case, notions of

mathematical proof are at issue.

To be fair, Dummett concedes that a meaning-theoretic analysis might not char-

acterize every debate that we would intuitively regard as concerning realism about

something or other. Shortly after the passage just quoted, he allows that it might not

accurately describe the problem of universals, at least as that problem was understood

in the Middle Ages. For this reason, it is best to understand Dummett’s larger project

as a program of research into how far his proposal can go as we examine various kinds

of entities. However this turns out, Dummett does think he has provided an accurate

characterization of the conflict between classical and intuitionistic mathematicians.

In fact, he thinks it provides him a paradigm case for his larger program, and that is

what interests us here.

Let us now examine Dummett’s philosophy of mathematics more closely. Again,

as Dummett himself admits, it is not clear that his characterizations of realism and
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antirealism accurately describe the core of every debate about the real or objective

existence of members of a kind of entity. He thinks, however, that he has definitely

succeeded in at least one case, namely, the debate between classical mathematics, as

practiced by most working mathematicians today, and the intuitionistic mathematics

developed by L.E.J. Brouwer and others. He contrasts his interpretation of this con-

flict with a more obviously metaphysical one. According to the metaphysical version,

classical mathematicians think of mathematical objects as “independently existing

abstract objects” (ibid., p. 229), while intuitionists insist that they are produced by

the human mind.2

The problem with this metaphysical question, Dummett thinks, is that there seems

to be no way to settle the issue without resorting to an appeal to a theory of meaning.

Preliminary reflection suggests that the metaphysical question ought not
to be answered first: we cannot, as the second [i.e., metaphysical] type of
approach would have us do, first decide the ontological status of math-
ematical objects, and then, with that as premiss, deduce the character
of mathematical truth or the correct model of meaning for mathematical
statements. (ibid., p. 229, original emphasis)

Furthermore, Dummett is interested in determining how to argue for intuitionism as a

rival to classical mathematics. He is “not concerned with justifications of intuitionistic

mathematics from an eclectic point of view” (ibid., p. 215). In other words, Dummett

is not interested in treating intuitionism as one interesting approach to mathematics,

standing alongside classical mathematics (and other approaches) but not uniquely

privileged. Like Brouwer, he is interested in how one might argue for intuitionism as

the correct way to do mathematics, and this will mean showing that the activity of

classical mathematicians is flawed in some way. According to him, the only possible

argument for this conclusion is one that begins by establishing semantic antirealism

2An intuitionist need not accept this psychologistic metaphysics, though Brouwer did. So too,
a classical mathematician need not be a metaphysical Platonist. The point here is simply that the
dispute is often framed in these ontological terms, and Dummett hopes to use it as something like
a case study for his larger research program.
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for mathematical statements and then showing how that leads to the core principles

of intuitionism.

In the next two sections, we will examine both steps of this two-part argument.

First, we will see how semantic antirealism is supposed to yield intuitionistic logic and

mathematics. Then, we will examine how Dummett argues for the semantic thesis.

First, however, we should explore exactly how each of a realistic and an antirealistic

semantics makes a difference to our understanding of a mathematical statement. So,

let φ be such a statement, and assume it is well-formed and coherent. Dummett’s

realist will insist that the truth-value of φ is a settled matter: it is either true or false.

This is the case regardless of what φ says, whether anybody has ever proved or refuted

it, and even whether anybody ever will prove or refute it. Its truth conditions obtain

or fail to obtain independently of anything concerning human cognitive abilities and

attainments. Furthermore, according to the realist, these independent truth conditions

yield the meaning of φ, and this meaning is what a person knows when she understands

the statement.

The Dummettian antirealist will reject the claim that the truth conditions just

mentioned really are independent of human capacities. He will insist that they must

be given in terms of what human beings are able to do with respect to φ, especially

whether anybody knows how to determine its truth value. For this reason, we should

really speak of the verification conditions or, since mathematical statements are veri-

fied by proofs, the proof conditions of φ. The antirealist will therefore insist that the

meaning of the statement is given by what counts as a proof of it and that a person

who understands φ is able to recognize a correct proof of it were she presented with

one.3

Although Dummett never articulates the matter this way, it will be helpful to

3Following Dummett, we are subsuming calculation under proof. For example, when somebody
correctly calculates that 242+136 = 378 using familiar and reliable arithmetic methods, this amounts
to a proof of the statement ‘242 + 136 = 378’.
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recall Tarski’s material adequacy condition on a truth definition as formulated in his

(1935: §1). According to it, any definition of truth for a language L must entail every

sentence of the form

S is true in L ↔ p.

In this schema, now famously known as Schema T, the precise relationship between

S and ‘p’ depends on a number of factors. Tarski himself treated S as the name of a

sentence in L and ‘p’ as a translation of it into the metalanguage—English, in this

case. One criterion for a good translation is then that S and ‘p’ have the same truth

conditions. Tarski and followers of his like Davidson (1967) take it for granted that,

since we understand English, we will understand the truth conditions of ‘p’. We can

then say that ‘p’ provides a description, in familiar English, of the truth conditions

of S.

For the realist, there isn’t much more to say. He looks at Schema T and nods

approvingly, resting content in his knowledge of English and his view that the truth

conditions described by ‘p’ either obtain or fail to obtain (and, therefore, that S is

either true or false). The antirealist thinks this is too hasty and that more can be said.

In particular, she can give a general characterization of what ‘p’ must be like: it must

assert the existence of evidence for ‘p’. In other words, the antirealist understands

Schema T to be shorthand for the following, which we can call Schema P:

S is true in L ↔ ∃π(π ` ‘p’).

Here, π ranges over pieces of evidence for statements. In the case of mathematical

statements, these will be proofs. ‘π ` ‘p” means that π can be recognized as a correct

proof of the statement ‘p’. Thus, by accepting the finer-grained Schema P as an

explication of Schema T, the antirealist incorporates verifiability into his theory of

truth for a language.
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With these schemata in place, we can see that there are really two related dis-

agreements between the realist and the antirealist. The first concerns the meaning

of a statement; the second has to do with whether a given statement is true once

its meaning is fixed. (A third is over what a person who understands a statement

knows, but since Dummett takes this to reveal a statement’s meaning, it really is just

a version of the first.) In some cases, both sides will agree on the second of these. This

is because the realist is happy to grant the right-to-left conditional of Schema P. For

him, the existence of the proof of ‘p’ is evidence that the truth conditions described

by ‘p’ obtain. So, when ‘p’ is a statement with a recognizable proof that is acceptable

to both the realist and the antirealist, they will agree that ‘p’ is a true statement.

Despite this, it is important to remember that there will also be some statements

about whose truth the realist and antirealist will disagree. Obvious examples are

given by the many familiar mathematical problems for which nobody has been able

to provide either a proof or a refutation: Goldbach’s Conjecture, the Twin Primes

Conjecture, Riemann’s Hypothesis, etc. In these cases, the antirealist will insist that

we refrain from either asserting or denying statements of these problems. This is

because nobody has been able to solve these problems.4 The realist, on the other

hand, insists that the truth conditions for ‘p’ obtain or fail to obtain independently

of whether human beings can verify which alternative holds. Thus, he will insist that

‘p’ is either true (if the conditions obtain) or false (if they fail to obtain).

So, although the realist and antirealist will frequently agree about the truth values

of individual statements, they will disagree about whether the principle of bivalence

holds for mathematical statements. This is the principle according to which every

statement is either true or false. (Here, of course, we are restricting the principle to

4This assumes that the existential quantifier on the right-hand side of Schema P is understood
antirealistically. If we assume that there exists, for every statement, a proof of the statement or
its negation (even if nobody can produce this proof), then every statement is true or false even
according to Schema P. This shows that the semantic antirealist must insist on a verificationistic
theory of meaning both for the object language and the metalanguage (and any other language up
the hierarchy).
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mathematical statements.) Indeed, Dummett sometimes suggests that bivalence is

really what’s at issue in disputes between realists and antirealists.

It is difficult to avoid noticing that a common characteristic of realist
doctrines is an insistence on the principle of bivalence—that every propo-
sition, of the kind under dispute, is determinately either true or false.
. . . What anti-realists were slow to grasp was that, conversely, they had
in the most typical cases equally compelling grounds to reject bivalence
and, with it, the law of excluded middle (Dummett 1991: p. 9, original
emphasis).5

Bivalence is central to understanding Dummett’s view of the conflict between classical

and intuitionistic mathematics. Still, we shouldn’t forget that ultimately, semantic

realists and antirealists disagree about the correct theory of meaning and the meanings

of individual statements. The antirealistic theory of meaning provides the compelling

grounds Dummett mentions in the passage just quoted.

Note too that, when Dummett says that antirealists reject bivalence and the ter-

tium non datur, he is not claiming that they can produce a counterexample to these

principles. Antirealists deny that every statement is true or false and that the univer-

sal closure of φ∨¬φ is a logical truth, but it would be inconsistent with intuitionistic

logic to claim to have a counterexample to these.

So, for Dummett, mathematical intuitionism is the result of applying semantic

antirealism to the statements of mathematics. On this view, when the intuitionist

insists that the classical mathematician is in error, his accusation is founded on a

particular theory of meaning he endorses. For Dummett, or anybody who takes this

to be a correct interpretation of intuitionism and a conclusive argument against clas-

sical mathematics, there are two pressing tasks. One is to show how the results of

intuitionistic mathematics, such as the invalidity of the tertium non datur, are conse-

quences of an antirealistic theory of meaning. The other is to show that the realist’s

preferred theory of meaning cannot be sustained.

5We will discuss the connection between the semantic principle of bivalence and the law of
excluded middle (or, in our preferred vocabulary, the tertium non datur) in the next section.
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2.2 From Antirealism to Intuitionism

Before seeing how Dummett argues that his antirealistic theory of meaning entails the

core principles of mathematical intuitionism, a few preliminary remarks are in order

concerning the relationships among these principles. The most notorious feature of

intuitionism surely is its rejection of the logical principle tertium non datur. This is

the principle according to which the formula

∀φ(φ ∨ ¬φ)

is true, with ‘φ’ ranging over all mathematical statements. Any purported foundation

for intuitionism must provide some reason for this rejection. As we will see, Dummett’s

antirealism does yield such a reason. Whether it is a good one will be discussed in

the next chapter.

It is a mistake, however, to think that intuitionists reject the tertium non datur

simply in order to be difficult or because they confuse Brouwer’s writings with sacred

scripture and can cite chapter and verse where he rejects it. Rather, the intuitionist

claims to be able to demonstrate its invalidity by presenting mathematical proofs,

starting from mathematical first principles, whose conclusions are that the principle

is invalid. This is at least part of what the intuitionist means when he insists that

mathematics is prior to logic: using mathematics, one can obtain results about logi-

cal principles. Brouwer’s own papers feature such proofs, and later developments in

intuitionistic mathematics have yielded more.

So, although intuitionists do reject the tertium non datur, this should not be

treated as the single starting point from which the rest of their mathematics springs.6

6That people make this mistake so frequently may be a consequence of the sometimes formidable
difficulty of those writings in which Brouwer develops intuitionistic mathematical theories. In his
earlier intuitionistic papers, which are more philosophical and polemical (and easier to read), the
rejection of the tertium non datur does appear as something more like an axiom. See Chapter 4
for a discussion of the philosophical arguments and Chapter 5 for a discussion of the mathematical
proofs against classical logic.
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This is important to keep in mind for two reasons. First, intuitionistic logic is not

simply classical logic without the tertium non datur. For example, the law of testa-

bility,

∀φ(¬φ ∨ ¬¬φ),

is a theorem of classical but not of intuitionistic logic. Still, one can consistently reject

the tertium non datur while accepting the law of testability, thereby obtaining a logic

that is neither classical nor intuitionistic. So, even if we are interested in providing

a justification for intuitionistic logic only, not every argument for the invalidity of

tertium non datur will accomplish the task.7

Second, we aren’t interested in providing a justification for intuitionistic logic only.

The most this will give us is a foundation for what we have elected to call construc-

tive mathematics, i.e., mathematics developed by reasoning according to intuitionistic

logic. This is simply a genus, however, and intuitionism is one of its species.8 Intu-

itionism’s specific difference is that it accepts non-logical principles entailing results

like the (distinctly intuitionistic) Continuity Theorem first proved by Brouwer (1924).

(Indeed, the invalidity of tertium non datur is a simple consequence of this theorem.)

So, a foundational program for intuitionism must provide some way to demonstrate

theorems like this one.

These remarks are necessary because Dummett himself tends to place more em-

phasis on logic than on the non-logical branches of mathematics. His article “The

Philosophical Basis of Intuitionistic Logic” contains the following description of his

task there.

I am concerned only with the most fundamental feature of intuitionistic
mathematics, its underlying logic, and not with the other respects (such

7Umezawa (1959) shows that there are uncountably many logics intermediate in strength between
intuitionistic and classical logic.

8As we observed in our discussion of terminology in Chapter 1, there are at least two other well-
developed approaches to constructive mathematics, those of Markov and Bishop. All of these accept
intuitionistic logic as formalized by Heyting or a non-classical extension of it, but they disagree
about various non-logical results.
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as the theory of free choice sequences) in which it differs from classical
mathematics. (Dummett 1978b: p. 215)

This is heterodox from the point of view of the typical intuitionist. She will insist that

logic is not the most fundamental feature of her mathematics. Rather, intuitionism’s

most fundamental distinguishing feature is how it disagrees with classical mathemat-

ics. A focus on logic alone, or even primarily, will not help us to understand this

disagreement.9

Still, in fairness to Dummett, we should grant that he ultimately wants to show

that the most fundamental feature of intuitionism is semantical. Suppose that, on

the basis of his antirealistic theory of meaning, he can justify intuitionistic logic on

the one hand and intuitionistic algebra, analysis, topology, etc. on the other, but that

these justifications are independent of each other. Then, assuming he can also provide

a conclusive argument for antirealism, the intuitionist may opt to endorse Dummett’s

view and reject the priority of mathematics over logic. After all, a direct justification

for intuitionistic logic would be no mean accomplishment.

With that said, let us turn to Dummett’s attempt to provide this justification. In

the remainder of this section, we will assume an antirealistic theory of meaning, of

the kind described in the previous section, for mathematical statements. First, let’s

see how one might argue on this basis for the correctness of intuitionistic logic rather

than its classical counterpart.

To begin with, recall that Schema T was originally formulated by Tarski in the

process of showing how one can construct a truth definition for a suitable language.10

9It is interesting that in Elements of Intuitionism, Dummett’s book-length treatment of intu-
itionistic mathematics, he discusses arithmetic and analysis, including the theory of free choice
sequences, before his two chapters on logic. This reflects the presentation by Heyting (1966), where
logic is treated only in the penultimate chapter, following chapters on arithmetic, algebra, topology,
and analysis — and this despite Heyting’s status as the creator of intuitionistic logic!

10We should emphasize that, although both the realist and the antirealist accept Schema T as an
adequacy condition on a truth definition, neither need thereby be committed to a deflationary theory
of truth. Tarski’s definition is a useful technical achievement and leaves open the question of what
truth “really” is. Indeed, the realist and antirealist disagree precisely about this latter question.
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This definition proceeds recursively, where the recursion clauses specify the effect each

logical constant has on the truth of sentences in which it appears principally. So, for

example, the clause for conjunction is

‘φ ∧ ψ’ is true ↔ φ is true and ψ is true.

One way to understand why this works is that we want to make sure that the ∧

symbol on the left side of this biconditional names something with the same meaning

as our English word ‘and’.11 As competent English speakers, reflection on our own

linguistic knowledge suffices to tell us what ‘and’ means. Furthermore, the recursive

character of the construction allows us to assume that we already know the truth

conditions for φ and ψ. So, the clause above allows us to understand the meaning of

the object-language sentence ‘φ ∧ ψ’ and its component connective ∧.

Dummett thinks that the antirealist can give a similarly recursive specification of

the meanings of the logical constants.

The meaning of each constant is to be given by specifying, for any sentence
in which that constant is the main operator, what is to count as a proof
of that sentence, it being assumed that we already know what is to count
as a proof of any of the constituents (Dummett 2000: p. 8).

The antirealist and realist both think that whatever is on the right-hand side of their

preferred schemata gives the meaning of the statement asserted to be true on the left-

hand side. The antirealist, however, prefers Schema P, since he takes the meaning of

a statement to be given by what counts as a proof of it. Dummett therefore proposes

that the antirealist use a recursive approach to give the antirealistic meanings of the

logical constants in terms of the effects they have on the proof-conditions of statements

in which they appear principally. And, just as in the Tarskian case our competency

with English allowed us to specify what the clause for each connective should be, so

11We are deliberately setting aside Tarski’s use of the notion of satisfaction, which he introduced
in order to solve certain technical problems that otherwise threatened his construction. For our
purposes, we can speak directly of truth (or proof) and ignore satisfaction.
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too the antirealist can appeal to our competency as reasoners to justify the given

specifications.

Dummett (ibid., §1.2) proposes the following recursion clauses. He restricts himself

to arithmetical statements (hence the reference to numbers in the quantifier clauses).

His proposal can easily be generalized to any countable domain, although if we wish

to consider uncountable ones like the real numbers, we have to face the fact that

not all of the elements will have names. Also, we have changed his & to a ∧ and his

Roman letters to Greek ones in keeping with our preferred notation.

∧: A proof of φ ∧ ψ is anything that is a proof of φ and of ψ.

∨: A proof of φ ∨ ψ is anything that is a proof either of φ or of ψ.

∃: A proof of ∃xA(x) is anything that is a proof, for some n, of the statement

A(n̄).

∀: A proof of ∀xA(x) is a construction of which we can recognize that, when applied

to any number n, it yields a proof of A(n̄).

In the quantifier clauses, ‘n̄’ is the numeral that names the number n.

Dummett does not give such succinct clauses for ¬ and →. Here is his initial

proposal for the former.

A proof of ¬φ is usually characterized as a construction of which we can
recognize that, applied to any proof of φ, it will yield a proof of a contra-
diction (ibid,. p. 8).

This, however, threatens to be circular. If we understand a contradiction to be a

statement of the form φ ∧ ¬φ, then the ¬ symbol appears in the explanation of its

own meaning. There are a few ways to avoid this. One is to adopt ⊥ as a new constant

and add a clause insisting that there is no proof of ⊥. This is the path proposed by

Troelstra and van Dalen (1988: p. 9).
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Dummett suggests that we instead pick “some one absurd statement, say 0 = 1.”

This will not work in general, however, because ‘0 = 1’ is not a logical contradiction:

by tinkering with the Peano axioms, one can build consistent (albeit nonstandard)

theories of arithmetic in which ‘0 = 1’ is true. For this reason, we should treat ¬ as

governed by this clause:

¬: A proof of ¬φ is a construction of which we can recognize that, applied to any

proof of φ, it will yield a proof of ⊥.

We will also add a clause for ⊥ to the mix.

⊥: There is no proof of ⊥.

Dummett also has a good deal to say about→, although he never gives a succinct

description of what counts as a proof of a conditional. All he offers is a hint when he

says that “an intuitionistic proof of φ→ ψ is an operation upon proofs yielding proofs”

(ibid., p. 10). Dummett’s idea is that a proof of the conditional is a function taking

proofs of φ as inputs and yielding proofs of ψ as outputs. This is similar to Heyting’s

(1934: p. 14) description of the proof conditions for a conditional: φ→ ψ means that

“the solution of B results from the solution of A.”12 Dummett’s contribution is to

insist that the proof in question be a function or operation taking proofs into proofs.

Thus, we can attribute the following proposal to Dummett.

→: A proof of φ → ψ is an operation of which we can recognize that, applied to

any proof of φ, it will yield a proof of ψ.

A little reflection reveals that these clauses do seem to capture some of our stan-

dard mathematical proof techniques as represented in a Gentzen-style natural deduc-

tion system. For example, the ¬ clause provides an antirealistic description of what

we often think of as proofs by reductio ad absurdum: we begin by assuming φ (which,

12The translation from the German is my own, and the variables have been changed. The original
reads “die Lösung von b auf die Lösung von a zurückzuführen.”
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for the antirealist, is equivalent to assuming that we have a proof of φ) and show that,

from this assumption, we can produce a proof of a contradiction, i.e., of ⊥. Since no

contradiction has a proof, we have thereby shown that φ cannot have a proof either,

so we infer ¬φ.

If Dummett is right that antirealism justifies assigning each logical constant the

meaning specified by its recursion clause, then he has made an important step toward

showing that his theory of meaning justifies intuitionistic, as opposed to classical logic.

To see why, notice that his clauses correspond closely to the BHK interpretation of

the logical constants.13 According to Heyting (1966: p. 97), the BHK interpretation

is intended “to fix, as firmly as possible, the meaning of the logical connectives.”

Troelstra and van Dalen (1988: p. 9) say that it serves to “explain the use of the

logical operations in a constructive context.” So, the authors just mentioned clearly

think of the BHK in the same spirit as Dummett does when he presents his similar

interpretation. Of these authors, however, only Dummett attempts to argue that these

clauses provide the correct semantics for the logical constants. Other authors tend to

rest content by saying that the BHK clauses give the meanings of the constants as

they are used by intuitionists without explaining why anybody should accept those

meanings as correct.14

Still, once we accept the meanings given by the BHK semantics, we should be able

to use them to show that the theorems of intuitionistic logic are valid and to motivate

the rejection of certain laws of classical logic. Indeed, as we will see in Chapter 3, if

Dummett’s project is to succeed, he needs something like soundness and completeness

proof for intuitionistic logic relative to the BHK interpretation. Without this, we

cannot be sure that the meanings he proposes for the logical constants will license

all and only the inferences that are valid according to intuitionistic logic. We will

13See Chapter 1, §2.1.
14Heyting will occasionally make references to “mental mathematical constructions” or “intuitive

clarity” (1966: pp. 1, 97), but these are hardly arguments; they amount to saying “See!” in the hope
that this can constitute a proof.
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examine the prospects for such a proof in the next chapter. For now, we will show

only that, if the antirealist’s argument succeeds, the tertium non datur cannot now

be asserted with justification.

The tertium non datur is the principle according to which

∀φ(φ ∨ ¬φ),

where φ ranges over mathematical statements or, more precisely, truth values. By

Schema P, to say that the tertium non datur is true is to say that there exists a

humanly recognizable proof of it, i.e., that

∃π(π ` ∀φ(φ ∨ ¬φ)).

By the ∃ clause, this means that there is some particular proof π0 such that

π0 ` ∀φ(φ ∨ ¬φ).

In other words, π0 is a recognizable proof of the tertium non datur.

What would a proof like π0 demonstrate? It is a proof of a universally quanti-

fied statement. So, applying the antirealistic meaning of ∀, we can say that π0 is a

construction of which we can recognize that, given any mathematical statement φ, it

yields a proof of φ ∨ ¬φ. Applying the ∨ clause, the latter proof would have to be a

proof of φ or a proof of ¬φ. By the ¬ clause, a proof of ¬φ is a method that converts

any proof of φ into a proof of ⊥.

Putting this all together, we see that π0 would be a statement operator of which

we can recognize that, for any mathematical statement, it will either prove the state-

ment or reduce it to absurdity. In other words, π0 would be a function that can be

recognized as providing a proof or refutation of any mathematical statement. So, if we
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accept both the BHK interpretation and tertium non datur, we end up committed to

something like David Hilbert’s Axiom of Solvability, according to which every math-

ematical problem has a solution that we can obtain.15 Despite Hilbert’s optimism,

there is currently no universal technique for solving mathematical problems and none

is immediately forthcoming. Thus, we cannot presently accept both the tertium non

datur and Dummett’s version of the BHK interpretation as the correct theory of

meaning for the logical constants. Since Dummett’s antirealist is committed to the

latter, he cannot endorse the latter. Therefore, Dummett can show, on antirealistic

grounds, that the validity of the tertium non datur is not yet established, thereby

satisfying a necessary condition for an intuitionistic foundation for mathematics.16

As we said, the next chapter will look more closely at the prospects for something

like a soundness and completeness proof with respect to the semantics that Dummett

proposes. All that we have established so far is that antirealism requires the rejection

of classical logic, not that it forces us to accept intuitionistic logic. For now, however,

we will turn to Dummett’s argument for an antirealistic semantics for mathematical

statements.

2.3 Arguing for Antirealism

Dummett’s argument for antirealism begins with reflection on two aspects of our

linguistic activity. First, he considers how we come to learn the meanings of statements

and their component words. Second, he asks how somebody might exhibit or manifest

her understanding of some part of a language. The relationship between these two

15See Chapter 4 for more on Hilbert’s Axiom and his contribution to the early development of
intuitionistic mathematics.

