12,863 research outputs found

    Convolutional Recurrent Neural Networks for Polyphonic Sound Event Detection

    Get PDF
    Sound events often occur in unstructured environments where they exhibit wide variations in their frequency content and temporal structure. Convolutional neural networks (CNN) are able to extract higher level features that are invariant to local spectral and temporal variations. Recurrent neural networks (RNNs) are powerful in learning the longer term temporal context in the audio signals. CNNs and RNNs as classifiers have recently shown improved performances over established methods in various sound recognition tasks. We combine these two approaches in a Convolutional Recurrent Neural Network (CRNN) and apply it on a polyphonic sound event detection task. We compare the performance of the proposed CRNN method with CNN, RNN, and other established methods, and observe a considerable improvement for four different datasets consisting of everyday sound events.Comment: Accepted for IEEE Transactions on Audio, Speech and Language Processing, Special Issue on Sound Scene and Event Analysi

    Recognition of Harmonic Sounds in Polyphonic Audio using a Missing Feature Approach: Extended Report

    Get PDF
    A method based on local spectral features and missing feature techniques is proposed for the recognition of harmonic sounds in mixture signals. A mask estimation algorithm is proposed for identifying spectral regions that contain reliable information for each sound source and then bounded marginalization is employed to treat the feature vector elements that are determined as unreliable. The proposed method is tested on musical instrument sounds due to the extensive availability of data but it can be applied on other sounds (i.e. animal sounds, environmental sounds), whenever these are harmonic. In simulations the proposed method clearly outperformed a baseline method for mixture signals

    Automatic Environmental Sound Recognition: Performance versus Computational Cost

    Get PDF
    In the context of the Internet of Things (IoT), sound sensing applications are required to run on embedded platforms where notions of product pricing and form factor impose hard constraints on the available computing power. Whereas Automatic Environmental Sound Recognition (AESR) algorithms are most often developed with limited consideration for computational cost, this article seeks which AESR algorithm can make the most of a limited amount of computing power by comparing the sound classification performance em as a function of its computational cost. Results suggest that Deep Neural Networks yield the best ratio of sound classification accuracy across a range of computational costs, while Gaussian Mixture Models offer a reasonable accuracy at a consistently small cost, and Support Vector Machines stand between both in terms of compromise between accuracy and computational cost

    Inferring Room Semantics Using Acoustic Monitoring

    Full text link
    Having knowledge of the environmental context of the user i.e. the knowledge of the users' indoor location and the semantics of their environment, can facilitate the development of many of location-aware applications. In this paper, we propose an acoustic monitoring technique that infers semantic knowledge about an indoor space \emph{over time,} using audio recordings from it. Our technique uses the impulse response of these spaces as well as the ambient sounds produced in them in order to determine a semantic label for them. As we process more recordings, we update our \emph{confidence} in the assigned label. We evaluate our technique on a dataset of single-speaker human speech recordings obtained in different types of rooms at three university buildings. In our evaluation, the confidence\emph{ }for the true label generally outstripped the confidence for all other labels and in some cases converged to 100\% with less than 30 samples.Comment: 2017 IEEE International Workshop on Machine Learning for Signal Processing, Sept.\ 25--28, 2017, Tokyo, Japa
    corecore