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Abstract

It has been proven that humans do not focus their attention on an entire scene at once when

they perform a recognition task. Instead, they pay attention to the most important parts

of the scene to extract the most discriminative information. Inspired by this observation, in

this dissertation, the importance of attention mechanism in recognition tasks in computer

vision is studied by designing novel attention-based models. In specific, four scenarios are

investigated that represent the most important aspects of attention mechanism.

First, an attention-based model is designed to reduce the visual features’ dimensionality

by selectively processing only a small subset of the data. We study this aspect of the attention

mechanism in a framework based on object recognition in distributed camera networks.

Second, an attention-based image retrieval system (i.e., person re-identification) is proposed

which learns to focus on the most discriminative regions of the person’s image and process

those regions with higher computation power using a deep convolutional neural network.

Furthermore, we show how visualizing the attention maps can make deep neural networks

more interpretable. Third, a model for estimating the importance of the objects in a scene

based on a given task is proposed. More specifically, the proposed model estimates the

importance of the road users that a driver (or an autonomous vehicle) should pay attention

to in a driving scenario in order to have safe navigation. In this scenario, the attention

estimation is the final output of the model. Fourth, an attention-based module and a new

loss function in a meta-learning based few-shot learning system is proposed in order to

incorporate the context of the task into the feature representations of the samples and

increasing the few-shot recognition accuracy.

In this dissertation, we showed that attention can be multi-facet and studied the

attention mechanism from the perspectives of feature selection, reducing the computational
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cost, interpretable deep learning models, task-driven importance estimation, and context

incorporation. Through the study of four scenarios, we further advanced the field of where

“attention is all you need”.
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Chapter 1

Introduction

1.1 Motivation

In this research we study the importance of attention mechanism in recognition tasks in

computer vision by designing novel attention-based models. We investigate four different

aspects of attention mechanism. The first two aspects are defined in the context of

recognition in distributed camera networks since there is an increasing interest in distributed

surveillance camera networks due to the growing availability of cheap sensors and processors,

and also a growing need for safety and security from the public.

Recognition in distributed camera networks has a wide variety of applications both

in public and private environments, such as security, crime prevention, traffic control,

accident prediction and detection, and monitoring patients, elderly and children at home.

These applications require monitoring indoor and outdoor scenes of airports, train stations,

highways, parking lots, stores, shopping malls and offices. Nowadays there are tens of

thousands of cameras in a city collecting a huge amount of data on a daily basis. Researchers

are urged to develop intelligent systems to efficiently extract information from large scale

data.

In chapter 3, we address the problem of transmitting high dimensional visual features

in the bandwidth-limited distributed smart camera networks (Figure 1.1). As the concerns

about public safety increase in recent years (due to some incidents such as Boston bombing,

etc.), researchers have focused more on developing surveillance systems based on distributed
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wireless smart cameras. These cameras can cooperate, forming a wireless visual sensing

network whose nodes besides visual sensing, also have processing, storage and communication

capabilities. Because the smart camera networks have become increasingly more affordable

and perform better in balancing the computational power and energy efficiency, they have

been employed in many surveillance tasks including distributed object recognition (Redondi

et al., 2015), (Christoudias et al., 2008), (Ferrari et al., 2004) and person re-identification

(Lisanti et al., 2015), (Ahmed et al., 2015) to name just a few.

However, a major challenge in visual sensor networks is limitation in terms of transmission

bandwidth, storage and processing power. In the traditional system design for visual

sensor networks, images are acquired and compressed locally at the camera nodes, and

then transmitted to the base station which performs the specific analysis tasks (e.g., video

surveillance, object recognition, etc.). However, recently, a new paradigm has emerged

based on analyze-then-compress, where the visual content is processed locally at the camera

nodes, to extract a concise representation constituted by local visual features (e.g., SIFT,

SURF, HOG). Such features are then compressed and transmitted to the base station for

further analysis. Since the feature-based representation is usually more compact than the

pixel-based representation, the analyze-then-compress approach is particularly attractive for

those scenarios for which the bandwidth is scarce (Redondi et al., 2015).

Figure 1.1: Object recognition in distributed camera networks. The visual features are
sent to the base station and the recognition task is performed.