16This argument does not show that the tertium non datur is invalid. That would require a proof
that the existence of a recognizably universal problem-solving method is absurd. Whether this can
be done depends on what counts as a legitimate method. As Tennant (1997: §7.5) shows, if we
understand only recursive methods to be legitimate, then the tertium non datur is provably invalid.
It would take further work to show that this result holds for classes of methods that are wider in
extent.
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items can be obscure. Burgess (1984) understands Dummett as offering two distinct

arguments, one turning on acquisition and the other on manifestation.

Dummett’s philosophy is not always that tidy, however, and we should be wary

of thinking that the two arguments are entirely independent of each other. Unless we

wish to accept an innate-knowledge theory à la Plato or Chomsky, a person’s ability

to manifest understanding of a statement must depend in some way on her ability

to acquire that understanding. One cannot exhibit knowledge one has never learned.

Furthermore, Dummett does not think that it makes sense to talk about acquired

linguistic knowledge that cannot be exhibited.

Implicit knowledge cannot, however, meaningfully be ascribed to someone
unless it is possible to say in what the manifestation of that knowledge
consists: there must be an observable difference between the behaviour or
capacities of someone who is said to have that knowledge and someone
who is said to lack it. (Dummett 1978b: p. 217)

Thus, pace Burgess, we should treat the manifestation considerations and the ac-

quisition considerations as two aspects of one larger argument to establish semantic

antirealism.

In any case, Dummett begins by taking inspiration from a familiar Wittgensteinian

slogan, “meaning is use.” Here is how Dummett understands it.17

The meaning of a mathematical statement is determined by its use. The
meaning of such a statement cannot be, or contain as an ingredient, any-
thing which is not manifest in the use made of it, lying solely in the mind
of the individual who apprehends that meaning: if two individuals agree
completely about the use to be made of the statement, then they agree
about its meaning. (ibid., p. 216, original emphasis)

Here, the manifestation requirement is made explicit. Somebody who understands

the meaning of a statement φ must be able to exhibit that knowledge publicly. The

manifestation can take multiple forms. One is via an explanation of the meaning using

17We will not address the complicated question of whether this interprets Wittgenstein correctly.
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another bit of language. According to Dummett, however, this cannot be the only way

to manifest understanding.

But to suppose that, in general, a knowledge of meaning consisted in
verbalisable knowledge would involve an infinite regress: if a grasp of the
meaning of an expression consisted, in general, in the ability to state
its meaning, then it would be impossible for anyone to learn a language
who was not already equipped with a fairly extensive language. . . . Hence
it follows, once more, that a grasp of the meaning of a mathematical
statement must, in general, consist of a capacity to use that statement in
a certain way, or to respond in a certain way to its use by others. (ibid.,
p. 217, original emphasis)

Setting aside for the moment how one learns language, Dummett here seems to be

ignoring the possibility of a purportedly vicious circle rather than an infinite regress.

If I explain the meaning of the numeral ‘2’ to somebody by telling her that it stands

for the number that comes after 1 in the natural number sequence, then it does the

other person no good if I explain ‘1’ as representing the number preceding 2 in the

same sequence. I have explained ‘2’ in terms of itself, and it is hardly clear that I

thereby know what the numeral means. Here, the problem is circularity, not infinite

regression.

Dummett’s argument, whether cast in terms of a circle or a regress, relies on

important assumptions about the structure of a language. If Dummett is right, a

person must be able to manifest her understanding of at least some linguistic items via

nonverbal means.18 That is, she must be able to show via nonlinguistic behavior that

she understands these basic sentences and their constituents. If, when told to fetch

two books, she brings back three, this casts doubt on her claim to know what ‘two’

means, but if she brings back two, this provides evidence that she does understand

the numeric expression.

18Indeed, the argument is really a familiar epistemological argument with a linguistic twist. A
canonical argument for foundationalism in epistemology highlights the need for some foundational
beliefs in order to avoid either a vicious circle or an infinite regress in the structure of our knowledge.
The special linguistic items understanding of which can be exhibited nonverbally are the analogue
of the foundationalist’s basic beliefs.
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So much for manifestation. What about acquisition, i.e., learning a language? Here

is what Dummett has to say.

Another approach is via the idea of learning mathematics. When we learn
a mathematical notation, or mathematical expressions, or, more generally,
the language of a mathematical theory, what we learn to do is to make use
of the statements of that language: we learn when they may be established
by computation, and how to carry out the relevant computations, we learn
from what they may be inferred and what may be inferred from them,
that is, what rôle they play in mathematical proofs and how they can be
applied in extra-mathematical contexts, and perhaps we learn also what
plausible arguments can render them probable. (ibid.)

He continues by pointing out that, if meaning consisted in more than use, then some-

body could correctly use mathematical language (or some portion of it), and yet we

would have no guarantee that the person knew the language. This would, according

to Dummett, “make meaning ineffable, that is, in principle incommunicable.” We

would have no guarantee that anybody understood us when we spoke.19 If we take

as premises that we successfully communicate and that we know we do this, meaning

must therefore consist in use alone.

In the previous quotation but one, Dummett does seem to suggest that he is

offering two separate arguments, one built around considerations of manifestation and

the other around considerations of acquisition. (Witness his phrase ‘another approach’

in the quoted passage.) We can, however, identify a common core to both, and when

we do, it becomes clear that these are really two perspectives on one basic argument.

The common core is the idea he draws from Wittgenstein, namely, that there is a

close connection between the meaning of a linguistic item and the way in which

it is used. We see this in the manifestation version of the argument when Dummett

insists that, since verbal explanations of meaning can’t go all the way down, linguistic

understanding must sometimes be exhibited by correct non-linguistic behavior. It also

19To keep track of the factions, we should note that Brouwer accepted—even embraced—what
Dummett calls the ineffability of meaning. It plays an important role in his criticisms of both
logicism and Hilbert’s formalism.
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appears in the acquisition version as follows.

These things [how to calculate, infer, etc.] are all that we are shown when
we are learning the meanings of the expressions of the language of the
mathematical theory in question, because they are all that we can be
shown: and, likewise, our proficiency in making the correct use of the
statements and expressions of the language is all that others have from
which to judge whether we have acquired a grasp of their meanings. Hence
it can only be in the capacity to make a correct use of the statements of
the language that a grasp of their meanings, and those of the symbols
and expressions which they contain, can consist. (ibid., p. 217, emphasis
added)

This is one major part of Dummett’s argument for antirealism with respect to math-

ematical language. If he is correct so far, he has established three theses.

1. When one learns the language of mathematics, all one learns to do is to use its

sentences and their components in correct and appropriate ways.

2. To understand a mathematical sentence or word, one needs only to be able to

use the sentence or word correctly and to respond to correct uses by others.

3. The meaning of a mathematical statement consists in the use we make of it.

On Dummett’s view, there is a very close connection between meaning (a feature of

statements and words), understanding (a feature of human beings), and learning (an

activity performed by human beings). Given this, it is hard to see how a Dummettian

could reject any one of these three theses without rejecting all three.

One might worry that theses 1 and 3 are mutually inconsistent. The first refers to

“correct and appropriate” uses of linguistic expressions. The third, however, calls into

question whether there can ever be such a thing as incorrect use. After all, correct use

must be constrained by meaning, but if meaning consists in nothing but use, this is no

constraint at all. Presumably, then, Dummett is committed to accepting that there

are general patterns of use in a linguistic community; while these determine meaning,
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individual utterances or inscriptions that fail to conform to the general patterns can

still be incorrect.

Ultimately, antirealism is a theory of meaning for Dummett. So, thesis 3 is the

most relevant to understanding his position on mathematical intuitionism. Notice,

furthermore, that we have yet to arrive at the point with which we started the pre-

vious section. The arguments so far, if successful, have shown that the meaning of a

statement consists in its use, but we have said little about how we use mathematical

language. Indeed, in this section we have frequently dropped the qualifier ‘mathemat-

ical’, since nothing so far has had anything to do with mathematics. This helps to

motivate Dummett’s idea that most or all disputes about realism might be framed and

settled within the philosophy of language. If the argument discussed in this section is

a good one, it should apply to any part of any language.

So, the next step in Dummett’s argument is to consider how we use statements,

particularly those of mathematics. In general, we have no reason to expect that ethical

statements, for example, will be used in the same way as mathematical statements.

This is why Dummett’s argument, if successful, will not necessarily lead to antirealism

across the board: the uses of some class of statements may be such that a realistic

theory of meaning for that class is appropriate.

For mathematical statements, however, this is not the case. Or so Dummett says.

What we actually learn to do, when we learn some part of the language
of mathematics, is to recognise, for each statement, what counts as es-
tablishing that statement as true or false. . . . We must, therefore, replace
the notion of truth, as the central notion of the theory of meaning for
mathematical statements, by the notion of proof : a grasp of the meaning
of a statement consists in a capacity to recognise a proof of it when one is
presented to us, and a grasp of the meaning of any expression smaller than
a sentence must consist in a knowledge of the way in which its presence in
a sentence contributes to determining what is to count as a proof of that
sentence. (ibid., pp. 225-226, original emphasis)

Two features of this quote are important. First, Dummett is committing himself to
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a particular view about the use we make of mathematical statements. By doing so,

and given the argument we examined earlier, he is staking a claim to a particular

semantic theory for mathematics, namely, one in which the meaning of a statement

is given by specifying what counts as a correct proof of the statement.

The second important feature is Dummett’s commitment to the statement as the

fundamental unit of meaning. It is what allows him to call for the revision in logic

required by intuitionism. As he acknowledges (ibid., p. 220), his argument requires

that holism about mathematical language is false. Otherwise, such revision would

require moving to an entirely new language. Some authors have thought that intu-

itionists speak an entirely different language that may or may not be as acceptable as

the language of classical mathematics (Carnap 1934, Hellman 1989, Quine 1986), but

Dummett rejects this. He thinks that intuitionists and classical mathematicians can

talk to each other; their languages overlap enough to provide some common ground

on which the disputes can be settled.

In addition to treating sentences as semantic fundamentals, Dummett tells us how

we can determine the meanings of individual words. These emerge from the effects

those words have on the proof conditions of the sentences in which they appear. This

holds true, in particular, for the logical constants.20 Thus, to give the meaning of the

connective ‘and’, one specifies how its presence in a sentence like ‘φ and ψ’ affects

what would count as a proof of the sentence. We might say something like

When ‘and’ appears between two sentences φ and ψ, a proof of the whole

is anything that proves each of the two component sentences.

This should look familiar. Except for stylistic variants, it is precisely the clause we

saw governing the connective ∧ in the previous section. Presumably, were we to give

similar explanations of the other connectives, each would resemble its corresponding

20These need not be individual words—consider ‘if . . . then . . . ’ in English. Still their meanings
are determined in the same way regardless of the surface structure of the expressions.
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clause from earlier. At least, Dummett suggests that this is the case (2000: §1.2). As

we observed, these clauses were introduced by Heyting in an attempt to provide a se-

mantics that would capture formally the reasoning used in intuitionistic mathematics.

Hence, if Dummett’s argument succeeds, he has shown that his premises concerning

use, manifestation, and acquisition entail that our mathematical reasoning should

take place according to the canons of intuitionistic logic.

2.4 Summary

This, then, is the Dummettian argument for semantic antirealism in mathematics. If

it succeeds, then the intuitionistic mathematician can muster it in order to show that

his preferred mathematics is not just interesting or useful, but correct. That is, it has

as a consequence that classical mathematics is getting things wrong; its practitioners

use mathematical statements in ways that go beyond any understanding that they

could have of these statements. Intuitionistic mathematicians, by contrast, use their

statements and make their inferences in ways that cohere with the actual meanings

borne by the language. If this is correct, then the intuitionist’s call for mathematical

revolution is a principled one. We turn now to an evaluation of Dummett’s argument.
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Chapter 3

Against Semantic Antirealism as a

Foundation for Intuitionism

3.1 Criteria for an Adequate Foundation

We are now in a position to examine whether Dummett’s semantic antirealism can

serve as a foundation for intuitionistic mathematics. As the reader might expect, our

conclusion will be that it cannot perform this task to satisfaction. To establish this

claim, we first need to say what tasks a foundation for intuitionism must serve.

At its root, intuitionism is mathematics. This is worth emphasizing precisely be-

cause it is frequently overlooked. Semantic antirealism, Brouwerian idealism, and

Husserlian phenomenology have all been associated with intuitionism, but they are

no more essential to it than Hilbertian formalism is to classical arithmetic or Cartesian

dualism is to analytic geometry.

This is not to say that intuitionists should dispense altogether with attempts to

develop a philosophical foundation for their mathematics. Intuitionistic mathematics

contains plenty of theorems and some of these are contrary to theorems of classical

mathematics. Faced with this, the intuitionist is obliged to be able to explain why she
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accepts the intuitionistic results rather than their classical contraries. (The classical

mathematician has a similar obligation with respect to his theorems, of course.) Even

those who endorse mathematical pluralism thereby assume a philosophical position

about the nature of mathematical disagreement. According to the pluralist, there is

no genuine conflict between classical and constructive mathematics. Either the two

approaches deal with different objects (classical numbers, sets, functions, etc. and

their constructive counterparts, respectively) or mathematical statements are not re-

ally about anything and so there is no room for real disagreement. (On the latter

view, there may be legitimate disputes about other so-called theoretical virtues like

simplicity and pragmatic utility.) A full treatment of pluralism would require a sep-

arate essay. For now, we note that, on the present author’s view, a mathematical

statement φ means the same thing regardless of the theoretical proclivities of those

who assert it. Furthermore, mathematical statements are true when they correctly

describe mathematical objects, which exist. Thus, when φ is a theorem of one math-

ematics and ¬φ is a theorem of another, the requirement of consistency prohibits us

from accepting both as true.1

So, a good foundation for intuitionism should provide arguments that can be given

in favor of the core theses of intuitionism. This is a tall order because these core the-

ses do not arrive prepackaged on one’s philosophical doorstep; there is disagreement

within intuitionistic and constructivist circles concerning such principles as Church’s

Thesis, Bar Induction, Markov’s Principle, and the Creative Subject. Still, we can

isolate some results that make intuitionism what it is. Intuitionists reject the tertium

non datur, for example, and even claim to be able to demonstrate mathematically that

it is invalid. (In the latter respect, they distinguish themselves from, e.g., Bishop’s

school of constructivists.) They also maintain that every total function from the real

numbers into the reals is continuous and uniformly so. (Other well-established con-

1See (Hellman and Bell 2006) and (Davies 2005) for sympathetic discussions of pluralism.
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structive approaches to mathematics deny uniform continuity.) There are yet other

core theorems of intuitionistic mathematics. A foundation for intuitionism should

provide the material to argue for as many of these results as possible.2

Still, the intuitionist cannot hope to convince her most dogmatic opponents, and

a foundation for intuitionism should not be expected to do so. So too, we should not

demand that our philosophical foundation justify anything that any intuitionist has

ever asserted. Nor should we demand that it convince everybody that they should give

up classical mathematics. Arguments for intuitionism inevitably must show that, e.g.,

the tertium non datur is invalid. The proliferation of non-classical logics over the past

century has weakened the idea that logic is beyond controversy. Still, bad habits are

hard to break, and advocates of classical mathematics can always treat an argument

against classical logic as a reductio ad absurdum of one of the argument’s premises.

3.2 Semantic Antirealism and Intuitionistic Logic

With these remarks in mind, we can evaluate Dummett’s semantic antirealism as a

foundation for intuitionistic mathematics. First, we will examine more closely the con-

nection between semantic antirealism and intuitionistic logic. In the previous chapter,

we saw that one corollary of the antirealist’s position is that the BHK interpretation

provides the correct theory of meaning for the logical constants in virtue of character-

izing, for each constant, what counts as a proof of a statement in which that constant

appears as the main connective or quantifier. So, in order for antirealism to play its

foundational role, the BHK interpretation must be an adequate semantic theory for

intuitionistic logic.

For reasons that we described in Chapter 1, intuitionistic logic is best understood

2It may turn out that the best available foundation for intuitionism does not secure all of these
results. Imagine, for example, that φ is a very plausible intuitionistic axiom that entails the invalidity
of classical logic but only the non-uniform continuity of all total real-valued functions. In light of
φ’s intrinsic plausibility and its other consequences, the intuitionist might opt to give up uniform
continuity in favor of something slightly weaker but still contrary to classical analysis.
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in terms of an axiomatic or natural-deductive system that characterizes valid infer-

ences. Since the BHK interpretation is a semantic theory, the antirealist should seek

to produce soundness and completeness results to show that her theory of meaning

justifies all and only the inferences that are valid according to intuitionistic logic it-

self. This is the approach that Dummett suggests in some places, e.g., in his article

“The Justification of Deduction” (Dummett 1975a). According to him, one task of a

formal semantics for a language is to codify our deductive linguistic practices.

Prominent among the practices which make up our use of language are
those of deductive inference and deductive argument. Any satisfactory
theory of meaning must, therefore, be able to relate these practices to
the model of meaning which it employs: just this is what is done by a
semantics for a logical theory. (Dummett 1978b: p. 310)

Dummett goes on to argue that, if a semantics fails with respect to either soundness

or completeness, this reveals an underlying flaw in the theory of meaning on which

the formal semantics is based.

In so far as the logical theory embodies our actual practice, that is, has
primitive rules of inference which we in practice treat as valid, a theory
of meaning, if it is to provide a model of our practice, must bring out
those rules of inference as semantically valid, and should not bring out as
semantically valid any rules which we cannot be brought to accept. . . . A
semantics which can be shown not to justify a form of inference which is
in standard use in ordinary discourse, or to justify one which we should
unhesitatingly reject, is, by that fact, subject to criticism. (ibid.)

By itself, this quote does not show that Dummett is committed to soundness or

completeness results for intuitionistic logic relative to the BHK semantics. It does,

however, indicate that his position is precarious without such results. As we will

see, there are a great many logical systems similar to but distinct from intuitionistic

logic. To be sure that the set of valid formulae and inferences according to the BHK

semantics is not the set corresponding to any one of these other logics, soundness and

completeness proofs are necessary.
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That we might be able to obtain these proofs looks like wishful thinking.. For

example, the completeness of full first-order intuitionistic logic (without identity)

with respect to Beth trees entails Markov’s Principle, which intuitionists generally

reject.3 This is an obstacle for anybody who insists on a complete intuitionistic logic

adequate for intuitionistic mathematics. Fortunately, completeness is not required

for intuitionistic mathematics per se any more than it is for classical mathematics

done using second-order logic. The semantic antirealist does require it, however, if her

position is meant to serve as a successful foundation for intuitionism, and McCarty

(2006) shows that the antirealist’s recognition condition together with the soundness

and completeness of intuitionistic logic entail that there are no counterexamples to

the tertium non datur.

One can show that first-order intuitionistic logic is complete with respect to Beth

trees and their close cousin, Kripke semantics, but the existing proofs of this require

one either to reason classically in the metatheory or to allow ⊥ to be forced at a

node of the model.4 The latter option is not acceptable to the antirealist because it

requires treating ⊥ as something that can have a proof, contrary to the BHK clause

governing it. The former is interesting as a technical result, but the committed an-

tirealist cannot accept a completeness proof that requires classical reasoning. If the

Dummettian argument for antirealism is cogent, then it applies to all mathematical

language. Since any metatheoretical proof of completeness is perfectly mathematical,

it is subject to the proof constraints given by semantic antirealism. If these are cap-

tured by intuitionistic logic, as the antirealist purports, then no proof that essentially

features intuitionistically invalid inferences can be valid.

Indeed, the proof just mentioned cannot even be used to challenge the classical

mathematician on antirealistic grounds. Such an argument would proceed as follows:

the classical completeness proof would show that, on his own grounds, the classical

3Kreisel (1962) reports that this was first shown by Gödel. McCarty (1994) gives a simpler proof.
4For a proof of the latter, cf. Veldman (1976) and de Swart (1977).
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mathematician cannot complain that intuitionistic logic is unstable because it lacks

a complete semantics. The general argument for semantic antirealism would show

that the classical mathematician must revise his own canons of reasoning, and the

completeness proof (together with a soundness proof) would show that intuitionistic

logic is an acceptable alternative.

There are problems with this argument, however. For one thing, the argument

for antirealism undermines the completeness proof, since the former (if successful)

shows that the classical reasoning required for the latter is not valid. More to the

point, though, the antirealist’s argument emphasizes things like the learnable content

of a language and the way that the language is used in practice; these are what

give linguistic items their meanings. Beth’s and Kripke’s semantics, by contrast, are

technical frameworks for the metatheoretic study of intuitionistic logic; they neither

represent the actual use of the logical constants nor purport to do so.5 Thus, the

antirealist’s argument does not show that the intuitionistic completeness theorems

are of interest except as purely technical results; in particular, they cannot play the

role of justifying intuitionistic logic as a canon for deduction in the way described in

“The Justification of Deduction.”

Finally, McCarty (2008) gives a survey of completeness and incompleteness results

and demonstrates the incompleteness of intuitionistic sentential logic with respect to

intuitionistic metatheories. Putting all of this together, it is clear that we should not

expect antirealistically acceptable completeness proofs for full first-order intuitionistic

logic. This might sound scandalous to philosophers and mathematicians raised on a

diet of classical first-order logic and its Tarskian models. In fact, completeness is

a fairly rare phenomenon in logical and mathematical space; mundane theories like

arithmetic and classical second-order logic are incomplete. It also entails the existence

5Dummett (2000: p. 287) concedes this in his discussion of Beth trees: “. . . the Beth trees prove
to be a legitimate tool for the study of intuitionistic logic, although not for the construction of an
actual intuitionistic semantics.”
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of unpalatable objects like nonstandard models of arithmetic.

In addition, incompleteness captures the spirit the early development of intuition-

ism. Hao Wang reports that Brouwer’s attitude in 1961 towards Gödel’s incomplete-

ness results was hardly one of surprise.

Of G’s incompleteness results, [Brouwer] expressed astonishment that so
much had been made of them, saying that the conclusions had been evi-
dent to him for a long time before 1931. (Wang 1987: p. 57)

Meanwhile, Heyting acknowledges the limitation of his own formalization of intuition-

istic reasoning.

It must be remembered that no formal system can be proved to represent
adequately an intuitionistic theory. There always remains a residue of
ambiguity in the interpretation of the signs, and it can never be proved
with mathematical rigour that the system of axioms really embraces every
valid method of proof. (Heyting 1966: p. 102)

This echoes our earlier observation that it is hard to say what counts as intuitionistic

logic. We can stipulate that it is the logic given by, e.g., the set of formulae valid

according to Kripke semantics or the set of formal consequences of Heyting’s axiomatic

system, but intuitionists are happy to acknowledge that, like any other field of inquiry,

logic makes progress over time. It is open to us to discover new logical truths that

are not syntactic consequences of previously accepted axioms and rules of inference.

Similarly, we can come to discover that what we took to be a logical law is not

universally valid; in a course of lectures delivered at Cambridge in 1951, Brouwer

rightly regarded this as the situation regarding the tertium non datur.

The belief in the universal validity of the principle of the excluded third
in mathematics is considered by the intuitionists as a phenomenon of
the history of civilization of the same kind as the former belief in the
rationality of pi, or in the rotation of the firmament about the earth. (van
Dalen 1981: p. 7)
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Indeed, even antirealists have challenged the validity of certain laws of intuitionis-

tic logic. In his Anti-Realism and Logic, Tennant challenges the rule ex falso quodlibet,

∀φ(⊥ → φ).

This appears as Axiom X in Heyting’s list of axioms for intuitionistic logic and as one

of the rules in Troelstra and van Dalen’s natural deduction system. It is also valid

according to Kripke semantics. Nevertheless, Tennant (1987: p. 188) argues that ex

falso quodlibet cannot be justified by an appeal to what we learn when we learn how

to reason. Since the antirealist takes this “learnable content” (to use Tennant’s term)

to give the meanings of the logical constants, she should reject ex falso quodlibet.6

If we shift our focus from learnable content to the BHK interpretation, the princi-

ple also faces problems. How would a BHK-based proof of ex falso quodlibet go? Given

the BHK-meaning of the universal quantifier, such a proof would need to provide a

method that transforms a proof of ⊥ into a proof of φ, where φ is arbitrary. It appears

that any method µ will do the job; since there are no proofs of ⊥, if β is a proof of

⊥, then µ(β) is a proof of φ.

