283 research outputs found

    Misinformation Detection in Social Media

    Get PDF
    abstract: The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity. The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Tensor Networks for Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications and Future Perspectives

    Full text link
    Part 2 of this monograph builds on the introduction to tensor networks and their operations presented in Part 1. It focuses on tensor network models for super-compressed higher-order representation of data/parameters and related cost functions, while providing an outline of their applications in machine learning and data analytics. A particular emphasis is on the tensor train (TT) and Hierarchical Tucker (HT) decompositions, and their physically meaningful interpretations which reflect the scalability of the tensor network approach. Through a graphical approach, we also elucidate how, by virtue of the underlying low-rank tensor approximations and sophisticated contractions of core tensors, tensor networks have the ability to perform distributed computations on otherwise prohibitively large volumes of data/parameters, thereby alleviating or even eliminating the curse of dimensionality. The usefulness of this concept is illustrated over a number of applied areas, including generalized regression and classification (support tensor machines, canonical correlation analysis, higher order partial least squares), generalized eigenvalue decomposition, Riemannian optimization, and in the optimization of deep neural networks. Part 1 and Part 2 of this work can be used either as stand-alone separate texts, or indeed as a conjoint comprehensive review of the exciting field of low-rank tensor networks and tensor decompositions.Comment: 232 page

    Multiple Tasks are Better than One: Multi-task Learning and Feature Selection for Head Pose Estimation, Action Recognition and Event Detection

    Get PDF
    Computer vision is a field that includes methods for acquiring, processing, analyzing, and understanding images and videos and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information. The classical problem in computer vision is that of determining whether or not the image or video data contains some specific object, feature, or activity. This task can normally be solved robustly and without effort by a human, but is still not satisfactorily solved in computer vision for the general case - arbitrary objects in arbitrary situations. The existing methods for dealing with this problem can at best solve it only for specific objects, such as simple geometric objects (e.g., polyhedra), human faces, printed or hand-written characters, or vehicles, and in specific situations, typically described in terms of well-defined illumination, background, and pose of the object relative to the camera. Machine Learning (ML) and Computer Vision (CV) have been put together during the development of computer vision in the past decade. Nowadays, machine learning is considered as a powerful tool to solve many computer vision problems. Multi-task learning, as one important branch of machine learning, has developed very fast during the past decade. Multi-task learning methods aim to simultaneously learn classification or regression models for a set of related tasks. This typically leads to better models as compared to a learner that does not account for task relationships. The goal of multi-task learning is to improve the performance of learning algorithms by learning classifiers for multiple tasks jointly. This works particularly well if these tasks have some commonality and are generally slightly under-sampled

    Attention Mechanism for Recognition in Computer Vision

    Get PDF
    It has been proven that humans do not focus their attention on an entire scene at once when they perform a recognition task. Instead, they pay attention to the most important parts of the scene to extract the most discriminative information. Inspired by this observation, in this dissertation, the importance of attention mechanism in recognition tasks in computer vision is studied by designing novel attention-based models. In specific, four scenarios are investigated that represent the most important aspects of attention mechanism.First, an attention-based model is designed to reduce the visual features\u27 dimensionality by selectively processing only a small subset of the data. We study this aspect of the attention mechanism in a framework based on object recognition in distributed camera networks. Second, an attention-based image retrieval system (i.e., person re-identification) is proposed which learns to focus on the most discriminative regions of the person\u27s image and process those regions with higher computation power using a deep convolutional neural network. Furthermore, we show how visualizing the attention maps can make deep neural networks more interpretable. In other words, by visualizing the attention maps we can observe the regions of the input image where the neural network relies on, in order to make a decision. Third, a model for estimating the importance of the objects in a scene based on a given task is proposed. More specifically, the proposed model estimates the importance of the road users that a driver (or an autonomous vehicle) should pay attention to in a driving scenario in order to have safe navigation. In this scenario, the attention estimation is the final output of the model. Fourth, an attention-based module and a new loss function in a meta-learning based few-shot learning system is proposed in order to incorporate the context of the task into the feature representations of the samples and increasing the few-shot recognition accuracy.In this dissertation, we showed that attention can be multi-facet and studied the attention mechanism from the perspectives of feature selection, reducing the computational cost, interpretable deep learning models, task-driven importance estimation, and context incorporation. Through the study of four scenarios, we further advanced the field of where \u27\u27attention is all you need\u27\u27
    corecore