2



In this work, we introduce a novel attention-based mechanism to select the most

informative visual features in the training set in order to construct a compact representation

of the data and then using this compact representation to generate low-dimensional visual

features codes. We reduce the features’ dimensionality and thus save the network bandwidth

in distributed camera networks via the proposed algorithm based on notion of Non-negative

Matrix Factorization (NMF) and sparsity.

Furthermore, in chapter 4, we propose a novel framework in order to investigate the

effect of attention on the problem of person re-identification (i.e., image retrieval and

matching) in distributed camera networks. Recently, person re-identification has gained

increasing research interest in the computer vision community due to its importance in

multi-camera surveillance systems. In person re-identification, the goal is matching people

across non-overlapping camera views at different times. Figure 1.2 shows a typical person re-

identification system. The figure shows the top view of a building floor plan and the relative

placement of the cameras with respect to the building. Colored dots depict different people

Figure 1.2: Distributed camera surveillance network illustration of person re-identification.
The goal is matching people across non-overlapping camera views at different times
(Bedagkar-Gala and Shah, 2014).
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and numbers besides the dots are the IDs assigned to the people. The dotted lines with

arrows represent the directions in which certain people move through the camera network.

A typical re-identification system takes as input two images of person’s full body, and outputs

either a similarity score between the two images or the decision of whether the two images

belong to the same identity or not.

Despite all the research efforts, person re-identification remains a challenging problem

since a person’s appearance can vary significantly when large variations in view angle,

human pose, illumination, background clutter and occlusion are involved. In fact, different

individuals can share similar appearances and also appearance of the same person can be

drastically different in different camera views. Figure 1.3 shows some examples of these

challenges.

To address these difficulties, several approaches have been proposed in recent years (e.g.,

(Cheng et al., 2016a; Varior et al., 2016c; Ahmed et al., 2015; Zhang et al., 2016)) which are

mostly based on extracting features from the whole image of the person without focusing

on the importance of different parts of the person’s image and ignoring the fact that task-

relevant information, is often not uniformly distributed across input data.

Human visual attention is well-studied and it is known that human vision is able to focus

on a certain region of an image with “high resolution” while perceiving the surrounding

image in “low resolution”. Inspired by that, we study the impact of attention mechanism in

Figure 1.3: Person re-identification challenges.
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solving person re-identification problem. The attention mechanism can significantly reduce

the complexity of the person re-identification task, where the network learns to focus on the

most informative regions of the scene and ignores the irrelevant parts such as background

clutter. Exploiting the attention mechanism in person re-identification task is also beneficial

at scaling up the system to large high quality input images. Furthermore, we show how

visualizing the attention maps can make the deep neural networks more interpretable. In

other words, by visualizing the attention maps we can observe the regions of the input image

where the neural network relies on, in order to make a decision. Despite its advantages,

exploiting the attention mechanism for person re-identification task have been rarely explored

in the literature.

Sometimes the attention estimation is the final output of a recognition model. To study

this scenario, in chapter 5, we propose a model for estimating the importance of the objects in

a scene based on a given task. More specifically, the proposed model estimates the importance

of the road users that a driver (or an autonomous vehicle) should pay attention to in a driving

scenario in order to have a safe navigation. Road-users are a critical part of decision-making

for both self-driving cars and driver assistance systems. Some road-users, however, are more

important for decision making than others because of their respective intentions, ego-vehicles

intention and their effects on each other. In this research, we propose a novel approach for

road-user importance estimation via fusion of local and global context representations. For

local context, we use a hard attention mechanism to consider the appearance of road users

(which captures orientation, intention, etc.) and their location relative to ego-vehicle. For

global context, we consider the feature map of the last convolutional layer of a model which

has been trained to predict the future path of the ego car. Systematic evaluations of our

proposed method against several baselines show promising results.

Furthermore, in chapter 6, we propose an attention-based module in a meta-learning

based few-shot learning system in order to incorporate the context of the task into the

feature representations of the samples in order to increase the few-shot recognition accuracy.

Although deep learning-based approaches have been very effective in solving problems with

plenty of labeled data, they suffer in tackling problems for which labeled data are scarce.