Of course, this argument assumes the validity of ex falso quodlibet. Without it,

we couldn’t maintain that the conditional at the end of the previous paragraph is

necessarily true in virtue of having a necessarily false antecedent. Hence, the argument

is circular. This doesn’t mean that we should reject ex falso quodlibet any more than

the stubborn tortoise of (Carroll 1895) shows that we should reject modus ponens.

What the circularity does show, in this case, is that semantic considerations alone

may not give us a good reason to accept ex falso quodlibet. Those of us who accept

it aren’t always motivated by reflection on the meanings of ⊥ and →. Surely part

of the reason is pragmatic: the principle facilitates the development of mathematics

6Tennant actually focuses on inferences from premises to conclusions rather than on condition-
als. Within standard intuitionistic logic, these are interchangable, although they come apart in a
relevance logic such as that endorsed by Tennant.
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and allows us to construct simple proofs of results that we find intuitively plausible

(e.g., that the empty set is a subset of every set). Perhaps ex falso quodlibet also has

some intuitive plausibility of its own, although certainly not to the degree that modus

ponens does.7

Neither Tennant’s argument concerning learnable content nor the BHK-based ar-

gument are mathematical demonstrations that ex falso quodlibet is invalid. Thus, they

do not show that intuitionists ought to reject the principle. (By contrast, intuitionists

should and do reject the tertium non datur on the basis of mathematical demonstra-

tions of its invalidity.) What these considerations do show is that semantic antirealism

and intuitionistic mathematics may not be a perfect match. If antirealism and the

BHK interpretation cannot motivate ex falso quodlibet, then the logic that they yield

is weaker than intuitionistic logic.

It should not come as a surprise that antirealistic semantics may not pick out

intuitionistic logic even if it avoids commitment to classical logic. As (Cook: pp.

16ff.) points out, there are 2ℵ0 logical systems whose strength lies strictly in between

classical and intuitionistic logic. Of course, the antirealist cannot examine each of

these logics one by one; even Sisyphus would quickly abandon this absurd project.

Instead, the antirealist has to find a way to cut out large swaths in one pass. The

problem the antirealist faces is that it is not clear what criteria are available for this

purpose. Intuitionistic logic has plenty of features that distinguish it from one logic

or another. For example, it has the disjunction property: whenever φ∨ψ is a theorem

7Heyting concedes this point in one of his presentations of axioms for intuitionistic logic. Con-
cerning his tenth axiom, which is a statement of ex falso quodlibet, he concedes that “Axiom X may
not be intuitively clear.” (Heyting 1966: p. 102) He then proceeds to give an argument for it. The
argument is obscure, but it seems to be a version of the circular one presented above.

Griss was motivated to initiate his program of negationless mathematics because he worried that
the BHK interpretation of negation required us to intuit impossible objects like square circles or
proofs of false statements. The chief problem facing negationless mathematics is likewise pragmatic.
As Brouwer showed in his (1948), the most natural negationless translations of certain ordering
relations on the reals turn out not to be equivalent to the versions containing negations. Thus, it is
not at all obvious that the negationless program can be carried out throughout all of mathematics;
the burden of proof is squarely on Griss and his allies.
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of intuitionistic logic, either φ or ψ is a theorem as well. This fits nicely with the ∨

clause of the BHK interpretation, but it does not isolate intuitionistic logic. Indeed,

there are still 2ℵ0 many intermediate logics with the disjunction property.

Nor can the antirealist appeal to the relative weakness of intuitionistic logic. Yes,

it is the weakest logic between intuitionistic and classical logic (inclusive, of course),

but there are yet weaker logics available, e.g., minimal logic or Tennant’s intuitionistic

relevance logic. Even if weakness is an antirealistic virtue (and there is no obvious

reason why it should be), it won’t isolate intuitionistic logic.

The existence of these alternative logics that are nonclassical but, so to speak, in

the vicinity of intuitionistic logic highlights the importance of soundness and com-

pleteness proofs for the antirealist. Were he armed with such proofs, he could insist

that his semantic theory does yield intuitionistic logic as the correct canon of reason-

ing within mathematics. Without them, there is no good reason to think that semantic

antirealism can justify the logic that intuitionists actually use in their mathematical

reasoning.

There is another reason why the BHK interpretation is not sufficient as a foun-

dation for intuitionistic logic. The BHK clauses are supposed to give a recursive

characterization of the proof conditions for the statements of a language, but they do

not tell us what counts in general as a proof of an atomic statement. It is not enough

to know that a proof of a conjunction is given by presenting a proof of each conjunct;

we must also know what counts as a proof of the conjuncts. When these subforumu-

lae are logically complex, we can refer to the relevant BHK clauses, but this process

cannot continue indefinitely. Eventually, we will arrive at atomic formulae, and the

BHK interpretation tells us nothing about what counts as a proof of these.

In general, the proof conditions for an atomic formula will depend on the subject

matter of the language. For atomic formulae of arithmetic, proofs are usually given by

calculations, while for those of set theory we use other mathematical methods. Outside
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of mathematics, proofs might be given in terms of empirical observations or even the

testimony of experts. It is hard to give a universal and informative characterization

of what counts as a proof of an atomic formula; the most we can say is, e.g., that a

proof of ‘Fa’ is a proof that the object a has the property F .

Still, if one insists on the BHK interpretation as the correct semantic theory for

mathematical statements, one is obliged to say something about atomic formulae.

Attempts have been made at developing a formal theory of constructions by e.g.,

Kleene (1950: §82) and Kreisel (1967). These point in the right direction. Notably,

however, attempts at theories of constructions are built on more fundamental mathe-

matical theories, e.g., arithmetic in the case of Kleene’s realizability interpretation of

intuitionistic logic. This is a problem for the antirealist, who uses his semantic theory

to argue for the use of intuitionistic logic throughout mathematics. A formal theory

of constructions will presuppose some mathematical theory or other, together with

the logic used to reason in that theory, and it is open for the classical mathematician

to insist that the metatheory be classical, so that the tertium non datur and other

intuitionistically invalid logical principles turn out to be valid on the BHK semantics

with certain background assumptions.

Besides, this assumes that we have an adequate formal theory of constructions.

Those proposed by Kleene and Kreisel would not conform well to the rest of the

antirealist’s picture. Kreisel’s theory turned out to be inconsistent; Goodman (1970)

Goodman that the inconsistency could be removed through something akin to a type

heirarchy for constructions, but then we are once again moving away from the actual

learnable content of mathematical statements. Furthermore, such a stratification in-

troduces complications into the informal characterization of the Heyting semantics.

For example, we can no longer have a single clause for conditionals stating that a

proof of A → B is a construction that transforms any proof of A into a proof of

B; this kind of unrestricted universal quantification cannot be accomodated in the
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formal theory.

The basic notion in Kleene’s theory is not that of a proof but that of a compu-

tation. When we learn to prove mathematical theorems, however, we do not learn

computation methods involving Gödel codes; we learn about proofs in the ordinary

sense. Thus, Dummett’s view that we learn the meanings of statements by learning

how they’re used would preclude taking Kleene’s realizability as giving a semantics

for mathematical statements. (Besides, as Rose (1953) shows, realizibility is not itself

adequate even for intuitionistic propositional logic.)

3.3 Semantic Antirealism and Classical Mathemat-

ics

According to semantic antirealists, the principal problem facing classical mathematics

is not that some of its theorems are false. Rather, the problem is that the inferences

used to prove those theorems are unjustified because they outstrip the meanings of

the logical constants. Of course, it does not follow that anything is wrong with the

results themselves. Plenty of mathematical results have both constructive and non-

constructive proofs, and the intuitionist is happy to accept these results as true in

virtue of the former, intuitionistically valid proofs.

On the other hand, there are theorems of classical mathematics that are demon-

strably false according to intuitionistic principles. The Bolzano-Weierstrass Theorem

is one example. Since there cannot be constructive proofs of these theorems, the an-

tirealist must hold that they are intrinsically flawed in some way. That is, there must

be something about the meanings of statements of these theorems that prevent them

from being proved using constructive methods. Otherwise, we would not be able to

show that such proofs are impossible; at most, we could say that they have yet to be

discovered.
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It is worth considering what the status of these statements is according to the

antirealist. Let φ be a statement of a theorem that is demonstrably false according

to intuitionism but has a classically acceptable proof. Prima facie, there seem to be

three options that the antirealist might take concerning the semantic status of φ.8

1. φ is utterly ambiguous. In this case, we need to distinguish between φc, the

classical version of the statement, and φi, the intuitionistic version.

2. φ has the exact same meaning in a classical context and in an intuitionistic one.

3. The meaning of φ differs in the two contexts, but there is some degree of overlap.

We still need to distinguish between φc and φi, but there is a common kernel,

φk, that both versions of the statement share.

Each of these options is problematic for the antirealist.

The first option is problematic for at least two reasons. First, it does not allow

for genuine disagreement between classical and intuitionistic mathematicians. Rather,

we have the classical mathematician stating her theorems, all implicitly subscripted

with ‘c’, and proving them using classical methods. Meanwhile, the intuitionist utters

his ‘i’-subscripted statements and proves them without going beyond the bounds of

intuitionistically acceptable inferences and principles. Occasionally, there is the ap-

pearance of disagreement. For example, the classical mathematician asserts a state-

ment of the Bolzano-Weierstrass Theorem and proudly displays a proof of it. When

the intuitionist tries to claim that the result is false, he can’t do it: every time he says

“actually, the Bolzano-Weierstrass Theorem is false, and here’s why,” he finds himself

talking about something other than what the classical mathematician is discussing.

8The reader might object that we are introducing a disjunction out of the blue here and that this
presupposes the validity of the tertium non datur. This is not the case, however, because Dummett
insists that there is something that distinguishes realistic construals of statements from antirealistic
ones. Each of the listed options represent a different way of understanding how this distinguishing
feature does its job. We assume that the antirealist understands his own position and is able to
articulate it publicly; this gives something like a decision procedure for determining which of the
disjuncts below holds.

59



If the intuitionist really wanted to deny the classical result, he would have to start

talking about the Bolzano-Weierstrass Theoremc, but then he’s wrong to deny the

theorem, which has a perfectly acceptable classical proof.

If this were the whole story, we might decide to embrace a kind of pluralism

and the dawn of a new era of peace in the world of mathematical foundations. This

isn’t open to the antirealist, however, because his position entails that the statements

and methods of classical mathematics are not faithful to the meanings of the logical

constants and other linguistic items that appear in those statements. So, if we have

two really distinct statements φc and φi with no semantic overlap, the former must

be totally meaningless. If it were anything but gibberish, its meaningful aspect would

be shared by φi, but on the present hypothesis this is not the case. Thus, option

1 and antirealism together have as a consequence that classical mathematics is an

incoherent mess despite appearances to the contrary.

What about option 2, according to which a mathematical statement φ has the

same meaning in a classical context as it does in an intuitionistic one? This allows

for genuine disagreement between members of the two schools, since the intuitionist

who denies φ is denying exactly what the classical mathematician asserts.

Combined with antirealism, however, option 2 has a problem similar to that faced

by option 1. According to the antirealist, the meaning of a mathematical statement

φ is given by what counts as a proof of the statement. Furthermore, the antirealist’s

argument is supposed to show that a genuine proof of φ cannot rest on intuitionisti-

cally invalid moves like double-negation elimination or arbitrary applications of the

tertium non datur. So, when the classical mathematician accepts a proof that uses

these moves, she displays her ignorance of the meaning of φ. If she really knew what

φ meant, she would realize that the “proof” presented to her is flawed.

Instances of this phenomenon are familiar. Famously, Andrew Wiles’s original

“proof” of Fermat’s Last Theorem contained a flaw that was subsequently corrected;
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only after this correction could we say that the result had been demonstrated. Indeed,

anybody who has experience with mathematical proof has, at some point, probably

accepted a flawed proof or failed to accept a genuine one. In isolated cases, such errors

can be corrected by further reflection on the proof.

According to the antirealist, however, these errors are not isolated. Rather, they

pervade classical mathematics. Furthermore, it is unlikely that thinking harder about

her proofs will convince the classical mathematician that they are flawed. For the

intuitionist, the problem with classical mathematics is not that its practitioners apply

their proof methods incorrectly; rather, the problem is that these methods themselves

are invalid or otherwise incorrect. So, although mathematical statements have the

same meaning in a classical context as they do in an intuitionistic one (according to

the option under discussion), classical mathematicians routinely mistake what count

as correct proofs of those statements. Since the meanings of the statements are in

terms of what counts as proofs of them, this means that the classical mathematician

systematically misunderstands the various theorems that together constitute a large

portion of mathematics.

The third option presents similar problems yet again. According to it, there is

some overlap between the meanings of statements when used by the intuitionist and

the orthographically identical statements used by the classical mathematician. This

overlap can take two forms. On the one hand, there might be certain linguistic com-

ponents that have the same meanings in both contexts and other components whose

meanings are different. The latter category would presumably include at least some

of the logical constants, as well as terms like ‘function’ over which there is robust

disagreement.9

9This makes things sound simpler than they are. Intuitionists and classical mathematicians agree
that a (unary) function is a set of ordered pairs such that any two pairs with identical first elements
have identical second elements. So, if there is disagreement about the meaning of ‘function’, it cannot
be about this definition. Ultimately, the present work contends that disagreements about functions
are about the things themselves, not about the meaning of the term.
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What would we include in the category of items about which there is agreement?

There is not an obvious candidate because it is hard to find mathematical terms the

use of which is the same in classical and intuitionistic mathematics. There is even

divergence when it comes to such mundane terms as numerals. Granted, it is only

when we start quantifying over the natural numbers that we find disagreement, so

perhaps number-theoretic disagreements have more to do with logical terms than nu-

merical ones. Still, for one who insists that classical and intuitionistic mathematicians

disagree fundamentally about meaning, it is difficult to identify isolated points of dis-

agreement; it is more plausible to say that the semantic disagreement is pervasive

(thereby adopting option 2 above).

The antirealist might instead hold that, for a given term (e.g., ∨), there is some

common semantic core about which classical and intuitionistic mathematicians agree.

According to this view, we do not have to identify any terms about which there is

complete agreement, so it avoids the problem just discussed. Still, it is hard to identify

this common core for a given term. In the case of a logical constant, we might take

it to be given by introduction and elimination rules, but the intuitionistic and the

classical mathematician disagree about which rules are valid in the first place.

In any case, on this third option, there is still systematic disagreement about

meaning. Coupled with the antirealist’s view that only the intuitionistic meanings

are compatible with our linguistic and mathematical activity, this option also entails

that the classical mathematician fails to understand much of what she says and writes.

Indeed, this conclusion follows from all three options. According to the antirealist,

the community of classical mathematicians is in a position akin to that described at

the end of the story of the Tower of Babel. Indeed, the classical mathematician’s

situation is even more troubling. After the Biblical confusion of tongues, no person

could understand any other, but if the antirealist is right, the classical mathematician

misunderstands a great deal of her own speech.
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Given this, it is nothing short of a miracle that classical mathematics has been

so successful. The evidence of this success can be found in a number of places: the

large number of journals publishing papers containing classical proofs, the existence

of many university mathematics departments full of classical mathematicians, etc.

If classical mathematics involved as much semantic confusion as antirealism would

assign to it, it should have long since gone the way of alchemy: the silly features

(philosophers’ stones, discontinuous total functions on the reals) abandoned, the le-

gitimate ones (chemistry, constructive mathematics) flourishing. That this has not

happened indicates that the antirealist’s criticism of classical mathematics is too

strong to fit the data.

3.4 What is a Proof?

In Part I of his article “What is a Theory of Meaning,” Dummett answers the question

posed by his title by maintaining that “a theory of meaning is a theory of understand-

ing” (Dummett 1993: p. 3). This is to say that a theory of meaning for a language L

should tell us what it is that a speaker of L knows in virtue of which she is a speaker

of the language. Also, for the antirealist, as we have seen, the meaning of a statement

is given by what counts as verifying that statement; in particular, the meaning of a

mathematical statement is given by what counts as a proof of the statement.

Putting these two Dummettian views together, it follows that, for the antireal-

ist, a person understands a mathematical statement φ just in case she knows what

counts as a proof of φ. Given the antirealist’s emphasis on the ability to exhibit such

knowledge publicly, we can conclude that, according to semantic antirealism, a person

understands φ just in case she is able to recognize a proof of φ when presented with

one.

It is worth considering exactly what this thesis about understanding language
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requires and what it entails. First, note that, in order for it to be plausible, it must

be given a strong reading that might not be apparent at first glance. In order for

a person to understand φ, it is not enough merely that she be able to recognize

proofs of φ when presented with them. If this were the case, then a person who

automatically takes any purported proof of φ to be a genuine proof would thereby

understand the statement. Thus, the antirealist’s view is better expressed by saying

that understanding φ requires correctly recognizing both proofs and non-proofs of φ

when presented with them.10

Even with this clarification, there are some obvious questions about how we should

understand this antirealistic principle of understanding. For example, consider a state-

ment of Fermat’s Last Theorem (with all variables ranging over natural numbers):

¬∃a∃b∃c∃n(n > 2 ∧ an + bn = cn).

On its surface, this looks like a fairly simple statement of number theory. Nevertheless,

its only known proof is famously lengthy and complicated.11 Indeed, it is difficult to

understand even for professional mathematicians, let alone people who have never

learned to recognize or construct proper mathematical proofs. One strong reading of

the antirealist’s principle regarding understanding is that a person who understands a

statement must be able to recognize any correct proof of the statement as such. If this

is correct, then there are very few people in the world who understand a statement

of Fermat’s Last Theorem. Nevertheless, the theorem itself is easily stated using

only notions from basic number theory and can surely be grasped by any working

mathematician (to say nothing of reasonably intelligent high school students).

It is easy to contrive similar examples involving, e.g., sums of numbers too large

10Non-proofs include both purported proofs that do not establish their conclusions (e.g., because
of an invalid inference) and objects that are not serious candidates for mathematical proofs at all
(novels, culinary recipes, etc.).

11The paper (Wiles 1995), where the proof first appears, runs to 109 pages.
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for the human mind to write down or even think about in full. In such cases, no person

is able to recognize the relevant calculations. Nevertheless, to say that somebody does

not understand the result calls into question his grasp of addition, and it is a mistake

to make one’s understanding of addition contingent on the computational resources of

the human mind. The case of Fermat’s Last Theorem is especially striking, however,

because it is an actual example of an easily stated result with a sublimely difficult

proof.

The lesson to draw from this example is that the antirealist cannot adopt such

a strong principle of understanding. The grasp of a mathematical statement cannot

require that somebody be able to recognize every correct proof of the statement

as such.12 Indeed, the best case for the antirealist would be if there were a way

to identify, for each mathematical statement, a single proof that could be used to

determine whether a person understands the statement.

Dummett (2000: §7.2) acknowledges the problems just described regarding proofs

like that of Fermat’s Last Theorem.

Are we, then, to say that any (constructively) valid written proof, such
as might appear in an article in a mathematical journal or in a textbook,
is, considered relative to the intended meanings of the words and symbols
employed, a proof in the sense in which this word is used in the expla-
nations of the logical constants? It seems to follow from the character of
those explanations that we are not. (ibid., p. 270)

Dummett motivates this worry not by calling attention to particular examples but by

pointing out that, in general, proofs in mathematical journals do not conform perfectly

to the BHK clauses. For example, a mathematician might assert a statement of the

form ∃xA(x) without naming any individual object a such that A(a). According to a

literal interpretation of the BHK clause for ∃, the mathematician has failed to justify

12Note that it will not do to say that understanding requires that a person could come to recognize
every proof. This is just to say that somebody could come to understand statements of Fermat’s
Last Theorem, but the point is that plenty of people now understand these statements without now
being able to recognize proofs of them as correct.

65



his existential assertion; such a justification would require a reference to an individual.

Nevertheless, according to Dummett, we are happy to accept existential claims

that don’t meet the strict BHK requirements as long as “we have some effective

method of finding an individual satisfying A(x)” (ibid.). This leads him to distinguish

between what he calls demonstrations, which are the kinds of arguments one finds

in journals, and canonical proofs. Demonstrations do not conform explicitly to the

BHK interpretation; canonical proofs do. Nevertheless, a demonstration does provide

evidence for its conclusion because it “supplies an effective means of constructing an

actual [i.e., canonical] proof,” as Dummett puts it.

Ultimately, canonical proofs are what matter for the semantic antirealist’s theory

of meaning and understanding. In order for the antirealist to allow that somebody

can understand Fermat’s Last Theorem without understanding Wiles’s complicated

demonstration of it, he must have recourse to the existence of a canonical proof of

the theorem, which proof can be extracted from the demonstration by an effective

method. Understanding a statement of the theorem can then be taken to consist

in the ability to recognize this canonical proof as a correct proof of the statement.

What distinguishes the canonical proof from the demonstration is that every inference

in the former is articulated explicitly. By contrast, the demonstration is difficult

to understand because its cogency relies on a great deal of unstated background

knowledge concerning, e.g., the theory of elliptic curves.

As a result of this explicit articulation, it is quite easy to check whether each step

in the canonical proof is valid. One need only look to see whether each inference is

licensed by the BHK-meaning of the main logical constant in question. A drawback of

making everything explicit, however, is that many canonical proofs will be enormously

long. For instance, each time a demonstration appeals to a result proved earlier, the

corresponding canonical proof must contain the entire proof of that result. Similarly,

in order to conform to the BHK interpretation, certain familiar inference rules cannot
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appear in canonical proofs. These are the rules that implicitly appeal to a more

detailed means of obtaining the conclusion: modus ponens, disjunction elimination,

and universal instantiation. For example, the BHK interpretation says that to assert

a conditional φ → ψ requires a method for transforming an arbitrary proof of φ

into a proof of ψ. Thus, an inference from φ → ψ and φ to ψ implicitly appeals to

this method, and a fully explicit canonical proof will make this clear by replacing

the instance of modus ponens with a step-by-step application of this method to the

premises.

Even when a demonstration is not conceptually complicated, the corresponding

canonical proof might be gargantuan. For example, any algorithm for adding numbers

will not be able actually to be applied to numbers beyond a certain magnitude. Never-

theless, in order for the antirealist to be able to assert universal arithmetic principles

like the laws of commutativity, such methods must apply to all numbers. This is why

Dummett and other antirealists place a great deal of emphasis on the notion of an

effective method. This allows them to maintain that we can assert more statements

than we have in fact proved (e.g., the infinitely many instances of the commutative

law for addition); these assertions are justified because we have an effective method

for proving them in principle, even if it cannot be carried out in practice.

Similarly, although canonical proofs will often be too large to comprehend in toto,

they can be examined in an effective way that checks each step for validity. Thus, the

antirealist’s claim that understanding a statement consists in being able to recognize

a proof of it when presented with one means that somebody who understands φ is

able in principle to determine whether a candidate proof is a canonical proof of φ

in virtue of knowing a process that evaluates the candidate proof in a step-by-step

fashion.

By introducing the distinction between canonical proofs and demonstrations, the

antirealist encounters a difficult dilemma. We saw above that the antirealistic inter-
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pretation of intuitionism is, at best, an incomplete project absent proofs of soundness

and completeness for intuitionistic logic relative to the BHK semantics. It turns out

that we can say more. On certain assumptions about the ‘proves that’ relation `,

there cannot be such proofs. The key assumption is that the relation is decidable, i.e.,

that for any candidate proof P (which may or may not be canonical) and statement

φ,

P ` φ ∨ P 0 φ.

Given the antirealistic recognition condition on assertions, this assumption captures

the requirement that understanding a statement requires being able to recognize

correct proofs of the statement as such and incorrect “proofs” as such. McCarty

(2013) shows that this assumption entails the incompleteness of intuitionistic logic

with respect to the BHK semantics. In particular, he shows that the law of testability,

∀φ(¬φ ∨ ¬¬φ),

is valid on the BHK semantics even though it is not a theorem of intuitionistic logic.

This result is central enough to our own argument that we give a sketch of the proof

here.

Theorem. If the ` relation is decidable, then the law of testability is valid on the

BHK interpretation.

Proof. By the decidability of `, for any candidate proof P and mathematical state-

ment φ,

P ` φ ∨ P 0 φ.

We will say that a formula is almost negative when it is equivalent to a formula

constructed from atomic formula by means of ¬,∧,→, or ∀ only.

By Lemma 1 of McCarty (ibid.), P ` φ iff φBHK when φ is almost negative, where
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φBHK is the formula φ interpreted according to the BHK semantics. So, from the

decidability of `, if φ is almost negative, then

φBHK ∨ ¬φBHK .