In few-shot classification, the objective is to train a classifier from only a handful of labeled

5



examples. In this research, we propose an attention-based context-aware query embedding

encoder for incorporating support set context into query embedding and generating more

discriminative and task-dependent query embeddings. The task-dependent features help the

meta learner to learn a distribution over tasks more effectively. Moreover, we propose a

few-shot learning framework based on structured margin loss which takes into account the

global structure of the support set in order to generate a highly discriminative feature space

where the features from distinct classes are well separated in clusters. Extensive experiments

based on few-shot, zero-shot and semi-supervised learning on three benchmarks show the

advantages of the proposed model compared to state-of-the-art.

1.2 Contributions

In this dissertation novel models are proposed for recognition in computer vision to address

the aforementioned aspects of the attention mechanism.

In summary our contributions in this research include:

• Proposing a probabilistic algorithm based on the divergence between the probability

distributions of the visual features in order to select the most informative visual features

and building a compact and physically meaningful model of the training set in the

distributed object recognition framework. We also introduce an NMF-based scheme

for calculating the low-dimensional codes for visual feature of each image, before its

transmission to the base station and without any communications between the cameras.

• Proposing a CNN-based task-driven attention model which is specifically tailored for

the person re-identification task in a triplet architecture. The proposed gradient-based

attention model for person re-id is easy to train and the whole network can be trained

with back propagation. Moreover, The re-identification network is computationally

efficient since it first finds the most discriminative regions in the input image and then

performs the deep CNN feature extraction only on these selected regions.

• Designing a new image-based framework for estimating the importance of the road

users that a driver (or an autonomous vehicle) should pay attention to in a driving
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scenario in order to have a safe navigation. Moreover, we propose a novel context

aware architecture and a new way of representing the global context of the scene based

on predicting the intention (future path) of the ego-vehicle.

• Designing a novel few-shot learning framework based on meta learning and proposing

an attention based context-aware query embedding module which takes into account

the support sets context and generates task-dependent feature representations which

would help the meta-learner to learn a distribution over tasks more effectively.

• Regularizing the few-shot classification setting with a structured-based margin loss

which takes into account the global structure of the support set feature space and

learns to explicitly reduce the intra-class variation. This constraint combined with the

attention-based encoder, maps the data to a highly discriminative feature space where

the few-shot classification is most effective.

• Finally, we quantitatively and qualitatively validate the performance of our proposed

models by extensive experiments and comparing them to the state-of-the-art.

1.3 Dissertation Organization

This dissertation is organized as follows: Chapter 2 reviews the works and some basic but

essential methods such as Convolutional Neural Networks. Chapter 3 elaborates on attention-

based feature encoding in distributed object recognition. Chapter 4 introduces the proposed

method for attention-based person re-identification. Chapter 5 describes the novel approach

for finding the road-users to which the driver or self-driving car should pay attention. In

Chapter 6 a novel attention-based feature encoding for few-shot learning is introduces and

chapter 7, concludes the dissertation.
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Chapter 2

Literature Review

2.1 Attention Mechanism

Attention Mechanisms in Neural Networks are based on the visual attention mechanism

found in humans. Human visual attention is well-studied and while there exist different

models, all of them essentially come down to being able to focus on a certain region of an

image with “high resolution” while perceiving the surrounding image in “low resolution”,

and then adjusting the focal point over time. Most traditional computer vision algorithms

do not employ attention mechanisms and are indifferent to various parts of the image. With

the recent surge of interest in deep neural networks, attention based models have been shown

to achieve promising results on several challenging tasks, including caption generation (Xu

et al., 2015) and machine translation (Bahdanau et al., 2014) as well as object recognition

(Ba et al., 2014). However, most of the attention models proposed so far, require defining an

explicit predictive model, whose training can pose challenges due to the non-differentiable

cost. Furthermore, some of these models are computationally expensive or need some specific

policy algorithms such as reinforcement learning (Ba et al., 2014; Williams, 1992) for training.

Many of these models have employed LSTM based RNNs and have shown good results in

learning sequences, but can be computationally expensive. Attention models can be classified

into soft attention and hard attention models. Soft attention gives different weights (e.g.,

using a softmax) to the whole input data based on their importance but hard attention

samples an important part of the data. Soft attention models are deterministic and can
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be trained using backpropagation, whereas hard attention models are mostly stochastic and

can be trained by the reinforcement learning algorithm (Williams, 1992), or by maximizing

a variational lower bound or using importance sampling (Ba et al., 2014). Learning hard

attention models can become computationally expensive as it requires sampling (however it

depends on the type of hard attention). In soft attention approaches, on the other hand, a

differentiable mapping can be used from all the locations output to the next input.

We can look at the attention models from saliency aspect. In this way we can categorize

the attention to the bottom-up and top-down attention based on how humans focus attention

to items present in the environment. The first aspect is called bottom-up processing, also

known as stimulus-driven attention or exogenous attention. These describe attentional

processing which is driven by the properties of the objects themselves. Some processes,

such as motion or a sudden loud noise, can attract our attention in a pre-conscious, or

non-volitional way. We attend to them whether we want to or not.

The second aspect is called top-down processing, also known as goal-driven, endogenous

attention, attentional control or executive attention. This aspect of our attentional orienting

is under the control of the person who is attending. It is mediated primarily by the frontal

cortex and basal ganglia (Theeuwes, 1991) as one of the executive functions. Research has

shown that it is related to other aspects of the executive functions, such as working memory,

and conflict resolution and inhibition (Theeuwes, 1991).

Recently there has been an increasing interest in attention mechanism in different areas.

For instance, researchers at Google (Vaswani et al., 2017) proposed the idea of “attention is

all you need” (called transformer) as a replacement of RNNs and based on relying entirely

on an attention mechanism to draw global dependencies between input and output. The

Transformer allows for significantly more parallelization and can reach a new state of the art

in translation quality after being trained for a short time.

Moreover, (Bahdanau et al., 2014) is one of the most important works in using the

attention mechanism where they use the attention model for neural machine translation.

The models proposed recently for neural machine translation often belong to a family of

encoderdecoders and encode a source sentence into a fixed-length vector from which a decoder
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generates a translation. In (Bahdanau et al., 2014) they conjecture that the use of a fixed-

length vector is a bottleneck in improving the performance of this basic encoderdecoder

architecture, and propose to extend this by allowing a model to automatically (soft attention)

search for parts of a source sentence that are relevant to predicting a target word, without

having to form these parts as a hard segment explicitly. Figure 2.1 shows the model and an

example of word alignment performed in (Bahdanau et al., 2014).

Self-attention, also known as intra-attention, is an attention mechanism relating different

positions of a single sequence in order to compute a representation of the same sequence.

It has been shown to be very useful in machine reading and image description generation.

For example, Cheng et al. (2016b) used self-attention to do machine reading. In machine

reading the self-attention mechanism enables us to learn the correlation between the current

words and the previous part of the sentence.

(Karpathy et al., 2014) used a multi-resolution CNN architecture to perform action

recognition in videos. They mention the concept of fovea but they fix attention to the

center of the frame. A recent work of (Xu et al., 2015) used both soft attention and hard

(a) Attention based Model (b) Word alignment in translation

Figure 2.1: (a)-The graphical illustration of the model trying to generate the target word
y given a source sentence X. (b)-Sample alignments found by RNNsearch-50. The x-axis
and y-axis of each plot correspond to the words in the source sentence (English) and the
generated translation (French), respectively. Each pixel shows the weight of the annotation
of the j-th source word for the i-th target word, in grayscale (0: black, 1: white) (Bahdanau
et al., 2014).
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attention mechanisms to generate image descriptions. Their model actually looks at the

respective objects when generating their description. Figure 2.2, 2.3 and 2.4 illustrate the

model and examples of the image caption generation framework in (Xu et al., 2015).

More recently, (Jaderberg et al., 2015) have proposed a soft attention mechanism called

the Spatial Transformer module which they add between the layers of CNNs. Instead of

weighting locations using a softmax layer, they apply affine transformations to multiple layers

of their CNN to attend to the relevant part and get state-of-the-art results on the Street View

House Numbers dataset. (Xu et al., 2015) explored caption generation for image datasets

using both soft and hard attention based models and reported state-of-the-art results and

most of the video description approaches are based on this work. (Yao et al., 2015) use both

2-D and 3-D CNNs for feature extraction and have a temporal attention mechanism in an

LSTM-RNN decoder for generating descriptions of videos. (Yu et al., 2016) use hierarchical

RNNs with Gated Recurrent Units (GRUs) and a spatio-temporal attention model (similar

to the spatial attention mechanism used by (Xu et al., 2015) to get state-of-the-art results

on video description tasks. The hidden state of their GRU-RNN decoder is not conditioned

on the weighted video features which gave them higher performance.