By Lemma 2 of McCarty (ibid.), it follows from the decidability of ` that, for any

formula φ, ¬φ is almost negative. Thus, for any φ, we can infer

¬φBHK ∨ ¬¬φBHK .

Since this holds for any φ, the law of testability,

∀φ(¬φ ∨ ¬¬φ)

is valid under the BHK interpretation.

Since the law of testability is not a theorem of intuitionistic logic, a corollary of

this result is that intuitionistic logic is incomplete with respect to the BHK semantics.

In order to sustain the antirealist’s project in light of this result, one has to

reject that the ` relation is decidable. This might not seem like a fatal concession on

the antirealist’s part; our earlier observations about demonstrations of Fermat’s Last

Theorem show that the ` relation cannot be decidable in general.

Nevertheless, the relation ought to be decidable when restricted to canonical

proofs. That is, for any purported canonical proof C and statement φ, it ought to be

the case that

C ` φ ∨ C 0 φ.

Were this not the case, the notion of a canonical proof would not be able to do its

job. The point of a canonical proof is that it can be checked for correctness on its
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own merits and without presupposing advanced background knowledge, lucky guesses,

or anything else not built into the meaning of the statement. In other words, there

must be an effective method for checking whether a purported canonical proof C

justifies the assertion of its conclusion φ or not. On the antirealistic understanding

of disjunction, this just means that the ` relation must be decidable at least for

canonical proofs.

Once we have this, however, it is easy to show that the relation must be decidable

for demonstrations as well. Let D be a purported demonstration of φ. Then D can

be effectively transformed into a canonical proof CD. Since the ` relation is decidable

for canonical proofs, it follows that either CD ` φ or CD 0 φ. If the former case holds,

then D ` φ. If the latter case holds, D 0 φ. Thus, the ` relation is decidable for

both canonical proofs and demonstrations.13 Anything that warrants the assertion

of a mathematical statement is either a proof or a demonstration, according to the

antirealist. Thus, the ` relation must be decidable in general. Since, as McCarty shows

(ibid.), this entails the universal validity of the law of testability, the antirealist’s

project of developing a semantics that is provably sound and complete with respect

to intuitionistic logic cannot be brought to fruition.

3.5 Away with Semantic Foundations

The arguments of this chapter show that Dummettian semantic antirealism cannot

serve as a foundation for intuitionism. One might draw the lesson that we should

attempt to find a new semantic foundation. The present work rejects this proposal.

Instead of doing the same thing and expecting a different result, we propose that

the theory of meaning is not the place to look for mathematical foundations. In the

sequel, we will consider a foundational program for intuitionism that better respects

13Note that, if CD 0 φ, then the attempt to transform D into a canonical proof of φ fails. The
essence of a demonstration is that it can be effectively transformed into a canonical proof. Thus, if
the attempt fails, D is not a demonstration of anything, from which it follows that D 0 φ.
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its mathematical character. Our starting point will be the work of the school’s founder,

L.E.J. Brouwer, to which we now turn.
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Chapter 4

Brouwer’s Philosophical Argument

for Intuitionism

Having examined Dummett’s foundational approach and found it lacking, we turn to

the work of L.E.J. Brouwer, the founder of the intuitionistic program in mathematics.

Brouwer stands out as the most conspicuously forceful advocate of intuitionism. Many

other intuitionists, insofar as they offer any foundational arguments for their views, do

so only via half-hearted waves at Brouwer’s own arguments or the latest philosophical

trends. (This is especially conspicuous in Heyting’s work.) Even Dummett sometimes

expresses hesitation about his own argument. Gideon Rosen describes this nicely in

his critical notice of Dummett’s The Seas of Language (1993).

The Dummett of popular imagination is a confident anti-realist; the dog-
matic purveyor of a sophisticated and comprehensive brand of idealism.
As these essays make plain, however, the real Dummett is very different.
He’s not an anti-realist at all; he’s just a guy with an argument — the
celebrated Dummettian case for Anti-Realism — according to which the
various “realisms” we tend to treat as Moorean data are in fact philo-
sophically untenable. Unlike his imaginary counterpart, however, the real
Dummett does not assert this conclusion. (Rosen 1995: pp. 599-600)

By contrast, Brouwer’s work is the vector sum of his combative personality, bold

writing style, and unshakable confidence that he has things right and his opponents are
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mistaken. The result is a passionate (albeit sometimes flawed) defense of intuitionism

that is well worth investigating.

We will examine Brouwer’s work in two stages. This corresponds to two species

of argument identifiable in his writings. We will call one of these his mathematical

argument, and it will be the subject of the next chapter. The other, which we discuss

here, we can call, for lack of anything better, his philosophical argument. (For a

defense of the claim that there is a principled distinction here, see the first section

of the following chapter.) Versions of both arguments appear throughout his career,

although the philosophical argument is more common in his early and late writings,

while the mathematical one is more prominent in his middle period.

4.1 The Debut of the Philosophical Argument

In 1907, Brouwer completed his dissertation, Over de Grondslagen der Wiskunde

(1907), at the University of Amsterdam. Its title, which translates to “On the Foun-

dations of Mathematics,” reveals that Brouwer was interested in philosophical and

foundational matters very early in his career, and the dissertation’s assault on logi-

cism fits well in the tradition of proto-intuitionism represented by mathematicians

like Borel and especially Poincaré. Nevertheless, it does not contain any challenge

to the unrestricted validity of the tertium non datur. This principle is mentioned

briefly in the dissertation, but it is dismissed as a logical shortcut around properly

mathematical reasoning.

While in the syllogism a mathematical element could be discerned, the
proposition:

A function is either differentiable or not differentiable

says nothing ; it expresses the same as the following:

If a function is not differentiable, then it is not differentiable.

73



But the logician, looking at the words of the former sentence, and discover-
ing a regularity in the combination of words in this and similar sentences,
here again projects a mathematical system, and he calls such a sentence
an application of the tertium non datur. (Brouwer 1975: p. 75)

Here, we see Brouwer treating

∀φ(φ ∨ ¬φ)

as equivalent to

∀φ(¬φ→ ¬φ).

It is worth noting that this equivalence holds in classical logic but not in intuitionistic

logic. This should suffice to dispel any notion that intuitionistic logic sprang fully

armed from Brouwer’s head.

The first appearance of Brouwer’s philosophical argument for intuitionism appears

in his paper “De Onbetrouwbaarheid der Logische Principes” (1908b) (in English,

“The Unreliability of the Logical Principles”). After claiming that, in mathematics,

the principle of non-contradiction and principle of hypothetical syllogism are univer-

sally valid, Brouwer discusses the tertium non datur (here called the ‘principium tertii

exclusi ’).

Now consider the principium tertii exclusi: It claims that every supposition
is either true or false; in mathematics this means that for every supposed
imbedding of a system into another, satisfying certain given conditions,
we can either accomplish such an imbedding by a construction, or we can
arrive at the arrestment of the process which would lead to the imbedding.
It follows that the question of the validity of the principium tertii exclusi
is equivalent to the question whether unsolvable mathematical problems
can exist. There is not a shred of a proof for the conviction, which has
sometimes been put forward, that there exist no unsolvable mathematical
problems. (Brouwer 1975: p. 109, original emphasis)

The equivalence that Brouwer mentions in this passage is striking. Why would anyone

think that the tertium non datur is equivalent to the solvability of all mathematical

problems? Since the argument stands or falls with this claim, we will do well to look
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closely at it.

4.1.1 The Semantic Reading

A natural reading of Brouwer’s argument has it turn on semantic matters. This is

to take Brouwer as arguing in favor of a special, constructive meaning of the logical

constants—a meaning like that given by the BHK interpretation. In other words, it

would turn Brouwer into a proto-Dummettian. This reading is suggested by Troelstra

and van Dalen’s (1988: p. 31) claim that the BHK interpretation “may be regarded as

implicit in Brouwer’s writings.” It also seems to be in the background of a reference

by Carnap (1959: p. 48) to “the form of language suggested by Brouwer.”

Furthermore, Brouwer’s argument, as quoted above, begins with a statement about

what the tertium non datur means. Also, the argument appears to be setting down

truth conditions for mathematical “suppositions.” As such, there seems to be internal

evidence that Brouwer had something about language in mind.

This would be too hasty, though. The Dutch original contains nothing correspond-

ing to the word ‘means’. Also, the word translated as ‘true’ is juist, which is better

translated as ‘right’ or ‘correct’ (cf. English ‘just’). Here is a more literal translation

of the relevant part of the passage.

Now the principium tertii exclusi : this requires that every supposition
is either correct or incorrect, mathematically: that for every supposed
embedding of systems . . . 1

Heyting, who translated Brouwer’s paper into English for the latter’s Collected Works,

imports his own interpretation of the argument by translating the adverb wiskundig

1The translation is my own. In Dutch, the passage reads,

Nu het principium tertii exclusi: dit eischt, dat iedere onderstelling òf juist òf onjuist
is, wiskundig: dat van iedere onderstelde inpassing van systemen . . . (Brouwer 1908b: p.
156)
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with the expression ‘in mathematics, this means’. Any argument based on Heyting’s

translation for a semantic reading of the passage therefore begs the question.

Another problem with the semantic interpretation of Brouwer’s argument is chrono-

logical. As we noted earlier (Chapter 1, §2.1), ‘BHK interpretation’ is not a particu-

larly appropriate name for the semantics introduced by Heyting et al., since Brouwer

never articulated it. Indeed, even after Kolmogorov and Heyting did, Brouwer seems

not to have remarked on it in his own work or his correspondence. Granted, we should

not expect him to mention it as early as 1908. As late as the 1950s, however, Brouwer

was giving arguments similar to the one from 1908.2 By then, he was surely aware of

the BHK interpretation; had he been assuming it in his argument, we could expect

him to mention this. The lack of any explicit discussion of it at any point in his career

casts doubt on the claim that the philosophical argument is semantic at its core.

4.2 Hilbert and Ignorabimus

A clue to the correct understanding of Brouwer’s argument is given by a footnote

attached to the passage in question. In it, Brouwer refers to David Hilbert’s (1901)

lecture Mathematische Probleme. This lecture is known mainly for its list of the

twenty-three Hilbert problems. Of course, these were all unsolved at the time, and

the list is preceded by a powerful exhortation addressed to Hilbert’s audience of

mathematicians.

The conviction of the solvability of every mathematical problem is a pow-
erful incentive to the worker. We hear within us the perpetual call: There
is the problem. Seek its solution. You can find it, for in mathematics there
is no ignorabimus. (Ewald 1996: p. 1102)

This might seem like an exhortation only: Hilbert is challenging his audience to invest

all their energy in solving his problems, and at the same time encouraging them to

2See §5.1 below.
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remain confident if some appear intractable. Still, the use of the Latin ‘ignorabimus ’

is conspicuous in an otherwise German-language address, especially since it is not a

familiar Latin phrase (à la ‘quod erat demonstrandum’). Indeed, it implicitly reveals

that Hilbert’s discussion is not only hortatory, but also polemical.

The term ‘ignorabimus ’ is clearly an allusion to an 1872 lecture by the physiologist

Emil du Bois-Reymond. In this lecture, du Bois-Reymond argues that, with respect

to some traditional philosophical and scientific questions like the nature of matter

and the relationship between the mind and the body,

one must render once and for all the much more difficult verdict: “Ignor-
abimus!”3

The lecture sparked a European controversy, the Ignorabimusstreit, about whether

to embrace ignorance when it comes to these questions. It entered the mathematical

arena when Emil du Bois-Reymond’s brother Paul, a mathematician, published his

book Die allgemeine Funktionentheorie (du Bois-Reymond 1882). In this book, Paul

du Bois-Reymond argues that there are questions in the foundations of mathemat-

ics (particularly concerning the nature of the continuum) for which the appropriate

verdict is Ignorabimus.

Hilbert was having none of this. His rejection of mathematical Ignorabimus in

his 1900 lecture is undoubtedly a stand against the du Bois-Reymonds’ position.4

He would continue this crusade throughout his life, to the point that his retirement

address in 1930 concludes with the proclamation “Wir müssen wissen. Wir werden

wissen” (which became the epitaph on his tombstone). This could be a more explicit

rebuke of the Ignorabimus camp only if he had broken into Latin. It is no exaggeration

3The translation is my own. The German reads,

. . . muss er ein für allemal zu dem viel schwerer abzugebenden Wahrspruch sich
entschliessen: “Ignorabimus!” (du Bois-Reymond 1886: p. 141)

4For details about the ways in which Hilbert’s individual problems are also anti-Ignorabimus
maneuvers, see McCarty (2005), on which much of the present discussion draws.
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to say that Hilbert’s life’s work was devoted to defending the principle according to

which every mathematical statement can be either proved or refuted. This, which we

might call Hilbert’s Axiom of Solvability, appears in his 1900 lecture in its equivalent

form: “in mathematics, there is no ignorabimus.”

This historical background and Hilbert’s eminent status in the European math-

ematical universe of his day sheds light on Brouwer’s argument in his 1908 paper.

It is no accident that in this paper, he refers to Hilbert’s famous lecture precisely

when he insists that there is no reason to expect every problem to have a solution.

Furthermore, the rest of Brouwer’s paper is devoted entirely to giving examples of

unsolved problems (e.g., whether a certain sequence of digits appears at any point in

the decimal expansion of π) and proposing classificatory schemes to distinguish solv-

able from unsolvable problems. For example, Brouwer distinguishes a certain class of

finitistic problems as ones that are sure to have a solution.

Insofar as only finite discrete systems are introduced, the investigation
whether an imbedding is possible or not, can always be carried out and
admits a definite result, so in this case the principium tertii exclusi is
reliable as a principle of reasoning. (Brouwer 1975: p. 109)

This is followed by a remarkable footnote: “This investigation can even in every case

be made by a machine or a trained animal.” Here, Brouwer seems to be anticipating

the notion of a Turing machine (or trained Turing horse). Perhaps he was familiar with

the ideas of Charles Babbage and other 19th Century forerunners of computability

theory, but it is nevertheless surprising to find this footnote three decades before

Turing’s work appeared.

In any case, the evidence suggests that, although Brouwer purports to be dis-

cussing the tertium non datur, his primary target in his 1908 paper is Hilbert’s Axiom

of Solvability. He is throwing his hat into the ring of the Ignorabimusstreit and siding

against Hilbert and with the du Bois-Reymonds.5

5We should note here that Paul du Bois-Reymond’s Die allgemeine Funktionentheorie contains
a discussion of choice sequences, which would later play an important role in intuitionistic analysis
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4.3 Ignorabimus and the Tertium non datur

Even if the chief target of Brouwer’s philosophical argument is Hilbert’s Axiom of

Solvability, he still claims that this is equivalent to the tertium non datur. On the

surface, this seems to be a mistake. Of course, Hilbert’s axiom entails the logical

principle. To say of an arbitrary statement φ representing a mathematical problem

that it has a solution is to say that there is a proof of φ or a proof of ¬φ. In the former

case, φ is true; in the latter case, ¬φ is true. In either case, we can infer φ ∨ ¬φ, and

since φ was arbitrary, we can generalize and infer the tertium non datur.

The other entailment, from tertium non datur to the axiom of solvability, is harder

to justify. We can make some progress by observing some of the peculiar features of

Brouwer’s own philosophy of mathematics. It is rooted in the tradition of German ide-

alism, as evidenced by Brouwer’s emphasis on the temporal “basic intuition” (Dutch:

oer-intuitie; German: Ur-Intuition) in his dissertation and elsewhere. This basic intu-

ition produces the fundamental objects of mathematical study, as is clear from “Die

mögliche Mächtigkeiten” (Brouwer 1908a).

If one investigates how mathematical systems come about, one finds that
they are built out of the basic intuition of duo-unity. The intuitions of
the continuous and the discrete are found here together, because a second
thing alone is never thought by itself, but rather under the retention of
the memory of the first. The first and the second therefore come to be
held together, and the intuition of the continuous consists in this holding
together (continere = to hold together). This mathematical basic intuition
is nothing other than the contentless abstraction of temporal experience,
i.e., the experienced of ‘fixed’ and ‘vanishing’ together, or of ‘constant’
and ‘varying’ together.6

as developed by Brouwer and others. This is more evidence that Brouwer was familiar with du
Bois-Reymond’s work and the Ignorabimusstreit, and therefore that his agreement with the du Bois-
Reymond brothers in 1908 is not per accidens.

6The translation is my own. The German text reads,

Wenn man untersucht, wie die mathematischen Systeme zustande kommen, findet man,
dass sie aufgebaut sind aus der Ur-Intuition der Zweieinigkeit. Die Intuitionen des con-
tinuierlichen und des discreten finden sich hier zusammen, weil eben ein Zweites gedacht
wird nicht für sich, sondern unter Festhaltung der Erinnerung des Ersten. Das Erste und
das Zweite werden also zusammengehalten, und in dieser Zusammenhaltung besteht die
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The first chapter of Brouwer’s dissertation is devoted to showing how more advanced

mathematical objects (e.g., those required for analysis and geometry) can be devel-

oped on this basis.

With this in mind, we can attempt to construct a Brouwerian argument that the

tertium non datur entails the Axiom of Solvability. There are two features of a sub-

ject’s temporal experience that are central to Brouwer’s conception of mathematics.

The first is that time has a determinate initial moment that occurs when the subject

grasps two things together in intuition and memory. This gives rise to the numbers 1

and 2, as well as the continuum. Since time has a starting point, only finitely many

temporal moments have passed at any given point. This does not mean that infinite

mathematical objects cannot be constructed, but only that infinite objects (like the

collection of natural numbers) must be given by a rule for generating them, which

rule must be capable of being specified in a finite amount of time. The continuum is

an exception to this requirement, but not because the subject is allowed an infinite

time to construct it. Rather, it cannot be constructed at all, according to Brouwer;

it is the background against which all mathematical constructions take place.7

The second important feature of the subject’s temporal intuition is its potentially

infinite character. The subject can generate a new mathematical construction at ev-

ery moment, and new mathematical possibilities are always on the horizon. Now,

consider a mathematical problem that as yet has not been solved. Brouwer’s dynamic

conception of the mathematical universe allows for the possibility that there is no

solution because the relevant objects have not yet been constructed in intuition. This

Intuition des continuierlichen (continere = zusammenhalten). Diese mathematische Ur-
Intuition ist nichts anderes als die inhaltslose Abstraction der Zeitempfindung, d.h. der
Empfindung von ‘fest’ und ‘schwindend’ zusammen, oder von ‘bleibend’ und ‘wechselnd’
zusammen. (Brouwer 1975: 102, original emphasis)

7Brouwer abandons the requirement more drastically in (Brouwer 1918) because he is worried
that it prohibits a mathematically sophisticated theory of the continuum. Although his worry is
unfounded, it eventually led him to introduce the notion of free-choice sequences into intuitionistic
mathematics. In the next chapter, we will discuss this feature of Brouwer’s real analysis.
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does not mean that there will never be a solution, but only that mathematics has not

yet developed to the point where such an investigation can take place. Nevertheless,

there is no guarantee that we will ever reach a point where the required development

occurs. It is possible that some problems will remain unsolved in perpetuum.

This allows us to make sense of Brouwer’s talk of embeddings of systems into each

other. The term ‘system’ appears in the writings of other mathematicians roughly con-

temporary with Brouwer. For instance, in an 1899 letter to Dedekind, Cantor treats

the terms ‘multiplicity’ (Vielheit), ‘system’, and ‘totality’ as synonyms corresponding

to the present-day term ‘class’. (van Heijenoort 1967: p. 114) Dedekind similarly uses

‘system’ in his Was sind und was sollen die Zahlen (1893: passim); indeed, it seems

to be his preferred term for the notion (whereas Cantor prefers ‘multiplicity’).

In light of this, Brouwer surely also had the notion of a class in mind when he

talks about systems. The other key term in his argument is ‘embedding’ (inpassing).

By this, he seems to mean what we would call an injective function. If these interpre-

tations are correct, then Brouwer’s argument might be reconstructed as follows. Let

φ be some mathematical proposition (or supposition, to use Brouwer’s term). Note

that φ is equivalent (classically and intuitionistically) to the existence of an injection

(an embedding) of the natural numbers ω into the set ωφ = {n ∈ ω : n = n∧φ}. This

is because, if φ is true, then ωφ = ω, so the identity function will serve as the required

function. On the other hand, if ¬φ holds, then ωφ = ∅, so there is no injection from

ω into ωφ.

Thus, if we assume the tertium non datur, ωφ is either ω or ∅. Given Brouwer’s

dynamic conception of mathematical objects, the construction of the required embed-

ding must take place in time and cannot take an infinite amount of time. Similarly,

the impossibility of constructing such an embedding is itself a mathematical fact. So,

on Brouwer’s view, it requires a finitary construction. It is not enough that the at-

tempted construction never finishes; the process much reach a point where we can see
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that it cannot be continued, or, as Brouwer puts it, that the construction is arrested

(stuiting).

Since we have assumed the tertium non datur, either we can construct such an

embedding or we cannot. In the former case, we have a solution to φ since we know

that ωφ must be inhabited and so cannot be empty. In the latter case, the impossibility

of constructing the embedding can only be because ωφ is empty, in which case we have

a refutation of φ. In either case, we have solved the problem posed by φ. Therefore, if

we assume the tertium non datur and Brouwer’s philosophy of mathematics, we can

show that every problem is solvable. We already saw that the Axiom of Solvability

trivially entails the tertium non datur, so the two principles are equivalent given

Brouwer’s other philosophical views.

The argument as Brouwer presents it is very elliptical. Our reconstruction of it is

plausible in light of the idealistic philosophy he advocates in his early work and his

use of words like ‘system’ at a time when this was common mathematical parlance,

but other interpretations are possible. It is almost certain, however, that any reason-

able interpretation will emphasize the place that time plays in Brouwer’s philosophy.

After all, this is a recurring theme in Brouwer’s work, particularly early in his ca-

reer. This begets a problem: why should we accept Brouwer’s Kantian idealism about

mathematics? Positive arguments for it are conspicuously absent in his papers and

dissertation. Instead, we find a number of criticisms of competing philosophies. For

example, “The Unreliability of the Logical Principles” contains an attack on logicism

that highlights the familiar semantic and set-theoretic paradoxes like the Liar and

the Burali-Forti Paradox. “Intuitionism and Formalism” (1912), Brouwer’s inaugural

lecture at the University of Amsterdam, reproaches Cantorian set theory for being

contradictory (again because of the paradoxes) and Zermelo’s axiomatic set theory

for being ad hoc. In his dissertation, Brouwer does show how various mathematical

objects can be built up from the natural numbers, but there is nothing particularly
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intuitionistic about his method (e.g., he defines integers as ordered pairs of natu-

ral numbers just as a classical set theorist today would), and he does not say why

mathematics must be founded on our intuition of time.

Without a cogent argument for his view of mathematical objects, Brouwer’s philo-

sophical argument against the tertium non datur comes up short. This might look like

a problem, since many mathematicians, philosophers, and hagiographers influenced

by Brouwer point to “The Unreliability of the Logical Principles” as the opening

salvo in the Grundlagenstreit between intuitionists and Hilbertian formalists that

would come to a head in the 1920s. We see now that this is a mistake. Brouwer’s

1908 paper is best understood as a contribution to the Ignorabimusstreit and a chal-

lenge to Hilbert’s Axiom of Solvability; the Grundlagenstreit would have to wait until

Brouwer began his full-blooded reconstruction of mathematics in 1918.

4.4 Against Solvability

The rest of Brouwer’s paper is devoted to justifying his assertion that there is no

reason to expect that every mathematical problem is solvable. He argues by example.

An instructive example is provided by the following unproved proposition
[onbewezen stelling ] which, on the basis of the principium tertii exclusi, is
generally trusted and applied in the theory of transfinite numbers, namely
that every number is either finite or infinite. This means that for any
number γ we can construct:

either a mapping of γ into the sequence of natural numbers in such a way
that some number α from this sequence is the last one (while the numbers
α + 1, α + 2, α + 3, . . . remain free),

or a mapping of γ or one of its parts onto the full sequence of the natural
numbers. (Brouwer 1975: p. 110, original emphasis)8

8Once again, the translation in Brouwer’s Collected Works inserts “means” where no correspond-
ing term appears in the Dutch. Rather, Brouwer uses the abbreviation ‘m.a.w.’. This is short for
‘met andere woorden’, i.e., ‘in other words’.