In general, it is rather difficult to interpret internal representations learned by deep

neural networks. Attention models add a dimension of interpretability by capturing where

the model is focusing its attention when performing a particular task. In chapter 4 we

propose a method based on using an CNN-based attention model for person re-identification

in distributed camera networks which helps the interpretability of the model and also focus

on the most discriminative part of the person’s image which leads to better recognition

accuracy.

11



Figure 2.2: Model learns a words/image alignment for image caption generation in (Xu
et al., 2015)

Figure 2.3: Examples of attending to the correct object (white indicates the attended
regions, underlines indicated the corresponding word) (Xu et al., 2015).

Figure 2.4: Examples of attending to the correct object using the model (Xu et al., 2015).
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Figure 2.5: Distributed object recognition in wireless camera networks.

2.2 Object Recognition in Distributed Camera Net-

works

Distributed object recognition in wireless smart camera networks has become focus of

interest and numerous of research works have been dedicated to this field especially due

to its increasing popularity in surveillance applications (Ye et al., 2013; Rahimpour et al.,

2016, 2017c; Taalimi et al., 2017, 2016a). Generally speaking, distributed smart cameras

are real-time embedded systems that are able to perform complex computer vision tasks

across multiple cameras (Rinner and Wolf, 2008). Figure 2.5 illustrates a distributed object

recognition system based on visual features. Traditionally, most computer vision systems

have been implemented on workstations, since computer vision applications normally require

high-end computational power as well as memory.

Networks of distributed smart cameras can solve computer vision problems in multi-

camera applications by providing valuable information through distributed sensing and

multi-view processing. Thus, image processing migrates from central workstations to

the distributed embedded sensors. The major challenge however, is the limited network

bandwidth, making transfer of large amount of visual features infeasible. Therefore, research

on distributed object recognition based on visual feature descriptors (e.g, SIFT (Lowe, 1999),

SURF (Bay et al., 2006), CHoG (Chandrasekhar et al., 2009)) has been mainly focused on

distributed data compression which ensures efficient feature encoding (Christoudias et al.,
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2008), (Saxena and Rose, 2010). For instance, (Yang et al., 2010) presented a distributed

compression algorithm that encodes the high-dimensional SIFT histograms by Gaussian

random projection.

In single view object recognition tasks, when multiple images share common visual

features, feature selection algorithms such as (Han and Kim, 2015), (He et al., 2012), (Zhu

et al., 2015), and (Qian and Zhai, 2013) are exploited to reduce the redundancy in feature

space. However, in distributed object recognition, traditional feature selection approaches

are inapplicable as they are computationally expensive and also, the class label is unknown

at each camera. Some existing solutions to prune out uninformative features in distributed

object recognition, rely on enforcing pairwise epipolar geometry via an expensive structure-

from-motion (SfM ) procedure (Turcot and Lowe, 2009). In (Naikal et al., 2011a) authors

applied Sparse PCA on the feature histograms of each object category in order to select

informative features for applications that involve low-quality images from mobile cameras or

surveillance camera networks. Moreover, some works such as (Dong et al., 2015; Li et al.,

2015) focused on feature engineering and learning (e.g., introducing some new descriptors

such as Multi-View HOG). Furthermore, (Yeo et al., 2008) argued that reliable feature

correspondence can be established in a much lower dimensional space between cameras, even

if the feature vectors are linearly projected onto a random subspace. (Christoudias et al.,

2008) studied a SIFT-feature selection algorithm, where the number of SIFT features that

need to be transmitted to the base station is reduced by considering the joint distribution

of the features among multiple camera views of a common object.

Such solutions are known to break down easily when the camera transformation is

large or when the features are extracted from low-quality images. Moreover, most of the

existing approaches (e.g., (Turcot and Lowe, 2009), (Christoudias et al., 2008)) require the

communication between the smart cameras for selecting the best visual features. In chapter 3

we propose an attention-based feature encoding scheme to address these challenges. Inspired

by major success of matrix factorization based models in several fields (Kaviani Baghbaderani

and Qi, 2019; Kaviani Baghbaderani et al., 2019; Rahimpour et al., 2015, 2017b; Asadinejad

et al., 2018), we define a constrained matrix factorization framework to calculate the low-

dimensional feature codes. Nonnegative Matrix Factorization (NMF) (Lee and Seung,
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1999) imposes the non-negativity constraint on the factorizing matrices. When all involved

matrices are constrained to be nonnegative, NMF allows only additive but not subtractive

combinations during the factorization. Such nature can result in parts-based representation

of the data, which can discover the hidden components that have specific structures and

physical meanings (Lee and Seung, 1999). We will elaborate on this in chapter 3.

2.3 Person Re-identification in Distributed Camera

Networks

In general, existing approaches for person re-identification are mainly focused on two aspects:

learning a distance metric (Li et al., 2013; Liao et al., 2015; Pedagadi et al., 2013; Su et al.,

2015; Xiong et al., 2014) and developing a new feature representation (Varior et al., 2016c;

Zhao et al., 2013b; Liao et al., 2010; Ojala et al., 2002; Zhao et al., 2013a; Zheng et al., 2015).

However, some interesting recent works based on using Deep Neural Networks tackled the

problem of metric learning and new feature representation in a unified framework (Zhang

et al., 2016; Cheng et al., 2016a; Ahmed et al., 2015; Wang et al., 2016; Rahimpour et al.,

2017a). In the following section we review some of the most important works based on these

aspects. In this review we focus on different Re-identification frameworks currently available

or likely to be visible in the future, instead of very detailed techniques or architectures.

Metric Learning

In distance metric learning methods, the goal is to learn a metric that emphasizes inter-

personal distance and de-emphasizes intra-person distance. The learnt metric is used to

make the final decision as to whether a person has been correctly re-identified or not. A

comprehensive survey of the metric learning methods can be found in (Yang and Jin, 2006).

These metric learning methods are categorized w.r.t supervised learning versus unsupervised

learning, global learning versus local learning, etc. In person re-ID, the majority of works

fall into the scope of supervised global distance metric learning. The general idea of global

metric learning is to keep all the vectors of the same class closer while pushing vectors of

different classes further apart. The most commonly used formulation is based on the class of
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Mahalanobis distance functions, which generalizes Euclidean distance using linear scalings

and rotations of the feature space. In hand-crafted re-ID systems, a good distance metric is

critical for its success, because the high-dimensional visual features typically do not capture

the invariant factors under sample variances.

Several metric learning algorithms such as Keep It Simple and Straightforward Metric

Learning (KISSME) (Köstinger et al., 2012), Locally Adaptive Decision Functions (LADF)

(Li et al., 2013), Cross-view Quadratic Discriminant Analysis (XQDA) (Liao et al., 2015),

Metric Learning with Accelerated Proximal Gradient (MLAPG) (Su et al., 2015), Local

Fisher Discriminant Analysis (LFDA) (Pedagadi et al., 2013) and its kernel variant (k-

LFDA) (Xiong et al., 2014) were proposed for person re-identification, achieving remarkable

performance in several benchmark datasets.

Features and Representations

In the second group of methods based on developing new feature representation for person

re-identification, novel feature representations were proposed to address the challenges such

as variations in illumination, pose and view-point (Varior et al., 2016c). The Scale Invariant

Local Ternary Patterns (SILTP) (Liao et al., 2010), Local Binary Patterns (LBP) (Ojala

et al., 2002), Color Histograms (Zhao et al., 2013a) or Color Names (Zheng et al., 2015)

(and the combination of them), are the basis of the majority of these feature representations

developed for person re-identification. Compared to the earlier works, handcrafted features

have remained more or less the same in recent years. In (Zhao et al., 2014), the LAB color

histogram and the SIFT descriptor are extracted from each patch densely sampled with a

step size of 5 pixels; this feature is also used in (Shen et al., 2015).

(Das et al., 2014) apply HSV histograms on the head, torso and legs from the silhouette.