Also, the reader should note that Brouwer’s definition of ‘finite number’ differs in form from the
one commonly used today. We would say that γ is finite if there is an injective function from it into
some finite subset of N. Brouwer puts things in terms of a finite sequence of natural numbers. This
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So interpreted, the statement ‘every number is either finite or infinite’ is not an

instance of the tertium non datur. If a finite number is as Brouwer describes it, then

a number γ is not finite just in case there is no bijection from γ to a natural number.

It would require a further proof to show that every non-finite number can be mapped

bijectively to the entire set of natural numbers. Brouwer does not mention whom he

has in mind when he talks of the statement being trusted on the basis of the tertium

non datur. Nevertheless, either he or his opponents, whoever they may be, seem to

be getting misled by the surface structure of the terms ‘finite’ and ‘infinite’, which

are patent antonyms grammatically but not mathematically.

Brouwer continues by offering three problems whose solvability is in question be-

cause of his example. His choices are confusing because they seem to have little to

do with the theory of transfinite numbers. Two of them have to do with the decimal

expansion of π.

• “Is there in the decimal expansion of π a digit which occurs more often than

any other one?”

• “Do there occur in the decimal expansion of π infinitely many pairs of consec-

utive equal digits?”

The third is far more general:

• “Does the principium tertii exclusi hold in mathematics without exception?”

[ibid.]

Brouwer does not tell us how to go from questions about finite and infinite numbers

to those about the decimal expansion of π. He seems to think that the former cast

doubt on the universal validity of the tertium non datur, so that we cannot instantiate

this general principle to show that, e.g., either some number appears most often in

the expansion of π or no number does. Rather, we have to establish one or the other

is merely a cosmetic difference, however.
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disjunct using mathematical methods, and there is no antecedent guarantee that we

will ever be able to do so. In other words, once we have shown that the tertium non

datur is invalid, there are statements throughout mathematics that must be handled

carefully since our trust in them might be based on the presumed validity of an invalid

logical principle.

4.4.1 Weak Counterexamples

Brouwer’s example helps shed light on what have come to be known in literature on

intuitionism as weak counterexamples to the tertium non datur. Later presentations

of these tend to be more sophisticated. Examples include those presented by Troelstra

and van Dalen (1988: pp. 13-14), Dummett (2000: pp. 31-32), and van Atten (2004:

pp. 26-28). All of these begin with some decidable one-place predicate A of natural

numbers for which it is not known whether A holds of all natural numbers. One then

defines a real number ρ in terms of this latter unsolved problem. The definition is

such that ρ = 0 iff ∀n ∈ N.A(n). Since it is not known whether ∀n ∈ N.A(n), it is

not known whether ρ = 0 or ρ 6= 0, which is an instance of the tertium non datur.

What makes this kind of weak counterexample more sophisticated than Brouwer’s

1908 version is that, in the former, ρ is defined in terms of some unsolved problem.

In Brouwer’s example, there is no direct connection between transfinite numbers and

the decimal expansion of π. Still, both Brouwer’s example and the more recent ones

have a common structure. We begin with some unsolved problem and show that, so

long as this one problem remains unsolved, we can find other problems that are also

unsolved.

So understood, however, weak counterexamples are not merely weak but utterly

impotent, at least if they are supposed to be counterexamples to the tertium non

datur. Weak counterexamples show only that if we can cast doubt on one instance of

the tertium non datur, we can cast doubt on infinitely many. Classical mathematicians
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can happily accept this conditional while rejecting its antecedent.

Indeed, those who appeal to weak counterexamples in order to challenge classical

logic are faced with a dilemma. On the one hand, if a weak counterexample is supposed

to be sufficient for the challenge, then it is fallacious. For instance, our real-number

example above is meant to demonstrate the invalidity of the tertium non datur by

showing that

¬∀ρ ∈ R(ρ = 0 ∨ ρ 6= 0).

Its key premise is that it is not the case that

∀n ∈ N.A(n) ∨ ¬∀n ∈ N.A(n),

but this assumes the invalidity of the tertium non datur. Thus, the argument is

circular.9

On the other hand, if weak counterexamples need to be supplemented by other

considerations, then they become superfluous. Intuitionists also discuss strong coun-

terexamples to logical laws, and we will take these up in the next chapter. A strong

counterexample is a mathematical proof showing that an instance of the tertium non

datur is false. Furthermore, strong counterexamples make no illicit appeal to unsolved

problems. With them in hand, the intuitionist does not need weak counterexamples,

at least for his polemical project. (McCarty 2011: p. 218-219) shows how a weak coun-

terexample can be transformed into a strong one, but this requires extra principles

that are already anticlassical.

In certain respects, Brouwer’s 1908 examples are exempt from the charges just

leveled against more recent presentations of weak counterexamples. For one thing, his

9Another fallacy that appears in this argument is an appeal to ignorance. If a weak counterexam-
ple is supposed to show that instances of the tertium non datur are false, then appeals to unsolved
problems involve an illegitimate leap from what we know at a time to what is the case regardless of
what we know. On the other hand, if weak counterexamples are not supposed to demonstrate that
instances of the tertium non datur are false, then it is a mistake to call them counterexamples. Cf.
McCarty (2011: p. 217).
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argument relies on his peculiar philosophy of mathematics. While he gives us scant

reason to accept that philosophy, it does mitigate the threat of circular argumentation.

More to the point, his chief target is Hilbert’s Axiom of Solvability. What he has

really shown is that Hilbert’s faith in the solvability of every mathematical problem

is unjustified and grossly so: one finds mathematical Ignorabimus not only in the dark

corners where the continuum hypothesis lurks, but even in such brightly lit regions

as number theory.

Still, it is a mistake for intuitionists today to place too much polemical emphasis

on weak counterexamples. They are of mathematical interest insofar as they allow the

intuitionist to show easily that, e.g., trichotomy on R fails, but these proofs already

assume the invalidity of classical logic. What our historical discussion highlights is

that such “counterexamples” never had much to do with classical logic at all. Despite

Brouwer’s talk about the tertium non datur, his arguments are directed at Hilbert’s

Axiom; it is only his idiosyncratic philosophy that leads him to conflate the two.

In light of the various incompleteness, undecidability, and independence results

obtained by the 20th Century’s pantheon of logicians, there is hardly any reason to

take the Axiom of Solvability seriously anymore except perhaps as an exhortation

to continue producing mathematical results; even an intuitionist will not object to

this motivational aspect of Hilbert’s program. For the same reason, there is little

reason to take weak counterexamples seriously as challenges to classical mathematics;

intuitionists ought therefore to emphasize the stronger, mathematical arguments we

will discuss in the next chapter.

4.5 Other Appearances of the Argument

Our focus so far has been on the argument Brouwer gives in 1908. Although the

strong counterexamples he first developed in 1918 form the core of his mathematical
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argument, he never abandoned the philosophical argument. Heyting, too, gestured at

Brouwer’s philosophy in some of his philosophical excursions. In this section, we will

take a look at these later presentations of the argument.

4.5.1 Brouwer’s Later Work

Throughout his career, Brouwer periodically returned to versions of the argument

that we have been discussing. In the lecture “Mathematik, Wissenschaft und Sprache”

(Brouwer 1929), he begins by discussing a familiar topic, “the intellectual ur-phenomenon

[Urphänomen] of the falling apart of a life-moment into two qualitatively distinct

things.” On this basis, “the temporal appearance-sequence of arbitrary multiplicity

arises by means of the self-unfolding of the intellectual ur-phenomenon.” (Ewald 1996:

p. 1176, original emphasis) Once again, Brouwer is appealing to our intuition of dis-

tinct temporal moments to explain the origin of the natural numbers.

Later in the same lecture, Brouwer defines a real number in terms of what he calls

a fleeing property,

a property such that, for any given natural number, either the existence
or the absurdity of the property can be proved, while one can neither
calculate a natural number that possesses the property, nor prove the
absurdity of the property for all natural numbers. (ibid., p. 1183)

Fleeing properties are just the kind of properties discussed earlier in connection with

weak counterexamples. Indeed, Brouwer uses this notion to define a real number λ

such that neither ‘λ = 0’ nor ‘λ 6= 0’ can be demonstrated. This is exactly the

same argument we saw in the previous section. It is also subject to the same prob-

lems, although one should keep in mind that by 1928, Brouwer had already given

stronger arguments against classical logic. The end of “Mathematik, Wissenschaft

und Sprache” makes clear that Brouwer’s reason for discussing fleeing properties is

not to give a decisive argument against classical mathematics, but only to show how

intuitionism diverges from it. After defining λ, he mentions a number of its uniquely
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intuitionistic properties (and those of other mathematical objects) before summariz-

ing his discussion.

These examples will make clear that intuitionism has far-reaching conse-
quences for mathematics. In fact, if the intuitionistic insights prevail, then
considerable portions of the previous mathematical edifice must collapse,
and new portions must be erected in an utterly new style. And the parts
that remain stand in need of thorough reconstruction. (ibid., p. 1185)

Fleeing properties make another appearance in an even later lecture, “Historical

Background, Principles, and Methods of Intuitionism” (Brouwer 1952). Once again,

Brouwer talks about mathematics as “an essentially languageless activity of the mind

having its origin in the perception of a move of time.” (ibid., p. 1200, original em-

phasis) Here, fleeing properties per se are given as weak counterexamples, rather

than being used to define real numbers. Much of the lecture, however, is devoted

to a proof of the Uniform Continuity Theorem, which can be used to give a strong

counterexample to the tertium non datur. If this lecture contains a powerful chal-

lenge to classical mathematics, it is by way of this strong counterexample, not the

philosophical discussion that precedes it.

We mention these two later appearances of the philosophical argument to point

out that, although Brouwer never abandoned it (or his general philosophical views, for

that matter), it became less important as his career developed. By the later 1920s,

and certainly by the 1950s, Brouwer was giving mathematical arguments against

classical logic as part of his general project of reconstructing mathematics to conform

to intuitionistic principles. The philosophical arguments still appear, but they do not

play a starring role.10

10We should note that, although “Mathematik, Wissenschaft und Sprache” consists almost exclu-
sively of philosophical discussion, Brouwer delivered a second lecture, “Die Struktur des Kontinuums”
(Brouwer 1928) to the same conference. This lecture is concerned with real analysis and, except for
a short historical introduction, is entirely mathematical in content.
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4.5.2 Heyting’s Quasi-Empirical Mathematics

Whereas Brouwer developed his philosophical views early in his life and stuck with

them, Heyting took a more pragmatic approach to the foundations of mathematics.

As we have seen (Chapter 1, §2), the argument against classical logic in his 1930

Königsburg lecture draws on phenomenological methods. His attempt to articulate

the meanings of the logical constants through the BHK interpretation resembles the

work of Tarski. Sometimes, as in his (1966), he sounds like a card-carrying philo-

sophical disciple of Brouwer. The book begins with a dialogue between advocates of

competing philosophies of mathematics, and Int, the intuitionist, defends his position

with explicit references to Brouwer.

But it was Brouwer who first discovered an object which actually requires
a different form of logic, namely the mental mathematical construction.
. . . [Brouwer’s program] consisted in the investigation of mental mathe-
matical construction as such, without reference to questions regarding the
nature of the constructed objects, such as whether these objects exist
independently of our knowledge of them. (ibid., p. 1)

In the dialogue, Int’s complaint about classical mathematics is that it is “metaphysi-

cal.” That is, it presupposes that mathematical objects exist independently of human

mental activity; according to Int (and Heyting, we may suppose), this underlies the

classical mathematician’s use of the tertium non datur when applied to infinite col-

lections. Intuitionists, by contrast, make no such assumption, so their mathematics is

free of metaphysical commitments.

Brouwer did seem to think that mathematical entities have their existence in

virtue of being constructed. Heyting’s view, by contrast, is weaker, since it seems to

allow that Platonism about mathematics could be true, but that this is irrelevant to

mathematical reasoning.11 In other parts of the dialogue, however, Heyting seems to

11So interpreted, Heyting’s view is in tension with the strong counterexamples that prove the
invalidity of the tertium non datur when applied to infinite sets. Heyting must have been aware of
these counterexamples; it is curious, however, that his book contains no explicit mention of them
even though he proves, e.g., the uniform continuity theorem in §3.4.3.
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extend Brouwer’s views even further than the master would want to take them.

Intuitionistic mathematics consists, as I have explained already to Mr.
Class, in mental constructions; a mathematical theorem represents a purely
empirical fact, namely the success of a certain construction. [ibid., p. 8,
emphasis added]

Brouwer never suggests that mathematics is an empirical matter. Insofar as he ad-

vocates psychologism, he has in mind the transcendental psychology of the idealists,

not the empirical psychology that Heyting seems to embrace. In fact, Heyting’s em-

piricism about mathematics is too strong to be compatible with intuitionism. Let

n be some incomprehensibly large natural number on the order of, say, Graham’s

Number. The intuitionist is happy to assert that n is either prime or composite. After

all, being prime is a decidable property of natural numbers. Nevertheless, the mental

constructions that would be required to show that n is either prime or composite are

such that nobody will ever carry them out. This is because, on the one hand, there is

not enough time to run a decision procedure to determine whether n is prime. On the

other hand, any inference from ‘all natural numbers are prime or composite’ to ‘n is

prime or composite’ requires an additional premise, namely, ‘n is a natural number’.

This latter statement, on Heyting’s view, would have to reflect another empirical fact,

e.g., that somebody successfully counted to n. Again, the magnitude of n makes this

impossible. Clearly, then, Heyting’s empiricism needs to have room for idealization,

but if we allow this, then mathematics cannot be wholly empirical.

4.6 Evaluating Brouwer’s Argument

We are forced to conclude that Brouwer’s philosophical argument for intuitionism

is not successful. In his 1908 paper, Brouwer does argue cogently against Hilbert’s

Axiom of Solvability. Looking back, we can identify results like Gödel’s Incompleteness

Theorems and Church’s proof of the undecidability of first-order logic as victories for

91



Brouwer and the other champions of the Ignorabimus thesis and find anticipations of

these in Brouwer’s paper (not to mention the work of Paul du Bois-Reymond).12

To reiterate the point made at the end of §4.1 above, however, it would be a

mistake to think that Brouwer thereby succeeded in demonstrating the invalidity of

any laws of classical logic. His claim that Hilbert’s axiom entails the tertium non

datur is unconvincing. Perhaps one who is sympathetic with Brouwer’s philosophy

would be willing to accept this equivalence, but intuitionism is in trouble if accepting

it requires such sympathy.

Thus, followers of Brouwer who emphasize the philosophical argument do intu-

itionism a disservice. Instead of struggling to justify Brouwer’s idealism, Heyting’s

empiricism, or the use of weak counterexamples, intuitionists should seek out other

arguments for their positions. Some of the best of these can be found in the mathe-

matical arguments Brouwer began giving in 1918, and we turn now to these.

12Wang (1987: p. 88) reports an interesting anecdote about Brouwer’s reaction to Gödel’s theo-
rems.

In the spring of 1961 I visited Brouwer at his home. He discoursed widely on many
subjects. Among other things, he said that he did not think G’s incompleteness results
are as important as Heyting’s formalization of intuitionistic reasoning, because to him
G’s results are obvious (obviously true).
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Chapter 5

Brouwer’s Mathematical

Arguments for Intuitionism

We have seen that the weak counterexamples discussed in the previous chapter are

poorly named: by themselves, they are not convincing counterexamples to laws of

classical logic. In order to establish the invalidity of, e.g., the tertium non datur, weak

counterexamples need to be supplemented with other anticlassical assumptions. The

Dummettian proof-conditional semantics does not justify any such assumption. The

most it shows is that, if φ is a sentence expressing an unsolved problem, then we

cannot now assert either φ or ¬φ. Absent a proof that a universal method for solving

mathematical problems would be absurd, semantic antirealism does not show that

¬∀φ(φ ∨ ¬φ).

Intuitionists claim to have proofs of this last claim. Obviously, these proofs are not

trivial or obvious; if they were, classical logic would have lost its privileged position

long ago. They are worth studying in detail, however, because they provide so-called

strong (which is to say, genuine) counterexamples to classical logic and because they

involve results outside of logic alone that help to distinguish intuitionism from both

classical mathematics and other varieties of constructivism. In this chapter, we will
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study two sources of weak counterexamples, both of which appear in Brouwer’s own

work. The first is Brouwer’s Uniform Continuity Theorem, according to which every

total function on the real numbers is uniformly continuous. The second is the theory

of the Creative Subject.

5.1 The Uniform Continuity Theorem

Brouwer’s Uniform Continuity Theorem (UCT) is perhaps the zenith of Brouwer’s

work in the 1920s, the most creative and productive decade of his career. The first

proof of it appears in (Brouwer 1924), but the best known presentation is (Brouwer

1927). This is partly because the latter was written in German, a lingua franca of

mathematics in the 1920s, while the former originally appeared in Dutch (although

a German translation appeared in the same year). Also, an English translation of

the relevant part of the 1927 paper was included in the influential collection (van

Heijenoort 1967), cementing its status as the definitive presentation of the proof.

Once Brouwer achieved his result, he continued to give proofs of it in his later writ-

ing, e.g., (Brouwer 1954). Other textbooks and monographs on intuitionistic mathe-

matics invariably discuss it as well.1

In this section, we will look both at the UCT and the details of Brouwer’s 1927

paper in which he proves it. The details are important because, as we will see, one

does not need the full UCT to generate strong counterexamples to classical logic.

This is not to say that the UCT is superfluous or should be excised from intuition-

istic mathematics. This would be the case only if the chief end of intuitionism was

to antagonize classical mathematics. It is true that Brouwer’s early work, as well as

some of the views of proto-intuitionists like Poincaré, was motivated by perceived

flaws in the dominant mathematics of the day. By the 1920s, however, Brouwer was

1See Heyting (1966: §3.4.3), Bridges and Richman (1987: pp. 110ff.), and Dummett (2000: §3e6).
Bishop mentions the theorem in (1967: p. 74), but dismisses it as depending on “extra-mathematical
considerations.”
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engaged in his full-scale intuitionistic reconstruction and it was the classicists, par-

ticularly Hilbert, who were on the defensive. While it is true that the full UCT is not

necessary to construct strong counterexamples, it is nevertheless a profound result of

intuitionistic analysis

5.1.1 Strong Counterexamples Based on the UCT

The UCT itself says that every totally defined function from the set of real numbers

into itself is uniformly continuous. It is important to remember that the definition

of uniform continuity in play here is the usual one familiar from classical analysis. A

function f : A→ B on metric spaces A and B is uniformly continuous just in case

∀ε > 0∃δ > 0∀x∀y(|y − x| < δ → |f(y)− f(x)| < ε),

where x and y range over members of A and ε and δ are real numbers.

Once the UCT is established, we can construct strong counterexamples to the

tertium non datur. Consider the following function f : R→ R defined by

f(x) =

 1 x = 0

0 x 6= 0

Assume also that the tertium non datur holds. From this assumption, it follows that

∀x ∈ R(x = 0 ∨ x 6= 0).

So, given our assumption, f is a total function on R. Therefore, by the UCT, is

is uniformly continuous. Nevertheless, f is discontinuous at 0. Hence, we have a
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contradiction. So, by reductio ad absurdum,

¬∀x ∈ R(x = 0 ∨ x 6= 0),

and it thereby follows that

¬∀φ(φ ∨ ¬φ).

It is worth pointing out that the definition of f is perfectly acceptable to an intu-

itionist and satisfies the definition of a function. In general, intuitionists find nothing

objectionable about the existence of discontinuous functions on the reals. The lesson

to draw from the argument just given is that f is not a total function, i.e., it is not

defined on every element of its domain.

It would be a mistake to conclude that our result about f shows that intuitionistic

analysis has no room for the notion of a point of the continuum. This misleading idea

is sometimes encouraged by off-the cuff remarks in writings on intuitionism.

Every part of a continuum is itself a continuum. This means that if one
keeps dividing a continuum, one never arrives at something that is not
continuous, not even ‘ideally’ or ‘in the limit’. (van Atten 2004: pp. 31-32)

In the paragraph preceding the one in which this passage appears, classical defini-

tions of the continuum (e.g., those of Dedekind and Cantor) are criticized for being

“atomistic.” This is a bizarre objection, since Cantor’s definition of the continuum

in terms of Cauchy sequences is the standard one used in intuitionistic analysis.2 If

Cantor’s definition atomizes the continuum and this is objectionable, then the objec-

tion applies to intuitionistic analysis as well. As far as the mathematics goes, however,

intuitionists are happy to talk about points of the continuum. Indeed, (Brouwer 1927)

opens with a precise mathematical definition of “point of the linear continuum” in

2For that matter, there is nothing intrinsically classical or objectionable about Dedekind’s defi-
nition in terms of sets of rational numbers, although the intuitionist denies that this is equivalent
to the Cantorian definition.
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terms of Cauchy sequences of rational intervals.3

The strong counterexample just given can be used to obtain other important

intuitionistic results. If we add a double negation to the first condition in the definition

of f , we can obtain a counterexample to the law of testability. We can also establish

the invalidity of double negation elimination. Since

∀φ¬¬(φ ∨ ¬φ)

is valid, the validity of double negation elimination would allow us to infer the tertium

non datur, which we have just seen to be invalid.

If we apply the same argument to χQ, the characteristic function of the rational

numbers over the reals, we can show that

¬∀x ∈ R(x ∈ Q ∨ x /∈ Q).

The UCT also allows us to obtain a result that Brouwer mentions in footnote 10

of his 1927 paper: the indivisibility (Unzerlegbarkeit) of the continuum. Let A be a

collection of sets Ai such that the following hold.

1. Ai ⊂ R for each i,

2.
⋃
iAi = R, and

3. for any Ai, Aj ∈ A, Ai ∩ Aj = ∅.

Then there is some i such that Ai = R. This follows from the UCT because, were A to

contain some inhabited proper subset Ai of R, then the characteristic function of Ai

on R would be a total, discontinuous function on R. Indeed, the proof that not every

3Bell (2008) catalogs demands that continua not be atomized, none of which explain why the
Cantorian definition is objectionable. Worries about atomizing the continuum go back at least to
Aristotle. Later, we will see that such worries can be used to motivate certain foundational principles
for intuitionistic mathematics. (See Chapter 6, §2.3.) This is not the same as motivating the rejection
of the very definitions that intuitionists use to construct the real numbers.
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real number is either rational or irrational is a special case of the Unzerlegbarkeit

theorem.

5.1.2 Weaker Premises for Strong Counterexamples

The reader may have noticed that the strong counterexample given in the previous

section did not need the full-strength Uniform Continuity Theorem. The proof exploits

f ’s discontinuity at 0, not its failure to be uniformly continuous. Thus, weaker notions

of continuity would suffice for the proof to succeed. Indeed, Brouwer distinguises three

different kinds of continuity in his 1927 paper. Uniform continuity is one of these. A

second is what he calls positive continuity, which is defined in the familiar way:

∀ε > 0∀x∃δ > 0∀y(|y − x| < δ → |f(y)− f(x)| < ε).

(Continuity at a point p is defined by fixing the value of x to be p.) Finally, there is

negative continuity, the definition of which is obtained by inserting a double negation

into the consequent of the conditional in the definition just displayed. (Of course,

this makes negative and positive continuity equivalent classically, but not intuition-

istically.)

A discontinuous function fails to satisfy any of these definitions. Thus, since the

function f above is discontinuous at 0, it fails even to be negatively continuous, let

alone uniformly continuous. So, it is noteworthy that, in the portion of (Brouwer

1927) translated in (van Heijenoort 1967), the first main result Brouwer proves is

that every total function on the real numbers is negatively continuous. This result

appears before the Fan Theorem, which is the second main result of Brouwer’s paper,

and the Uniform Continuity Theorem, which is the third main result.

We mention this because, so long as our concern is to develop strong counterex-

amples to laws of classical logic, there is no need to engage with the Byzantine proof
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of the Uniform Continuity Theorem. The divergence with classical mathematics must

come earlier in the game, so to speak. We reiterate that this does not mean that the

UCT and its proof should be dismissed, since intuitionism is much more than a thorn

in the side of classical mathematics. The proof of the UCT is of intrinsic interest.

Furthermore, other kinds of constructive mathematics reject the UCT, so it stands

as a nice distinguishing feature of intuitionism.

Still, our chief interest is in how an intuitionist might defend her position to a

classical mathematician. If she is going to use a strong counterexample based on

intuitionistic analysis, a result like the Negative Continuity Theorem (NCT) will do

the job. So, it is worth taking a closer look at the premises used in the proof of the

NCT.