(Li et al., 2013) also extract local color descriptors from patches but aggregate them using

hierarchical Gaussianization to capture spatial information. (Pedagadi et al., 2013) extract

color histograms and moments from HSV and YUV spaces before dimension reduction using

PCA. (Liu et al., 2014) extract the HSV histogram, gradient histogram and the LBP

histogram for each local patch. To improve the robustness of the RGB values against

photometric variance, (Yang et al., 2014) introduce the salient color names based color

descriptor (SCNCD) for global pedestrian color descriptions. The influence of the background
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and different color spaces are also analyzed. In (Liao et al., 2015), Liao et al. propose the local

maximal occurrence (LOMO) descriptor, which includes the color and SILTP histograms.

Bins in the same horizontal stripe undergo max pooling and a three-scale pyramid model is

built before a log transformation.

Apart from directly using low-level color and texture features, another good choice is

the attribute-based features which can be viewed as mid-level representations. It is believed

that attributes are more robust to image translations compared to low-level descriptors. In

(Layne et al., 2012), Layne et al. annotate 15 binary attributes on the VIPeR dataset related

to attire and soft biometrics. The low-level color and texture features are used to train the

attribute classifiers.

Deep Learning for Re-Identification

In recent years, deep neural networks have been massively used in different recognition,

encoding and image synthesis tasks (e.g., (Li et al., 2018; Liu et al., 2017)). Several

approaches based on Convolutional Neural Network (CNN) architecture for person re-

identification have been proposed and achieved great results (Zhang et al., 2016; Yi et al.,

2014; Cheng et al., 2016a; Li et al., 2014; Ahmed et al., 2015; Wang et al., 2016; Xiao

et al., 2016; Varior et al., 2016a). In most of the CNN-based approaches for re-identification,

the goal is to jointly learn the best feature representation and a distance metric, mostly in

a Siamese fashion (Bromley et al., 1993). Siamese networks consist of two identical sub-

networks joined at the output which are used for comparing two input images. For learning

the network parameters, inputs are therefore given in the form of pairs and the network is

optimized by a contrastive loss function (Bromley et al., 1993). The fundamental idea of the

contrastive loss function is to attract similar inputs towards each other and repel dissimilar

inputs. The first Siamese CNN architecture for person re-identification was proposed in (Yi

et al., 2014). By using a Siamese deep neural network, the proposed method in (Yi et al.,

2014) can jointly learn the color feature, texture feature and the metric distance. In (Ahmed

et al., 2015), Ahmed et al. proposed an improved deep learning architecture which takes

pair-wise images as its inputs, and outputs a similarity value indicating whether the two

input images depict the same person or not. Their model includes a layer that computes

cross-input neighborhood differences to capture local relationships between the two input
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images based on their mid-level features, and a patch summary layer to obtain high-level

features.

In (Xiao et al., 2016), domain guided dropout was introduced for selecting the appropriate

neurons for the images belonging to a given domain. The authors in (Wang et al., 2016)

proposed how to model the cross view relationships by jointly learning sub-networks to

extract the single image as well as the cross image representations. Local body-part based

features and the global features were modeled using a Multi-Channel CNN framework in

(Cheng et al., 2016a). Deep Filter Pairing Neural Network (FPNN) was introduced in (Li

et al., 2014) to jointly handle misalignment, photometric and geometric transformations,

occlusion and cluttered background. Varior, et al. in (Varior et al., 2016a) proposed a

matching gate that aimed at comparing features at multiple levels of CNN to boost the local

similarities and enhance the discriminative capability of the propagated local features.

Recent advances in Recurrent Neural Networks (RNNs) and Long Short-Term Memory

(LSTM) models (Donahue et al., 2015; Yue-Hei Ng et al., 2015; Sutskever et al., 2014),

provide some insights as to how to integrate the contextual information in the model. In

(Pei et al., 2016) and (Deng et al., 2009) it has been shown that LSTM cells can detect salient

keywords relevant to a topic (i.e., context) from sentences or speech inputs. The extracted

salient contextual information can further enhance the discriminative power of the learned

local feature representations. In addition to capturing the contextual dependency, LSTM can

also selectively allow or block the information flow through the network by using its advanced

multiplicative interactions in the cell (Pei et al., 2016), (Yue-Hei Ng et al., 2015). In (Varior

et al., 2016b), a Siamese LSTM architecture that can process image regions sequentially and

enhance the discriminative capability of local feature representation is presented for person

re-identification.