5.1.3 The Weak Continuity Principle

In their monograph on intuitionistic analysis, Kleene and Vesley (1965: pp. 69-70)

state what they call Brouwer’s Principle for Numbers.

Suppose that, to each choice sequence α(0), α(1), α(2), . . . a natural num-
ber b is correlated. . . . Since intuitionistically choice sequences are con-
sidered as continually growing by new choices rather than as completed,
this correlation can subsist intuitionistically only in such a manner that
at some (finite) stage in the growth of the sequence α(0), α(1), α(2), . . .
the correlated number b will be determined (effectively). That is, intu-
itionistically the b must be determined effectively by the first y choices
α(0), . . . , α(y−1) of α for some y (depending in general on these choices).

This seems to be the first explicit formulation of what has come to be called the Weak

Continuity Principle (WCP). Brouwer himself never seemed to give it a special name

or status, although it does make appearances in his work.

For, since the natural number in question has to be known for each arrow
of K at one of its nodes, the nodes yielding this knowledge constitute
a species of nodes which each arrow of K is bound to meet, and which
therefore is a crude bar C(K) of K. (Brouwer 1954: p. 15, emphasis added)
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Another passing use of the WCP prior to its baptism by Kleene and Vesley appears in

Heyting’s proof of the Fan Theorem in his monograph on intuitionistic mathematics.

As f(d) must be calculable, its value must be determined by a finite number
of the components of d. (Heyting 1966: p. 43)

The WCP usually makes its appearance in intuitionistic proofs of the Fan Theo-

rem, but it (or some other nonclassical principle) must also be used in the proof of

the UCT from the Fan Theorem; otherwise, we would have a classically valid demon-

stration of the UCT, since the Fan Theorem is classically acceptable. Besides this,

Veldman (1982) shows that the WCP alone can be used to demonstrate the (not nec-

essarily uniform) continuity of total functions on the unit continuum, which is enough

to obtain strong counterexamples to classical logic.

Indeed, the WCP alone can be used to give a strong counterexample. The prin-

ciple concerns assignments of natural numbers to infinite sequences of mathematical

objects. For simplicity’s sake, we can assume that the latter objects are all natural

numbers. Let Σ be the collection of these sequences and the relation A : Σ → {0, 1}

be defined by

A(σ) =

 0 iff ∀n ∈ ω.σ(n) = 0

1 otherwise

The WCP says that the assignment of 0 or 1 to a sequence σ ∈ Σ must be determined

on the basis of a finite initial segment of σ so that any sequence with the same initial

segment will be assigned the same value. Let y denote the length of this finite segment

and let σ1 and σ2 be sequences such that σ1(n) = σ2(n) = 0 for n < y while σ1(y) = 0

and σ2(y) = 1. By the WCP and the definition of A, A(σ1) = A(σ2) = 0, but σ2 is

not the constantly 0 sequence. This contradicts the definition of A.

This shows that, if we denote the constantly 0 sequence by 〈0〉, then

¬∀σ ∈ Σ(A(σ) = 〈0〉 ∨ ¬A(σ) = 〈0〉),
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contrary to the tertium non datur.

The classical mathematician who wishes to challenge the strong counterexamples

that emerge from intuitionistic analysis would do well to focus his attack on the

WCP. After all, it is the engine that drives the other results we have discussed. In

particular, the classical mathematician is likely to object to the demand that relations

between natural numbers (or other mathematical objects) and infinite sequences be

determined on the basis of finite initial segments of those sequences. We will consider

two possible arguments for this requirement, one based on Brouwer’s philosophy of

mathematics, a second based on Dummettian semantic antirealism.

A Brouwerian Argument for WCP

Veldman (2000: p. 2) gives a helpful summary of how one might argue for WCP on

Brouwerian grounds:

if α [an infinite sequence] is coming into existence step-by-step and we
calculate a number m suitable for α, the construction of this number m
will be completed when only finitely many values of α have been decided
upon. The number m will be suitable not only for α itself but for every
infinite sequence β that has these first finitely many values the same as α.

According to Veldman, the Principle is “a natural axiom, born out by experience”

(ibid., p. 3), but this attitude is probably not widespread. Nevertheless, the argu-

ment he gives does cohere nicely with Brouwer’s ontological constructivism about

mathematics, which we discussed in the previous chapter.

Recall that, for Brouwer, mathematics is a creation of the human mind and is

founded on our a priori intuition of time. Furthermore, the subject who constructs

mathematics has always experienced only finitely (albeit increasingly) many temporal

instants. The WCP applies when we consider an assignment of mathematical objects

to infinite sequences. If such an assignment is going to be constructed, this has to be

done in time, but at any point, only finitely many values of any given sequence have
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been constructed.

So, if the subject sets about assigning a particular object to a sequence, it might

seem (but see below) that all he has to go on is a finite initial segment of the sequence.

For instance, he might assign 0 to a finite sequence σ. The sequence, however, is

supposed to be infinite, so eventually it will be extended to a longer one. Indeed, σ

might be extended multiple times, giving rise to distinct sequences σ1 and σ2 that

share a finite segment. Still, σ, understood as an infinite but incomplete sequence,

has already been assigned 0, so both σ1 and σ2, as well as any other sequences that

begin with σ, will be assigned 0.

The key to this argument is the claim that an infinite sequence is never completed.

Without this, the mathematical subject could, as it were, wait around to construct

his assignment once all of the sequences are finished. It is precisely here, however,

that the argument fails. The WCP is supposed to apply to assignments of objects

to all infinite sequences. Among these are sequences that can be fully described by

finitely specified laws for their construction: the constantly 0 sequence, for example,

or the sequence of natural numbers starting with 4. In contrast to these, we have the

so-called lawless sequences, which are generated by more or less random processes

like throwing dice or exercising one’s own free will.

If we accept the Brouwerian philosophy of mathematics, then the validity of the

WCP for lawless sequences is plausible, but this will not suffice to obtain the major

results of intuitionistic analysis. These require that the WCP apply to all sequences,

including those that can be given fully by a law for their construction. There is no

reason to think that the WCP is valid for the latter. Even if we insist that such se-

quences are never completed (as Brouwer sometimes suggests), their finitely specified

laws contain all of the information required to define functions on them that need

not be determined by finite initial segments. Thus, if Σ is a collection of entirely

determinate sequences, the WCP will not hold for relations on Σ. A fortiori, it will

102



not hold in general.

It is not open to the Brouwerian to reply that choice sequences are necessary to

develop an adequate, constructively acceptable theory of the continuum. This seems

to have been Brouwer’s initial motivation for introducing choice sequences into his

ontology.

. . . one might fear that intuitionist mathematics must necessarily be poor
and anaemic, and in particular would have no place for analysis. But this
fear would have presupposed that infinite sequences generated by the intu-
itionist self-unfolding of the basic intuition would have to be fundamental
sequences, i.e., predeterminate infinite sequences which, like classical ones,
proceed in such a way that, from the beginning, the mth term is fixed for
each m. (Brouwer 1952: p. 142)

He goes on to discuss what he calls the “Second Act of Intuitionism,” part of which

is the introduction of

infinitely proceeding sequences p1, p2, . . ., whose terms are chosen
more or less freely from mathematical entities previously acquired. (ibid.,
original emphasis)

In fact, Brouwer’s worries proved to be unfounded. Bishop’s claim to constructivistic

fame is his success in developing a constructively acceptable theory of analysis, one

that happens not to use the notion of a Brouwerian choice sequence or the WCP.

Despite his own objections to Brouwer’s “metaphysical” speculations, Bishop’s success

does not mean that the theory of choice sequences should be excised from constructive

mathematics entirely. It does show, however, that it cannot be justified by the need

for a constructive theory of analysis.

A Dummettian Argument for WCP

As we have seen, the BHK interpretation alone does not seem to entail the invalidity of

the tertium non datur. The status of classical logic with respect to the BHK semantics

depends on what background assumptions one adopts. In particular, a good deal
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depends on how we understand the term ‘effective’ in the clause for the universal

quantifier. This is because a statement of the tertium non datur is a universal sentence;

a refutation of the principle requires that the assumption of a single effective method

to solve any mathematical problem is contradictory. Tennant (1997: §7.5) shows that,

if we explicate ‘effective’ by ‘recursive’, then we can refute the BHK reading of the

tertium non datur. On the other hand, if we introduce an omniscient being into our

metatheoretic ontology and include asking questions of this being among the effective

methods available to us, then the validity of the tertium non datur will follow.

Thus, the consequences for classical logic that follow from the BHK semantics

depend in large part on what other assumptions are in the background. If we can

show that the WCP is a consequences of the BHK interpretation with a plausible set

of background assumptions, this will be a point in favor of the idea that Dummett

has uncovered the hard core of intuitionistic mathematics.

To facilitate the discussion, it will help to have a statement of the WCP in the

language of formal first-order logic.

∀α∃nA(α, n)→ ∀α∃m∃n∀β(β̄m = ᾱm→ A(β, n)). (WCP)

Here, α and β range over infinite sequences of natural numbers; m and x range over

natural numbers; ᾱm refers to the m-length initial segment of α (mutatis mutandis

for β̄m).

Dummett’s argument for the WCP proceeds on the basis of what he claims is a

basic tenet of intuitionism.

In intuitionistic mathematics, all infinity is potential infinity . . . any in-
finite sequence, whether wholly determined in advance or not, must be
taken as ‘in process of growth’; that is, we must not regard it as some-
thing all of whose terms can be surveyed. (Dummett 2000: p. 45)

As we might expect, Dummett understands this in terms of meaning.
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The intuitionist holds that the expressions of our mathematical language
must be given meaning by reference to operations which we can in principle
carry out.. . . The platonist, on the other hand, believes that they can be
given meaning by reference to operations which we cannot even in principle
carry out, so long as we can conceive of them as being carried out by
beings with powers which transcend our own. These are deep questions in
the theory of meaning which we cannot pursue further here. (ibid., p. 43)

Among the deep questions include those concerning semantic antirealism. In par-

ticular, we should ask whether the BHK semantics gives us a reason to adopt the

WCP.

According to the BHK interpretation, we can assert the antecedent of the WCP

just in case we have a construction that will transform any infinite sequence α of

natural numbers into a proof of ‘∃n(A, n)’. The latter proof consists of a definite

number n and a proof that ‘A(α, n)’ holds. So, if we can assert the antecedent of

the WCP, then we have an effective method for producing, for each sequence α, the

number n to which it is related by A.

This alone is not enough to justify the WCP. We need the further assumption

that the method given by the antecedent of the statement of the WCP can operate

only on finite entities. After all, the classical mathematician can maintain that there

is a method for determining the number than n assigns to each infinite sequence:

ask a hypothetical omniscient entity that can comprehend at once the entire infinite

collection NN. We grant that this is not in the spirit of the BHK interpretation or the

usual understanding of constructive mathematics, but a BHK-based argument for the

WCP must somehow rule such a “method” out.

Dummett seems to be aware of this when he attempts to characterize the treatment

of infinity proper to intuitionism.

In intuitionistic mathematics, all infinity is potential infinity: there is no
completed infinite.. . . The intuitionist holds that the expressions of our
mathematical language must be given meaning by reference to operations
which we can in principle carry out. (ibid., pp. 41, 43)
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Thus, we are back to the debate about realism and antirealism understood in Dum-

mettian terms. The WCP is justified, on Dummett’s view, because it represents the

only meaning of quantification over a totality like NN that does not attribute super-

human cognitive abilities to us.

Thus, the Dummettian case for the WCP ultimately stands or falls with the

more general case for semantic antirealism. Since we have already discussed this in

Chapter 3, we will not linger on it a great deal more. We should, however, note a

general objection to semantic antirealism that is especially pertinent here. Briefly,

the objection is that, if Dummett’s argument for antirealism is a good one, then

the degree of mathematical revision required is greater than that called for by the

intuitionists; we should endorse a finitistic approach to mathematics that excises both

actual and potential infinities and places an upper bound on the size or complexity

of the objects and proofs dealt with in mathematics.

A version of this objection is developed by Wright (1982). In effect, the objection

proceeds by noting that the Dummettian position places a good deal of weight on

the notion of an ability to execute a process in principle. That is, it dismisses what

Russell famously called “mere medical impossibilities,” such as limitations on the

human lifespan, as irrelevant for our understanding of mathematical statements. Thus,

I understand and can assert a statement of the commutative law for integers,

∀n∀m(n+m = m+ n),

even though the quantifier ranges over all integers, including those so large that I

could never carry out calculations with them on paper or grasp them intuitively in

my mind.

The finitist objects that on Dummett’s own principles, there is an upper bound

to the numbers with which one has learned to calculate. To put it another way, if
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the meaning of a term is determined by the use of the same term, then what do

we do about the fact that there is an upper bound to the size of the number terms

that we are able to use? According to the objection, Dummett can draw no principled

distinction between the infinite and the incomprehensibly large finite. Thus, we should

restrain our mathematics to deal only with entities small and simple enough to be

understood in practice.

The response to this on the part of Dummett (1975c) is unsatisfactory for our

purposes. He argues that any finitistic mathematics would ultimately be incoherent,

but he does not explain why his own position is vindicated; if the Dummettian ar-

gument does entail finitism and finitism is incoherent, so much the worse for the

argument. Tennant responds to the finitist’s challenge by positing a modified form of

the antirealist’s recognition condition on understanding a statement.

The speaker’s understanding, on this account, is conceived somewhat
along the line of a (potentially unsurveyable) host of true dispositional
conditionals, one for each aspect of the piece of discourse Π . . . We can
have good grounds for believing that each of these conditionals is true of
S, even while conceding that S is perforce unable, given the sheer size of
Π, to pronounce on the correctness of all aspects of Π. (Tennant 1997: pp.
154-155)

Even here, however, there is recourse to a “potentially unsurveyable” host of condi-

tionals. On the antirealist’s own understanding of truth, these conditionals are true

only if there is some recognizable proof of their conjunction or universal closure. If

the collection of all of them is unsurveyable, then it is not clear how there could be

such a proof; therefore, the finitist could respond by calling into question our ability

to attribute understanding when the collection of conditionals is unsurveyable.

We bring this up here because the finitist’s challenge is especially acute for any

attempt to establish the WCP on antirealistic grounds. In many cases, the antirealist

can block the challenge by appealing to our grasp of a finitary process. Thus, even

though the commutative law for addition holds of numbers whose size is far beyond
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anybody’s ability to grasp directly, one learns to add by learning a simple algorithm

for calculating the sums of any two numbers; the antirealist can appeal to a grasp

of this algorithm in order to explain how one can know (in principle) how to add

incomprehensibly large numbers.

The WCP, however, applies precisely when the objects in question outstrip the

limits of easily-grasped algorithmic processes. Prima facie, the principle might seem

to be exactly the kind of thing to which the antirealist should appeal in light of the

finitist’s objection, but since the quantifiers that appear in a statement of the principle

range over the collections of all infinite sequences and all natural numbers, the finitist

can still respond by calling into question our grasp of these infinite collections. Thus,

even if the finitistic objection to Dummett’s version of antirealism does not hold in

general, there is still some reason to think that it will block an antirealistic argument

for the WCP; in other words, the burden of proof is on the antirealist to show that

his position is able to ground the full sweep of intuitionistic mathematics, including

the theory of free-choice sequences governed by the WCP.

5.2 The Creative Subject

The other chief source of strong counterexamples in Brouwer’s own work is found in

his notion of the creative subject (CS).4 This first appears in (Brouwer 1948) in the

course of an argument showing that negation cannot be eliminated from intuitionistic

mathematics.5

As a first sketch of what Brouwer has in mind, notice that when we presented the

Brouwerian argument for the WCP above, we did so in terms of a subject that brings

4This translates the Dutch scheppende subject. Brouwer (1952) uses ‘creating subject’ when writ-
ing and lecturing in English. As translations, either “creating” or “creative” is acceptable and the
latter has become the standard one in the secondary literature.

5See (Griss 1946) for one contribution to the project of a negationless mathematics. Besides Griss,
Hans Freudenthal and David van Dantzig are associated with this idea; other discussions include
those by Heyting (1966: pp. 120ff.) and Troelstra and van Dalen (1988: p. 31).
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the objects of mathematics into existence. Indeed, this seems to be what Brouwer

has in mind in his applications of the CS, with one important qualification. In the

case of a choice sequence, the generation is direct: at each stage, the subject chooses

what the next item in the sequence will be. Brouwer allows that these choices might

be restricted in various ways, e.g., to even numbers, but the point is that there

is ultimately nothing other than the subject’s choice that we can point to as an

explanation for the values that the sequence takes.

In his later applications, however, Brouwer stipulates that the subject’s generative

activity proceeds in terms of solutions to unsolved mathematical problems. (In his

1948 reply to Griss, he gives Fermat’s Last Theorem and a problem about the decimal

expansion of π as examples.) Infinite sequences are still part of the picture, but the

subject determines the values that the sequence takes in terms of whether a problem

given by a statement φ has been solved or not. Such a sequence acts as a kind of record

of research into φ. Among other things, this allows us to reduce every mathematical

problem to a question of the values of a sequence of natural numbers—even a binary

sequence if we want to keep things especially simple.6 For example, the sequence could

be such that, so long as φ remains unsolved, the subject extends it by appending 0,

and once φ is solved (if it ever is), the subject extends the sequence by appending 1.

(If we wanted to distinguish between positive and negative solutions, we could require

that the subject begin appending 2 if ¬φ turns out to be the case.)

So, although explicit mentions of the CS do not appear in Brouwer’s work before

1948, he seems to have been using it implicitly for at least three decades. In short,

Brouwer allows that infinite sequences can be generated in a variety of ways: fully

determinate rules, partially restricted choices, random processes like rolling dice, sheer

feats of will subject to no restrictions, and investigations into unsolved problems. It

6Readers familiar with the literature associated with Bishop’s constructivism will recognize this
as the source of the power of the limited principle of omniscience, which Bishop takes to be the
dominant nonconstructive principle of classical mathematics. Cf. Bishop (1967: p. 9).
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is worth noting that the last of these is neither fully random nor fully determinate.

In general, we cannot say whether a proposition or its negation holds, nor can we

predict when we will figure this out. In this respect, sequences based on the status of

such propositions are not fully determined in advance. On the other hand, they are

no more random than the activity of working mathematicians.

Our claim that the earlier use of choice sequences depends implicitly on the CS

requires some evidence. In a lecture manuscript from 1927, Brouwer describes the

second act of intuitionism as

the admission as a modality of the self-unfolding of the primordial in-
tuition of mathematics not only of the assemblage of finite sequences of
mathematical systems and of lawlike indefinitely proceeding sequences of
mathematical systems pre-formed by induction, but also of the assemblage
of sequences of mathematical systems proceeding indefinitely in complete
freedom or in freedom subject to (possibly changing) restrictions. (van
Stigt 1990: p. 483, emphasis added)

As early as (Brouwer 1905), it is clear that this primordial intuition belongs to a

subject. Thus, as soon as Brouwer introduced sequences based on free choices into

his mathematical ontology, he was implicitly introducing the CS. He just waited until

much later to put it into print explicitly.

So much for exegesis. What should we say about Brouwer’s actual use of the CS?

Does he succeed in using it to refute laws of classical logic? There seems to be little

reason for a classical mathematician to accept Brouwer’s arguments in his (1948).

There, the CS is used to define a real number ρ such that ρ 6= 0, but the most natural

negation-free translation of this is not equivalent to it.

Of course, this does not spell doom for the negationless program, since there may

be less natural negation-free translations of ‘ρ 6= 0’. From the classical mathemati-

cian’s point of view, however, the problem is that, in defining ρ, Brouwer must appeal

to an assertion φ such that both ¬φ and ¬¬φ fail. In other words, he presupposes

the invalidity of the law of testability. This is not fatal to his goal in (Brouwer 1948);
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there, he is trying to show that negations cannot be eliminated from intuitionistic

mathematics and so is allowed to presuppose the logical commitments of intuition-

ism. A classical mathematician, however, accepts the law of testability and denies

that unsolved problems (i.e., weak counterexamples) refute classical logic. That is,

she will refuse to accept that ρ is well-defined, since for her there is no untested

proposition φ. This shows that, in general, counterexamples to classical logic based

on the CS cannot be fundamental when it comes to convincing the unconverted. They

must be supplemented with a reason to accept that numbers defined in terms of the

experience of the CS are well-defined.

5.2.1 Formalized Creative Subject Theories

Although Brouwer himself never developed a robust theory of the creative subject,

later authors have attempted to do so.7 In formulating the axioms of such a theory,

there are two constraints. Obviously, one is that the theory must be consistent, both

internally and with respect to the rest of intuitionistic mathematics. The second is

that the theory should be strong enough to derive counterexamples to the tertium

non datur and other laws of classical logic, perhaps using arguments like those in

(Brouwer 1948).

What sort of principles might we introduce? Following Troelstra (1969), we will

use the notation ‘`n φ’ to mean ‘the creative subject has evidence for the truth

of φ at time n’. Here, φ is a mathematical statement, and n ranges over natural

numbers. (This means that we are treating time as proceeding in discrete instants.)

The following three axiom schemata are frequently proposed in the literature.

A1: `n φ ∨ ¬ `n φ

A2: `n φ→`n+m φ

7See Kreisel (1967), Myhill (1968), Troelstra (1969).
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A3: (∃n `n φ)↔ φ

A1 says that, at any given time, the CS knows whether or not it has evidence for a

proposition’s truth at that time. Epistemological externalism notwithstanding, this

seems plausible. A2 says, in effect, that the CS never forgets; if it obtains evidence for

φ at some instant, it retains that evidence at all future instants. Here, it is important

to keep in mind that the CS is an idealized mathematician. So long as we do, A2 also

seems plausible.

A3 is more problematic. Clearly, one of the conditionals is true, namely

(∃n `n φ)→ φ.

This just says that, if the CS ever obtains evidence for φ, then φ is true. Mathematical

evidence is given by proofs, so this amounts to the trivial observation that only true

mathematical statements have (correct) proofs. Surely nobody will doubt this.

What about the other conditional in A3, namely

φ→ ∃n `n φ?

This amounts to saying that, given any true statement, the CS will eventually prove

it. One might worry that accepting this requires too much idealization. It is one thing

to attribute eternal life and a perfect memory to the CS, but A3 looks like it requires

attributing (potential) omniscience as well.8

Nevertheless, we will provisionally accept A3 and examine some of the conse-

quences of the theory. Since the ‘n’ in ‘`n’ ranges over natural numbers, we can use

the operator and a mathematical statement φ to define an infinite sequence σ of

8As Bishop (1967: p. 2) remarks, “If God has mathematics of his own that needs to be done, let
him do it himself.”
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natural numbers.

σ(n) =

 0 ¬ `n φ

1 `n φ

Intuitively, this sequence records the CS’s evidence for the truth of φ. If we think of n

as representing numerically-indexed instants of time, then the sequence’s entries are

0 as long as the CS has no evidence that φ is true. At the instant m when the CS

obtains such evidence, σ(m) = 1. Since, by A2 above, the CS retains this evidence at

every future instant, the sequence will also output 1 for every number greater than

m. Brouwer used sequences like σ in many of his papers in the 1940s and 1950s.9

Note that, if the CS obtains evidence for ¬φ at some point, then σ becomes the

constantly 0 sequence. One thing the CS cannot do is predict the future. As long as

it never finds any evidence for either φ or ¬φ, we find that

¬(∃n.σ(n) = 1 ∨ ∀n.σ(n) = 0)

which contradicts classical logic. So, if we allow that a sequence like σ, defined in terms

of the theory of the CS, actually defines a sequence, we obtain a counterexample to

classical logic. We might worry, however, that allowing a definition like σ comes with

less savory consequences. From the definition of σ, we have that

∃n.σ(n) 6= 0→ φ.

Also, from axiom A3 above, we have that

φ→ ∃n. `n φ
9Normally, however, he used them to define real numbers, and so their outputs were more compli-

cated because he had to guarantee that the sequences would converge. We do not need this guarantee
here, so we can use 0 and 1 as possible outputs.
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and, given the definition of σ the consequent of this is equivalent to

∃n.σ(n) 6= 0.

So, by substitution, we have that

φ→ ∃n.σ(n) 6= 0

and this, together with our first formula, entails

φ↔ ∃n.σ(n) 6= 0.

By existential generalization on this biconditional, we obtain what is known as

Kripke’s Schema.

∃α(φ↔ ∃n.α(n) 6= 0) (K)

where α ranges over sequences of natural numbers. Since φ was an arbitrary mathe-

matical statement, K says that, for every such statement, there is a sequence “track-

ing” the statement’s evidential status with respect to the CS. K is weaker than A3,

and not just in the sense that the former follows from the latter but not vice versa.

While A3 requires us to accept that the CS will eventually prove any true mathemat-

ical statement, K intuitively says only that the CS can investigate any statement, not

that this investigation will ultimately result in a proof or refutation.

Still, there are reasons to think that the CS theory we have outlined here does

not meet the constraints we mentioned at the beginning of this section. The first of

these was a twofold consistency requirement. We want the theory to be internally

consistent (i.e., to derive no contradictions) and to be consistent with central results

of intuitionistic mathematics (e.g., the Continuity Theorems). It appears that our

theory may fail on both of these counts.
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With regard to the latter, van Dalen (1999: 310) points out that Kripke’s Schema

entails the negation of a Continuity Principle on sequences

∀α∃n.A(α, n)→ ∃F∀α.A(α, F (α)). (CP)

This is stronger than the Weak Continuity Principle discussed earlier. (For this rea-

son, Troelstra and van Dalen (1988: 212) suggest that we might call it the Strong

Continuity Principle.) It’s stronger because it asserts the existence of a (continuous)

functional F on sequences. For each sequence α, F tells us the length of the initial

segment needed to assign n. All WC tells is that there is some such length or other,

not that we can find a functional telling us what that length is.

Still, despite the added strength, some authors have suggested why an intuitionist

might want to accept CP. Iemhoff (2008: §3.5) is one example. (In the following quote,

we have changed some of the notation to match our conventions.)

Weak continuity does not exhaust the intuitionists’ intuition about the
continuum, for given the weak continuity axiom, it seems reasonable to
assume that the choice of the number m such that ∀β ∈ α(m)A(β, n) [i.e.,
the consequent of WC] could be made explicit. Thus ∀α∃nA(α, n) implies
the existence of a continuous functional F that for every α produces the
m that fixes the length of α on the basis of which n is chosen.

As it stands, this argument is simply an appeal to what seems reasonable, but we can

try to strengthen it. For example, we might argue from WCP to CP by appealing to

general constructivist principles governing the existential quantifiers in WCP. (This

seems to be what Iemhoff has in mind.)

This isn’t the place to settle whether an intuitionist should accept CP, K, or

neither. The unsurprising but important point is simply that, at a foundational level,

an intuitionist is going to have to weigh her options and make choices about which

principles to adopt.10

10The classical mathematician is in the same position, of course. Consider the debates about
classical set-theoretic axioms entailing the Continuum Hypothesis versus those entailing its negation.
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Let us turn now to the other side of our first constraint, namely, the internal

consistency of a CS theory with Kripke’s Schema. Troelstra (1969) points out that

the theory we have formulated leads to an inconsistency, at least if we make the natural

assumption that the CS proves some new statement at every temporal instant. Given

this assumption, we can begin enumerating the statements proved by the CS at each

stage: φ0, φ1, . . . , φn, . . ..

Now, let L(α) mean that α is a lawlike (i.e., fully determined) sequence of natural

numbers and define a sequence β of natural numbers as follows.

β(n) =

 α(n) + 1 ∃α(φn ↔ L(α))

0 otherwise

The first condition obtains at n just in case the CS proves at n that some sequence

is lawlike. Troelstra asserts (ibid., p. 106) without argument that β is a lawlike se-

quence. Niekus (1987: p. 441) does somewhat better. He suggests that we can motivate

Troelstra’s assertion via our axiom A1.

The reason for calling a CS-sequence (also called empirical sequence) law-
like, is presumably that, in interpreting the CS as an idealized mathemati-
cian with a definite description of the stages (acceptance of A 2.1 [our A1]),
there does not seem to be an element of choice in the determination of its
values.

We will return to this argument below, but first we should finish deriving the contra-

diction.

Since we are taking β to be lawlike, L(β) is true. So, by A3, we can infer that

∃n. `n L(β). Call this stage nβ. Then φnβ
↔ L(β). By the definition of β, this means

that β(n) = β(n) + 1, a contradiction.

Troelstra suggests multiple possible responses to this result. One is to reject the

idea that the CS proves only one conclusion at a time. Another is to modify our

understanding of the `n operator. A third is to introduce a kind of hierarchy of types
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(or, as he puts it “levels of self-reflection”) and an assumption similar to Russell’s

Axiom of Reducibility. He doesn’t explore these in detail, however.

Another way to respond to the paradox is to deny that the sequence β is lawlike.

Niekus’s argument for this is hardly convincing. There seems to be no determinate

law telling us what the CS will prove at a given stage. Thus, although β might not

be a completely lawless sequence, the CS is never in a position to know the value of

β(n) for an arbitrary n.

Absent a clear way out, Troelstra’s paradox should give us pause, especially com-

bined with our other observations about the CS. Together, these show that developing

a formal theory to model Brouwer’s idea is challenging. At the very least, it is hard to

see why one would want to take a formal CS theory as foundational for intuitionism.

When developing a foundation for mathematics, one usually aims for the simplest

and most intuitively plausible basic principles. The theory of the CS meets neither of

these conditions.
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Chapter 6

A Mathematical Foundation for

Intuitionism

6.1 Foundations and Axioms

To make clear the approach to mathematical foundations that we pursue in this

chapter, it will be helpful to contrast our proposal with other items that fall under

the “Philosophy of Mathematics” heading. At times, the philosophy of mathematics

seems concerned primarily with ontological and epistemological questions that arise

in light of our possession of mathematical knowledge. This knowledge presents a

challenge to philosophers because it seems to be simultaneously

1. certain,

2. not obvious, and

3. not trivial.

The certainty of mathematics has to do both with its method (deductive argument

and, in many cases, algorithmic procedure) and with its relative immunity to discon-
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firming evidence (compared, e.g., with the natural sciences).1 It is not obvious in the

sense that even the best mathematician generally cannot look at an arbitrary math-

ematical statement and know right away whether it is true or false. It is not trivial

both because it is not obvious and because it has myriad theoretical and practical

applications.

The challenge is to explain how we can have knowledge with these three features.

Indeed, philosophers sometimes use mathematical knowledge in order to motivate

very general epistemological theories. For example, in the Meno, Plato argues for

the theory of recollection using an example from geometry. So too, in the Critique

of Pure Reason, Kant uses mathematical knowledge as a datum that both calls for

explanation and shows that it is possible to have synthetic knowledge a priori. In other

cases, philosophers have rejected this characterization of mathematical knowledge.

Thus, Mill rejected 1 and maintained that mathematics is just an especially well-

supported inductive science, while Carnap rejected at least part of 3 by insisting that

mathematical statements are free of content.

6.1.1 Epistemology, Metaphysics, and Mathematics

It is striking that the ontological and epistemological questions raised by mathemat-

ical knowledge do not depend in any essential way on its mathematical character.

There are other candidates for knowledge that exhibit the three features listed above.

Thus, while the classic paper (Benacerraf 1973) raises epistemological questions per-

taining to mathematics, the rejoinder by Katz (1998) concerns itself with logical and

linguistic knowledge as well. What makes mathematics significant here is not that it

presents philosophical puzzles qua mathematics, but that it serves as a case study

for a number of philosophically interesting issues concerning, e.g., abstract objects,

1Recall Frege’s observation (1884: §9) that a chemist who mixes five units of one liquid with two
units of another and winds up with six units will never conclude that 5 + 2 = 6 but that some of
the matter was lost in a chemical reaction.
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epistemological certainty, and so on.

Our point is that the ontological and epistemological theses developed in light

of the philosophically puzzling features of mathematics are independent of many of

the details of the mathematical theories whose possibility they purport to explain.

This is the case even for a much-discussed contemporary position in the philosophy

of mathematics such as structuralism. As Shapiro, its chief proponent, describes it,

structuralism is the thesis that “mathematics is the science of structure.”

The subject matter of arithmetic is a single abstract structure, the pattern
common to any infinite collection of objects that has a successor relation,
a unique initial object, and satisfies the induction principle. (Shapiro 2000:
p. 258)

Other branches of mathematics study the structures appropriate to them. Further-

more, a structure is “the abstract form of a system,” a system being “a collection of

objects with certain relations among them.” (ibid., p. 259)

There are plenty of questions that can be asked about structuralism. For example,

structures are supposed to be abstract entities. Given this, how do we have epistemic

access to them? Structuralists are free to pursue this and similar issues, but the

question we wish to ask here is whether we can give any precise mathematical content

to the claims that they make. Are these structures mathematical entities of a certain

kind? If so, can we prove mathematically that they exist? A natural candidate for

a structure would be the kind of thing studied in model theory; on the other hand,

since structures are the objects of all mathematical theories, this would mean that

every branch of mathematics is really model theory in disguise. This is clearly not

the case.

Or consider that many mathematical theories be interpreted within ZF and treated

as the study of sets of a certain kind. This is similar to the claim that mathematics

studies structures. Perhaps structures are kinds of sets. If so, where do they appear

in the cumulative hierarchy? Structuralists do not seem to be concerned with these
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questions; rather, their internal disputes are ontological and epistemological ones,

special cases of the familiar debates about universals, abstract entities, etc.

While there is nothing wrong with metaphysics and epistemology per se, they

usually proceed in isolation from mathematics, even when they purport to be studying

mathematics. The kind of approach that structuralism represents in the philosophy of

mathematics is removed from mathematics itself. We maintain that there is a place for

philosophy that makes it continuous with mathematics and even capable of altering

the way mathematics is done.

6.1.2 Pluralism

The idea that philosophy can have an impact on mathematics is perhaps not anathema

today, but philosophers and mathematicians tend to regard it with suspicion. The

general worry seems to be encouraged by two ideas:

1. new mathematical results (a new theorem, for example) are not philosophical

achievements, but mathematical ones;

2. philosophers have no special authority when it comes to mathematics.

Both of these are clearly false. In the first case, one need only recall results like

Gödel’s Theorems or Church’s Theorem, which are at least as important for their

philosophical consequences as for their mathematical ones. That the second is false is

clear if one consults a list of great philosophers, which will inevitably mention figures

like Leibniz, Pascal, and Russell; it is only by attributing distinct philosophical and

mathematical personalities to such luminaries that one can deny these philosophers

mathematical authority.

Although claims 1 and 2 are false, they are widely accepted and understood jointly

to entail that a philosopher who wants to have an impact on mathematics should just

do some mathematics rather than trying to force his philosophical speculation on
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mathematicians who have no special obligation to listen to the philosopher. This

leaves room for the kind of ontological and epistemological inquiry discussed in the

previous section, but it calls into question whether philosophical work can change

mathematics itself. Such an attitude is expressed in no uncertain terms by David

Lewis.

I’m moved to laughter at the thought of how presumptuous it would be to
reject mathematics for philosophical reasons. How would you like the job
of telling the mathematicians that they must change their ways. . . Can you
tell them, with a straight face, to follow philosophical argument wherever
it may lead? If they challenge your credentials, will you boast of philoso-
phy’s other great discoveries: that motion is impossible, that a Being than
which no greater can be conceived cannot be conceived not to exist, that it
is unthinkable that anything exists outside the mind, that time is unreal,
that no theory has ever been made at all probable by evidence (but on
the other hand that an empirically ideal theory cannot possibly be false),
that it is a wide-open scientific question whether anyone has ever believed
anything, and so on, and on, ad nauseam? (Lewis 1991: p. 59, original
emphasis)

Lewis is challenging the idea that one should reject or reform mathematics because of

a philosophical nominalism that denies existence to the abstract entities that math-

ematics purports to study, but the point can easily be generalized.

It is not so clear what Lewis’s litany of counterintuitive philosophical theses is

meant to show, since none of them has any obvious connection to mathematics, but

presumably they are meant to support his claim that a philosophical challenge to the

prevailing mathematics can be legitimately dismissed on grounds of presumption. He

neglects to mention that Berkeley, the same philosopher who argued for the counterin-

tuitive thesis that nothing exists outside the mind, also posed one of the more serious

philosophical challenges to the prevailing mathematics of his day. Perhaps Berkeley

should have been less presumptuous and stuck to his idealism and tar water, leaving

the serious work of calculating with infinitesimals to the real mathematicians. For

that matter, one wonders what Lewis would say about Brouwer, who rejected classi-

cal mathematics on philosophical grounds but waited to reconstruct it until he had
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proved the invariance of dimension and thereby put classical topology on a sound

footing.

In any case, the idea that philosophy can adjudicate between the various conflict-

ing approaches to mathematics that are available is not a popular one today.

One response to this delimitation of the philosopher’s task is mathematical plu-

ralism. We mentioned pluralism in Chapter 3, but it is worth a more detailed dis-

cussion now. Strictly speaking, we should distinguish between logical pluralism and

mathematical pluralism. Of course, intuitionism calls for a revision in both logic and

mathematics, but it is possible to endorse the logical revision while minimizing the

need for a mathematical one. This is the position adopted by Bishop and his followers,

who advocate the use of intuitionistic logic but avoid asserting theorems that would

contradict classical mathematics.

According to one statement of logical pluralism, “the notion of ‘the correct logic’

is simply a mistake, one which fails to take account of the purpose-relativity and

language-relativity of logic.” (Hellman and Bell 2006: p. 68) The idea is that different

canons of logical reasoning have their own uses, and we are free to pick and choose

which one we will best suit our goals in a given setting. Beall and Restall (2006)

suggest that our concept of logical consequence is not sufficiently precise to pick out

a single logic (classical, intuitionistic, or relevance) as the correct one, and therefore we

should avail ourselves of whichever kind of consequence aligns best with our purposes,

which will generally vary from case to case.

Mathematical pluralism is similar, but it applies to the whole of mathematics and

not just to logic. For example, there may be times when we are especially interested in

the computational content of a given mathematical result. In these cases, we would do

well to stick to constructive mathematical theories, in which every result is guaranteed

to have computational content. In other settings, full-strength classical mathematics

or some other alternative may be more appropriate.
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So understood, pluralism is not the rather weak claim that it is not yet settled

which of the various alternative logics and mathematics is the correct one, and until

it is, we should use whatever we need to accomplish our other goals. Also, it is not

merely the position that figuring out which logic and mathematics is the correct one

requires taking account of applications in, e.g., physics. A commitment to pluralism

amounts to an endorsement of a pragmatic theory of truth for logical and mathemat-

ical statements: on this instrumentalist view, there is nothing more to the truth, or

even the meaning, of such a statement than that it helps us to accomplish the tasks

we have set for ourselves. Otherwise, it seems that we should concede that there is one

true logic, since it cannot be the case that the tertium non datur or ex falso quodlibet

are both valid and invalid. We might take this logic to be one of the available options,

we might take it to be something that is yet to be discovered, or we might take it

to be the intersection of all the candidate logics available, but it is not open to us to

accept conflicting accounts of logical consequence without making this acceptance a

matter of pragmatic value.

Beall and Restall (ibid.,, p. 92) consider the possibility that, on their view, the

correct logic is the intersection of all candidate logics. Their response is twofold. First,

they observe that this would probably lead to the conclusion that the correct logic is

the one in which the only valid argument is from φ to φ and that this is objectionable.

This begs the question against somebody who denies that classical, intuitionistic,

relevant, etc., logics are all equally good codifications of logical consequence.

Second, they observe as an example that some arguments are valid according

to classical second-order logic but invalid according to classical first-order logic, but

they insist that these both capture legitimate consequence relations and therefore the

argument is both valid (in second-order logic) and invalid (in first-order logic). We

reject the premise of this argument: the two consequence relations are not equally

legitimate, and to think that they are is to think that we have reached the end of
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history in our investigation of logical consequence.

If one wants to adopt pluralism and endorse a pragmatic theory of truth for logic

and mathematics, so be it, but then one should be ready to tell mathematicians

that they are not in the business of discovering truths in the ordinary sense. The

contrary view that we endorse treats mathematics and logic like other sciences whose

practitioners’ task is to investigate and discover truths. If two distinct mathematical

or logical theories disagree about what these truths are, then it is incumbent on us as

inquirers to do further work in order to determine which theory, if either, is correct.

6.1.3 Naturalism

Another version of the view that philosophers should not interfere with mathematics

itself finds expression in naturalism. One version of this, which is associated with

Quine and has been endorsed more recently by Maddy, makes the natural sciences,

perhaps along with mathematics itself, the ultimate arbiter of what logical and math-

ematical truths or frameworks we should endorse. (Maddy 2000; 2007, Quine and Ul-

lian 1970). As will become clear throughout this chapter, our own attitude toward the

foundations of mathematics resembles naturalism in certain respects. In particular,

we agree that the best route to a foundation for intuitionism is not through general

metaphysics or epistemology.

Here, we merely note that one variety of naturalism, according to which the nat-

ural sciences alone, perhaps even physics alone, are the ultimate arbiters of which

mathematics we should accept, goes too far and is irrelevant for our present pur-

poses. It is irrelevant because there seems to be no scientific application that would

privilege classical mathematics over intuitionistic mathematics or vice versa. All of

the evidence that supports the use of classical mathematics in the sciences supports

constructive mathematics as well. The chief argument in favor of this is based on

the remarkable past success of scientific applications of mathematics. There seems to
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be no reason to think that any explanation of this would depend on the technical

details of the mathematical theories in question (in particular, whether they conform

to classical or constructive standards).

Naturalism goes too far because it ties mathematics too closely to the natural

sciences rather than respecting its status as an autonomous discipline. For example,

the more extravagant parts of set theory, such as that concerned with large cardinals

or even sets of very large cardinality within the cumulative hierarchy, seem not yet

to have any special scientific application. Thus, they do not now form an essential

component of our best overall theory of the world. Depending on one’s naturalism, this

could have various consequences. An ontological naturalist, who holds that we should

attribute existence to mathematical entities only when they are indispensable for the

sciences, would insist that we should refrain from believing that large cardinals exist.

Methodological naturalism of a certain kind, one maintaining that only the method of

the sciences is somehow authoritative for mathematics, are hard-pressed to say what

could be valuable about research so detached from experience and empirical science.2

Sometimes, naturalists will point to a particular case where a mathematical theory

developed independently of science became important for science later. This is the

case with group theory, which initially seemed like a purely mathematical playground

but turned out to have important applications in physics. If this is to be the model

for a general policy, however, it would help if it was a more common occurrence. It is

at least as common for a branch of mathematics to be developed in close conjunction

with a new scientific theory (consider Newton and the calculus) or to be developed

by generalizing on scientific or quotidian applications (whence the word ‘geometry’,

literally, ‘earth-measuring’).

Naturalists who require mathematics to derive its legitimacy from the sciences

2Another kind of methodological naturalism is available, one that treats mathematics as a science
in its own right and with its own methods and authority. The position we endorse in the following
section is a version of this, so we do not address it here.
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presume to alter mathematics for philosophical reasons just as much as those who

call for mathematical revisionism out of purely philosophical motives. Furthermore,

such naturalists present a misleading picture of what mathematics is. Such a view

assumes that math is a matter of symbolic manipulation of syntax and that the task

of the mathematician is to construct symbol-complexes that the natural scientist can

appropriate for his own purposes. This ignores the meanings inherent in mathematical

statements per se—meanings that mathematicians understand perfectly well on their

own and without interpretation by philosophers or scientists. Our position is that

mathematics is an autonomous discipline; its value is not exhausted by its scientific

applications and there is something to be said for respecting its own methods in order

to resolve mathematical disputes. That being said, an endorsement of the method of

mathematics does not mean that philosophers should stand entirely apart from the

activity of mathematicians.

6.1.4 Philosophy as First Mathematics

We observed above that the certainty of mathematical knowledge is one of its philo-

sophically salient features and that part of this certainty derives from its methods,

viz., deductive proof rather than inductive argument, inference to the best explana-

tion, or other notoriously slippery ways of drawing conclusions. Of course, deductive

arguments generally require premises, and it is not required that every premise be

immediately capable of further demonstration. Any mathematical theory has its ax-

ioms, and when a theory like ZF is meant to serve as a foundation for the whole of

mathematics, it is especially important that its basic principles stand up to scrutiny

as axioms.

It is not plausible that an axiomatization of set theory should live up to the ideal

according to which each axiom is self-evident and incapable of rational doubt. In the

case of Euclidean geometry, an account of the purported self-evidence of the axioms
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can take advantage of the spatial, visual character of the subject matter, but the

subject matter of set theory is very general and includes things like infinite series of

cardinal numbers increasing in size—objects far beyond what we can draw in detail

or picture clearly in our minds. Indeed, Euclidean geometry did not even live up to

its own ideal since it included the Parallel Postulate among its basic principles. The

activity of evaluating candidate axioms can be messy; it is also where philosophers

can contribute a great deal to the development of mathematics.

This idea, that the investigation of fundamental axioms involves philosophy as

well as mathematics, is in the spirit of what Russell calls “mathematical philosophy”

in his introduction to that subject.

Mathematics is a study which, when we start from its most familiar por-
tions, may be pursued in either of two opposite directions. . . . The other
direction, which is less familiar, proceeds, by analysing, to greater and
greater abstractness and logical simplicity; instead of asking what can be
defined and deduced from what is assumed to begin with, we ask instead
what more general ideas and principles can be found, in terms of which
what was our starting-point can be defined or deduced. It is the fact of
pursuing this opposite direction that characterises mathematical philoso-
phy as opposed to ordinary mathematics. (Russell 1920: p. 1)

In Russell’s case, the starting point is made up of familiar mathematical truths that

nobody would doubt (such as the familiar truths of arithmetic). It is open to us

to shift the starting point, however, so that the analysis begins with some of the

controversial results of intuitionistic mathematics: the invalidity of the tertium non

datur, for instance, or the continuity of every total function from R to R. We can

then ask what might motivate one to accept these claims by examining what general

principles would entail them.

More recently, Russell’s mathematical philosophy has found expression in the pro-

gram of reverse mathematics, in which the goal is to determine the weakest set of

assumptions required to prove a given result. Indeed, Simpson, who devotes much

of his (1999) to reverse mathematics, observes that there is a a family resemblance
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between his foundationally sensitive development of mathematics and Bishop’s con-

structivism. He also distinguishes five differences between the two (ibid., p. 31):

1. “The constructivists believe that mathematical objects are purely mental con-

structions, while we make no such assumption.

2. “The meaning which the constructivists assign to the propositional connectives

and quantifiers is incompatible with our classical interpretation.

3. “The constructivists assume unrestricted induction on the natural numbers,

while in RCA0 [second-order arithmetic with only recursive comprehension] we

assume only Σ0
1 induction.

4. “We always assume the law of the excluded middle, while the constructivists

deny it.

5. “The typical constructivist response to a nonconstructive mathematical theorem

is to modify the theorem by adding hypotheses or ‘extra data’. In contrast, our

approach in this book is to analyze the provability of mathematical theorems as

they stand, passing to stronger subsystems of Z2 [full second-order arithmetic]

if necessary.”

Of these, only the fourth should give the constructivist pause, but Simpson’s RCA0

uses only recursive comprehension, and worries about the unrestricted use of the ter-

tium non datur are thereby mitigated to a degree. We have seen that ontological

constructivism is neither a presupposition nor a consequence of mathematical con-

structivism and that the latter does not presuppose any special constructive meaning

for the logical constants. Concerning point 3, constructivists ought not to object to

the use of induction principles weaker than those they accept. Regarding point 5,

there is a great deal of mathematical interest in results that reveal the necessary
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presuppositions of essentially nonconstructive theorems; the constructivist can learn

from such results and use them to distinguish his mathematics from his opponents’.

Thus, some of the differences between the reverse mathematics program and the

one we are proposing here are merely apparent. We emphasize, however, that learning

what axioms are necessary to prove a given theorem is not of merely academic inter-

est. As Russell points out, this can often provide us data by which we can evaluate

proposed axioms. If it turns out that a proposed axiom is necessary to prove a result

that is intuitively obvious or indispensable for the development of a mathematical

theory, then this constitutes evidence for the truth of the axiom.

A good particular example of the kind of development at which we are gesturing

is given by Zermelo’s proof that every set can be well-ordered. According to Ferreirós

(2011: §2), Cantor maintained that the Well-Ordering Theorem is “a fundamental and

momentous law of thought.” Zermelo clearly must have disagreed because he set out

to demonstrate the Theorem. Notoriously, his proof uses the Axiom of Choice, but this

is no reason to dismiss the proof. For one thing, even an intuitionist, who rejects AC

because it entails the validity of the tertium non datur, can concede that it is prima

facie more plausible than the Well-Ordering Theorem. In addition, Zermelo’s proof

shifts the foundational debate. Rather than arguing directly about whether every set

can be well-ordered, mathematicians and philosophers can begin to look for reasons

to accept or to reject AC; assuming that one accepts Zermelo’s proof, whatever reason

one can give for or against its chief premise will extend to the Well-Ordering Theorem.

What kinds of reasons might be offered for accepting or rejecting an axiom? There

seem to be at least three categories of argument that apply. Sometimes, it turns out

that a proposed axiom can be deduced from more fundamental principles. Zermelo’s

proof provides one example of this. So does Frege’s derivation of the Peano Axioms

from Hume’s Principle. More recently, various axioms have been proposed that would

settle the Continuum Hypothesis one way or another, thereby mitigating the question
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whether CH per se should be accepted or rejected. In the case of intuitionistic and

constructive mathematics, the rejection of the tertium non datur is a plausible candi-

date for further justification. Although some texts on the subject, e.g., (Heyting 1966:

p. 3), present this rejection as quite obviously correct in itself, this is hardly satisfying

to many mathematicians and philosophers. A good deal of the interest of Brouwer’s

strong counterexamples is that they motivate the rejection of classical logic.3

When no interesting deduction of a basic principle is forthcoming, one must resort

to other means by which it might be justified. One of these is familiar, viz., appeals to

intuitive plausibility coupled with thought experiments, heuristic arguments, and so

on. Russell (op. cit., pp. 126ff.) asks his reader to imagine selecting shoes and socks in

order to understand the controversy surrounding AC. A justification for the ZF Axiom

of Union might take the form of talk about dumping the contents of several boxes

into one big box. These kinds of considerations are rarely decisive, but sometimes

they are all that is available, particularly when demonstrative proof is not an option.

The third way of justifying a proposed axiom is by an appeal to its consequences.

Here, mathematics exhibits its similarity with the natural sciences. Just as a physical

theory provides an explanatory framework for empirical data, so too a mathematical

theory can be understood as a way of explaining mathematical data. The data in

question here are what Russell referred to in the quotation above as the “starting-

point.” In the case of mathematical foundations generally, it will include the core

results of the various branches of mathematics. If a fundamental theory T entails

that 1 + 1 = 2 and an alternative theory T ′ does not, this is a point in favor of T .

The idea that a mathematical principle can be justified via its consequences appears

in the discussion of the Axiom of Reducibility in Principia Mathematica.

The reason for accepting an axiom, as for accepting any other proposi-

3Of course, one can always propose that this constitutes a reductio of the Brouwerian premises,
but it would be excessively stubborn to insist a priori that there could never be a sound argument
for the rejection of a classical principle.

131



tion, is always largely inductive, namely that many propositions which
are nearly indubitable can be deduced from it, and that no equally plau-
sible way is known by which these propositions could be true if the axiom
were false, and nothing which is probably false can be deduced from it.
(Whitehead and Russell 1910: p. 62)

More recently, (Maddy 2011: §V.4) has suggested that the kind of inductive evidence

Russell and Whitehead mention (which she calls “extrinsic support”) is the best source

for justification of an axiom. See (Koellner 2009: §5) for an example of how such a

justification might look for a version of the Axiom of Determinacy. Common to all of

these discussions, as well as our own, is that a foundational theory for mathematics is

akin to a scientific theory in that it is to be evaluated in large part by how it explains

mathematical data. As in the scientific case, the data underdetermine the theory, and

so we are left to appeal to other theoretical virtues in selecting between the candidate

theories available to us.

In the remainder of this chapter, we will consider some possible axioms for in-

tuitionistic and constructive mathematics. The goal is twofold. First, this will serve

to establish fully our claim that the place to look for intuitionistic foundations is

within mathematics itself. Second, our discussion will canvass some of the founda-

tional options available to the intuitionist. We do not purport either to establish

what principles an intuitionist must endorse or to provide absolutely decisive reasons

for accepting one or the other of the options we discuss. Rather, we set ourselves the

task of shifting and focusing the debate, much as Zermelo did when he first made AC

explicit as a foundational principle for classical set theory.
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6.2 A Survey of Foundational Principles for Intu-

itionistic Mathematics

6.2.1 General Form of the Discussion

There are a few desiderata that we can lay down a priori on the candidate axioms for

intuitionistic mathematics that we will discuss. Since we are presently interested in

what distinguishes intuitionistic mathematics from its classical rival, one desideratum

is that the axiom entail the invalidity of the tertium non datur. We have frequently

cautioned against taking the rejection of this principle as the entire essence of intu-

itionism, but there can be no denying that it is an important intuitionistic doctrine.

Furthermore, the technical development of intuitionistic mathematics is facilitated by

the rejection of the tertium non datur : one can show that its validity is a consequence

of other mathematical statements and infer the negations of these statements as a

result. To see an example of this, consider

Theorem 1. Not every subset of a finite set is finite.

Proof. Assume for reductio that every subset of a finite set is finite. Consider the set

{0|φ} where φ is an arbitrary mathematical statement. This is the set that contains

0 if and only if φ and contains no other elements. Note that {0|φ} is a subset of {0},

a finite set. Thus, by our assumption, {0|φ} is finite. This means that its cardinality

is a natural number n. Regardless of the truth-value of φ, the only element that can

possibly be in {0|φ} is 0, so n = 0 or n = 1. (Note that equality on the natural numbers

is provably decidable by induction.) If n = 0, then {0|φ} is empty, so 0 /∈ {0|φ}, from

which ¬φ follows. If n = 1, then 0 ∈ {0|φ}, from which φ follows. Since φ was

arbitrary, we have that

∀φ(φ ∨ ¬φ),

i.e., the tertium non datur is valid. This is a contradiction, so not every subset of a
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finite set is finite.

Each of the three principles we discuss below has as a consequence that the tertium

non datur is invalid; the proofs of this are given after each principle is introduced.

After that, we mention some of each principle’s other consequences, its consistency

relative to other aspect of intuitionistic and constructive mathematics, and the intu-

itive motivation that can be given for it.

6.2.2 Brouwer’s Continuity Principle

Brouwer’s Continuity Principle (CP) says that

∀α∃n.A(α, n)→ ∀α∃m∃n∀β.(β̄m = ᾱm→ A(β, n)).

Here, α and β range over all infinite sequences of natural numbers, n and m range

over the natural numbers, A is an arbitrary relation between NN and N, and ᾱm is

the m-length initial segment of the sequence α.4

Theorem 2. CP entails the invalidity of the tertium non datur.

Proof. Assume CP and assume for reductio that the tertium non datur is valid. By

the latter assumption, we have that

∀α(∀n.α(n) = 0 ∨ ¬∀n.α(n) = 0).

For each sequence, we can find a natural number that tracks the behavior of the

sequence. That is,

∀α∃m((m = 0 ∧ ∀n.α(n) = 0) ∨ (m = 1 ∧ ¬∀n.α(n) = 0)).

4We assume throughout that identity between sequences is an entirely extensional matter. Ex-
tensionality is not always assumed in intuitionistic mathematics, but (van Atten 2006: p. 104) points
out it does not interfere at all with the development of intuitionistic analysis.
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Now, we can apply the CP to infer that

∀α∃m∃p∀β(β̄p = ᾱp→ ((m = 0 ∧ ∀n.β(n) = 0) ∨ (m = 1 ∧ ¬∀n.β(n) = 0)))

(where p is a natural number).

Let α be λn.α(n) = 0. Then

∃p∀β(β̄p = ᾱp→ (m = 0 ∧ ∀n.β(n) = 0) ∨ (m = 1 ∧ ¬∀n.β(n) = 0)).

Fix p and let β be such that β̄p = ᾱp. Since equality on N is decidable, we can

consider two cases.

Case 1: m = 0. In this case, let β be such that β(p+ 1) = 1. Then ¬∀n.β(n) = 0,

contradicting the second conjunct of the relevant disjunct above.

Case 2: m = 1. In this case, let β = α. Then ∀n.β(n) = 0, which is also a

contradiction.

Since we have a contradiction in either case, we have completed our reductio and

conclude that the tertium non datur is invalid.

We have already discussed the CP when we looked at Brouwer’s strong coun-

terexamples to the tertium non datur by way of the Uniform Continuity Theorem

(UCT). As the proof just presented shows, the UCT is not necessary to generate such

counterexamples, since they can be obtained from the CP alone. This is as it should

be; the value of the UCT, like much of intuitionistic mathematics, is not exhausted

by its consequences for classical logic. Besides, the CP alone does not suffice to prove

the UCT: one also needs the principle of Bar Induction. Brouwer attempted to prove

this in (Brouwer 1927), but his proof begs the question. Instead, Bar Induction can

be introduced as an axiom in its own right. As pointed out by (Kleene and Vesley

1965: p. 51), it appears to be independent of the other axioms of intuitionistic analy-

sis. Furthermore, it is intuitively plausible and classically acceptable, so there seems
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to be little reason to pursue it further here, where we are interested in nonclassical

principles.

It is worth saying something more about the CP, where we are concerned not

with its place in Brouwer’s thought but with what might motivate it as a founda-

tional mathematical principle. The CP will be immediately appealing to anybody who

regards the notion of the actual infinite with suspicion, since it allows us to work with

inherently infinitary objects (e.g., the continuum) without committing ourselves to

the idea that these objects could ever be “completed.” If there were no prospects on

the horizon for a successful theory of the actually infinite, then intuitionistic analysis

with the CP would be like an oasis in a desert. In light of classical analysis modeled in

ZF, however, there is no good mathematical reason to worry about actual infinities.

Sometimes, attempts to argue for the CP start by assuming that it applies to a

special kind of mathematical object, a choice sequence. Here, the idea is that choice se-

quences, even when some of them are extensionally identical with classical sequences,

are governed by special principles that don’t apply to classical sequences, in partic-

ular the CP. This is the approach taken by, e.g., van Atten (ibid., ch. 6). One could

take the CP as constituting either a definition of or a principle governing a choice

sequence as distinct from other kinds of infinite sequence: the set of choice sequences,

on this view, would be the set of all those sequences that must be treated in the finite

manner characterized by the CP. Such an attitude would be especially amenable to

mathematical pluralists, who can thereby maintain that intuitionistic analysis is the

theory of a special kind of object, the choice sequence (or the continuum generated

from these sequences), while classical analysis just studies something else. In order

for CP to be useful, however, one must show that choice sequences exist. Classically,

they cannot, since they violate the tertium non datur. Even without this difficulty, it

is not enough in general to lay down a definition; one must also show that there exists

an object to which it applies, and even if one could, it is not clear what advantage
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this would give to intuitionistic analysis over its classical counterpart.

Our own view takes seriously the objection raised to the Brouwerian argument

for the CP discussed in the previous chapter. Even if we should be worried about

actual infinities in mathematics, the CP requires something stronger, namely, that all

of our knowledge about infinite sequences must be based on finite initial segments of

them. This is a very implausible claim, since we can give fully finite characterizations

of some infinite sequences. In our proof of Theorem 2, for example, we referred to

the constantly 0 sequence. All of the information we could want to know about this

sequence’s values is captured by a finite, easily understood description: they’re all 0.

In order to develop intuitionistic analysis from the CP, however, it appears to be

the case that the principle must hold for all sequences, even those capable of being

given by a finite description. There seems to be little reason to accept this beyond a

stubborn insistence that something is wrong with the notion of the actually infinite.

In light of the existence of a successful classical theory of analysis, it is a mistake

to take the CP as a foundational principle for intuitionistic mathematics. This does

not mean that intuitionists necessarily should reject the CP entirely; as we will see

below, it is a consequence of other principles that have a better claim to foundational

justification.

6.2.3 The Uniformity Principle

The Uniformity Principle (UP) says that

∀X∃nA(X,n)→ ∃n∀XA(X,n).

Here, X ranges over subsets of N, n ranges over N, and A is an arbitrary relation

between P(N) and N.

Theorem 3. UP entails the invalidity of the tertium non datur.
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Proof. Assume UP and the validity of the tertium non datur. For X ∈ P(N), let

A(X) hold iff 0 ∈ X. Let B be a relation on P(N) × N such that B(X, 1) holds if

A(X) holds and B(X, 2) holds if ¬A(X) holds.

In the remainder of this proof, X ranges over subsets of the natural numbers..

Since we are assuming that the tertium non datur is valid, we know that

∀X(0 ∈ X ∨ 0 /∈ X).

So, we have that

∀X(A(X) ∨ ¬A(X)).

By definition of B, it follows that

∀X(B(X, 1) ∨B(X, 2)),

from which we can infer

∀X∃n.B(X,n)

where n is a natural number.

Now, by the UP, we conclude that

∃n∀X.B(X,n).

By the definition of B, this number n must be either 1 or 2. So, either 0 ∈ X for

all X or 0 /∈ X for all X. The first disjunct is false since {1} is a subset of N but

0 /∈ {1}. The set {0} similarly shows that the second disjunct is false. Thus, we have

a contradiction, and we conclude that the tertium non datur is invalid.

Troelstra and van Dalen (1988: p. 241) report that the UP seems first to have been

introduced by Troelstra (1973), although Kreisel (1971) gestures at it. A motivation
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for accepting it, however, can be traced back much earlier. In Book VI of the Physics,

Aristotle discusses the notion of a continuum in the course of responding to Zeno’s

paradoxes. There, he observes that there is something funny about thinking of a

continuum as a collection of points.

For instance, a line, which is continuous, cannot consist of points, which
are indivisible, first because in the case of points there are no limits to
form a unity (since nothing indivisible has a limit which is distinct from
any other part of it), and second because in their case there are no limits
to be together (since anything which lacks parts lacks limits too, because a
limit is distinct from that of which it is a limit). (Aristotle 1986: 231a21ff.)

This puzzle about treating the continuum as a collection of points appears in Brouwer’s

early work, e.g., in his 1908 dissertation. There, one finds him attempting to reconcile

his ontological constructivism with the unavoidable datum that mathematics deals

with continuous as well as discrete entities. His early solution was to treat the con-

tinuum as a sui generis entity about which little of a foundational nature could be

said, but he soon realized that this was unsatisfactory. This dissatisfaction led him

to introduce choice sequences and begin appealing to the CP in his proofs, but if

our discussion above is correct, then the full-strength CP is hard to justify as a basic

principle.

Brouwer might have considered using the UP rather than the CP. Why would

a total relation on P(N) have to be uniformized in the way described by the UP?

Precisely because an uncountable set like P(N) is uncountable, there is not any clear

way to isolate each of its members from all of the others. In the case of a finite or

countably infinite set S, we can do this by introducing a one-to-one total function from

S to N that serves to pick out each member of S as an individual object that stands

apart from any other; the decidability of equality on N carries over to S and induces

a clear distinction between each element of the latter. In the case of an uncountable

set, there is no such one-to-one total function.
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Nevertheless, when a classical mathematician introduces relations over the whole

of P(N) without something like the UP, she is assuming that the individual elements of

P(N) can stand on their own in the way that blurs the distinction between countable

and uncountable sets. The UP constrains this by placing restrictions on what kinds

of total relations there can be on a set like P(N). As Troelstra and van Dalen put it,

“the sets of natural numbers are a very ‘diffuse’ totality, at least from an extensional

point of view.” (op. cit., p. 234)

For a similar reason, one might treat the continuum as a set to which UP applies.

This would be to deny that there could be a relation that serves to pick out distinct

inhabited proper subsets of the continuum, which amounts to an endorsement of

Brouwer’s result that the continuum is indivisible (unzerlegbar), i.e., that if A and

B are disjoint subsets of R such that A ∪ B = R, then A = R or B = R. Brouwer

deduced this in the course of proving the continuity theorems in his (1927), but one

could take it as axiomatic for the continuum instead.

R comes equipped with an apartness relation # such that p#q iff |p − q| > 0.

In other words, two real numbers are apart from one another if there is a positive

distance between them under the usual metric on R. (Note that ‘p#q’ is stronger

than ‘p 6= q’.) It is a theorem of intuitionistic topology that a total function from a

uniform set (i.e,. a set to which UP applies) to an apartness space is constant. Thus, if

R is a uniform space, it follows that every total function from R to R is constant, and

hence uniformly continuous. This shows that we can obtain the Uniform Continuity

Theorem from a version of UP without having recourse to CP.

6.2.4 Constructive Church’s Thesis

The constructive version of Church’s Thesis (CT) discussed in this section maintains

that every total function on the natural numbers is computable (or, what is equivalent,

recursive). Note that this is not the same as the Church-Turing Thesis, according to
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which every intuitively computable function is Turing computable. The idea that

the Church-Turing Thesis does not admit of purely mathematical analysis because

the of the imprecision of the concept “intuitively computable” is not relevant here.

Whether or not one accepts our version of CT, there should be no controversy about

the precision of the terms or concepts needed to state it.

Theorem 4. CT entails the invalidity of the tertium non datur.

Proof. Assume CT and assume the tertium non datur for reductio. Let H(n) be the

halting predicate, i.e., H(n) holds if and only if the machine with index n halts on

input n. Since we have assumed the tertium non datur, we can say that

∀n(H(n) ∨ ¬H(n)).

The quantifier ranges over the entire set N. Let f be the function such that f(n) = 1 if

H(n) holds and f(n) = 0 otherwise. This is a total function, so by CT it is computable.

Thus, f computes a function that solves the Halting Problem, which is impossible.

From this, we conclude that the tertium non datur is invalid.

A word of warning is in order about CT. Accepting it does not commit one to

the existence of no noncomputable functions. One is free to endorse the definition

of noncomputable functions as perfectly good definitions. CT commits one only to

maintaining that noncomputable functions on the natural numbers are necessarily

partial.

We will offer two observations that can be given in favor of CT. The first concerns

ways by which one might motivate CT from without, so to speak. That is, what

could an advocate of a form of intuitionistic or constructive mathematics based on

CT say to a skeptical interlocutor? Consider first the ordinary Church-Turing Thesis,

according to which every intuitively computable function is computable by a Turing

machine. Even if this is not subject to precise mathematical demonstration, there are
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considerations weighing strongly in its favor, particularly the equivalence of the large

number of models of computation that have been proposed since (Turing 1937).

At the present stage of research, it is not hard to motivate the Church-Turing

Thesis. In order to move from this to CT, the constructive form of Church’s Thesis

that interests us, one must argue that every total function on N is intuitively com-

putable. One might argue for this on the grounds that the computational capacity of

any human being must be capable of finite characterization. (This is not to say that

we should endorse a finitistic version of mathematics, since one could still maintain

that the domain of possible inputs is not finite.) Furthermore, all of the familiar well-

developed notions of finitely characterized computation (Turing machines, recursive

functions, λ-calculus, etc.) are equivalent, and so we have reason to think that human

computation is equivalent to them as well.

An advantage of this argument is that it leaves open the possibility of refining CT

should a new notion of finite computation be developed that allows for more functions

to be computed. Since any such method of computation would still be unable to solve

its own Halting Problem, our proof of Theorem 4 would still apply and we would

still be able to deduce the invalidity of the tertium non datur. Nevertheless, as long

as we have reason to think that Turing computability and its equivalents capture

something absolute and essential about computability in general, and that human

beings are bound by some kind of finite limit on their computational abilities, then

there is some reason to accept CT.

One might object to the starting point of this line of argument because it ties

mathematics too closely to human capacities. Why should we think that mathemat-

ics is to be limited by restrictions placed on feeble humans? Here, the intuitionist has

an advantage over the classical mathematician. The latter must insist that a noncom-

putable natural-number function f has a value for every input without being able

to say anything about what these values are in general. In reply, the intuitionist can
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point to his preferred mathematics as an acceptable alternative that doesn’t require

such extravagance.5

The other reason why an intuitionist should take CT seriously is internal to the

constructive program in mathematics. CT is more frequently associated with Markov

and the Russian school of constructivism rather than intuitionism. This is because

free-choice sequences and intuitionism are frequently presented as going hand-in-hand,

but the former are non-recursive by design. At the present stage of constructive mathe-

matical development, this view defers too excessively to tradition. Brouwer introduced

free-choice sequences because he thought that they were necessary to develop an in-

tuitionistic theory of the continuum that could rival the powerful classical theory.

Bishop (1967) showed that Brouwer was wrong about this. This paves the way for

the intuitionist to adopt a principle like CT that would seem to restrict his math-

ematical ontology. There is no decisive mathematical reason against it, since CT is

consistent with both second-order Heyting arithmetic and with intuitionistic ZF set

theory. The only thing that the intuitionist must give up by adopting CT is the Fan

Theorem, since these two principles are mutually inconsistent. (Beeson 1982: p. 22)

Thus, the intuitionist may not have a way to prove the Uniform Continuity Theo-

rem. One can still obtain a weaker Pointwise Continuity Theorem from CT, however.

(Bridges and Richman 1987: p. 120) It is hardly clear that one gains extra intuitive

clarity or practical benefit by insisting that this continuity must be uniform at all

costs.

5Note that the intuitionist is not committed to being able to produce an input n such that
f(n) is undefined, even though he maintains that f is not a total function. Rather, he denies that
¬∀n∃m.f(n) = m entails ∃n∀m.f(n) 6= m. His logic allows this, since ¬∀x.A(x) does not entail
∃x.¬A(x).
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6.3 Summary and Conclusion

We have seen that the best attempt to provide a semantic foundation for intuitionistic

mathematics is unsuccessful. The antirealistic semantics proposed by Dummett does

not validate all and only the laws of intuitionistic logic; thus, intuitionists, who reason

in accord with these laws when they do mathematics, cannot endorse the Dummettian

semantic theory.

Our other chief challenge to semantic antirealism concerns the success of classi-

cal mathematics. If, as Dummett and his followers claim, classical mathematicians

routinely and systematically make assertions and inferences that are not faithful to

the meanings of the statements they use. If this is so, then the success of classical

mathematics is remarkable, even miraculous. We repeat this point here because there

is a more general lesson to draw from it. It is a mistake to think that fundamental, ap-

parently intractable disagreements in mathematics can be settled on the basis of the

meanings of bits of language. If the parties on one side in the dispute are in violation

of the very meanings of the words and statements they use, then we should expect

this to show up on the inside of the practice—the entire edifice ought to collapse into

incoherence. That this has not happened in the case of either intuitionistic or classical

mathematics provides good evidence that there is nothing wrong with the linguistic

meanings presupposed by the practitioners of either approach.

There is a lesson here for intuitionists. Intuitionistic mathematics, and construc-

tive mathematics more generally, really does have the revolutionary character that

Weyl attributed to it; it is a mistake to play down this element by insisting on a

special constructive meaning for mathematical statements. A statement of the ter-

tium non datur, the Uniformity Continuity Theorem, Constructive Church’s Thesis,

or any other mathematical principle or result has the same meaning in the mouth of

a classical mathematician or a constructivist. The fact that the two disagree about

the truth values of these statements shows merely that both sides have work to do
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to convince the other. Classical mathematicians have popular opinion on their side,

but that is no reason for the constructivist to slide into a mathematical, logical, or

semantic pluralism that masks the existence of a genuine disagreement; if anything,

constructivists should be emboldened by the prospect of struggling to effect such a

radical change in a field as important as mathematics.

A more general lesson to draw from our discussion of candidate intuitionistic prin-

ciples is that intuitionism does not need to have a sweeping philosophical foundation.

Many intuitionists seem to think that their mathematics can be justified only by

an appeal to a larger philosophical position, be it Dummettian semantic antirealism,

Brouwer’s neo-Kantian idealism, or some other grand, systematic view. What we have

shown here is that the intuitionist can argue for his position by focusing on individ-

ual mathematical principles. This has practical benefit: it allows intuitionists to cease

trying to justify their mathematics on the basis of the latest philosophy and instead

to focus on showing what consequences their principles have for mathematics itself

and how each principle might be justified individually. In other words, intuitionists

are no longer beholden to philosophy to make their position legitimate; they can do

this from their proper place as mathematicians who prove theorems and justify their

fundamental principles in the ways canvassed above. Perhaps some philosophy creeps

in at this foundational level, but on our proposal, mathematics takes its rightful place

as queen with philosophy as its ancillary.
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4. P150: Elementary Logic, Fall 2008 
5. P201: Ancient Greek Philosophy, Fall 2009 
6. P250: Introductory Symbolic Logic, Fall 2006 

 
Primary Instructor: Solely responsible for all aspects of the course; developed course-packet for each 
class, constructed syllabus, delivered lectures, designed and graded assignments, papers and exams. 

Indiana University, Bloomington 
1. P100: Introduction to Philosophy, Summer 2010 
2. P150: Elementary Logic, Fall 2010 
3. P135: Introduction to Existentialism, Fall 2012 
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