Furthermore, a new trend has been started recently based on the video-based person

re-identification and taking advantage of temporal information in the video frames (Liu

et al., 2015; Wang et al., 2014; McLaughlin et al., 2016). In practice, video-based person

re-identification provides a more natural way for person re-identification, where most often

videos are the actual input to the surveillance systems. Furthermore, video-based methods

can utilize extra space-time information, which contains much more rich cues about the
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identity of the person. In fact, given the availability of sequences of images, temporal priors

in relation to person’s motion, such as gait and pose are captured which may assist in

solving the re-identification problem for difficult cases. In fact, sequences of images provide

more samples of a pedestrians appearance, where each sample may contain different pose

and viewpoint, and thus allows a more reliable appearance-based model to be constructed.

However, making use of time series also brings about new challenges to re-identification,

including the demand of coping with time series of variable length and different frame-rates

(McLaughlin et al., 2016).

(McLaughlin et al., 2016), presented a model for video-based person re-identification

that used color and optical flow pixel information as input to the network to model the

temporal structure in the video. To exploit the rich sequence information, (Wang et al.,

2014) mainly focus on using the key frame representation. In this approach, since only one

fragment is selected to represent the whole sequence, richer information contained in the

rest of the sequences is not fully utilized. In (Karanam et al., 2015) and (Zheng et al.,

2015) approaches based on feature fusion/encoding have been proposed which exploit the

bag-of-words framework to encode a set of frame-wise features into a global vector, but

ignore the informative spatio-temporal information of human sequence. Furthermore, some

works on video-based person re-identification such as the proposed method in (Wang et al.,

2014) and (Liu et al., 2015), can be viewed as extracting low-level 3D features (e.g., HOG3D

(Klaser et al., 2008), (Wang et al., 2014), color/gradient features over color channels (Liu

et al., 2015)), frame by frame through pre-aligned sequences and aggregating these features

afterwards. The approach in (Liu et al., 2015) is taking into account the gait (i.e., the way

a person walks) information in a walking cycle specifically for re-identification of walking

pedestrians in video frames. The authors in (Wang et al., 2014), proposed a discriminative

video fragments selection model by selecting and matching more reliable features from video

fragments. However, the temporal sequence nature of videos is not explicitly modeled in

these approaches.
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2.4 Object Importance Estimation

Finding the important road-users in the scene is crucial in self-driving cars and driver

assistance systems in order to interact with other road users and have a safe navigation.

Recently many efforts have been devoted to development of vehicles with higher level

of autonomy based on scene understanding. For instance, driver’s gaze has been wildly

studied for determining saliency map and intention prediction relying only on fixation maps

(Pugeault and Bowden, 2015). (Underwood et al., 2011) inspects the driver’s attention

specifically towards pedestrians and motorbikes, and exploits object saliency. In (Palazzi

et al., 2017), a computer vision based model is proposed to predict saliency by conducting

a data-driven study on drivers’ gaze fixations. However, driver’s gaze is not always a valid

indication of saliency since the driver might look at many unimportant objects in the scene

as well.

Different from our proposed method, prediction of important objects is also studied

by (Kuen et al., 2016; Li et al., 2016). (Kuen et al., 2016) uses recurrent attention

and convolutional-deconvolutional network to tackle the salient object detection problem.

Furthermore, the proposed model in (Li et al., 2016) takes a strategy for encoding the

underlying saliency prior information, and then sets up a multi-task learning scheme for

exploring the intrinsic correlations between salient object detection and semantic image

segmentation. However, these methods are not applicable to road user importance estimation

in driving scenario which highly depends on the ego car’s intention and its interaction with

other road users.

Another approach for solving the saliency estimation problem in autonomous driving

is using sensor-based methods. LiDAR (Halterman and Bruch, 2010), radars, lasers and

sonars (Park et al., 2003) are popular sensors to detect surrounding objects in autonomous

systems. For instance, (Sheu et al., 2007) uses smart antennas and proposes a distance

awareness system for important object estimation. The model proposed by (Chen et al.,

2017) combines the front view of the LiDAR point cloud with region-based features from

the bird’s eye view for 3D object detection. However, the salient objects are not necessarily

the nearest object (e.g. nearest object like a parked car may not pose as much a threat as
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a pedestrian intending to cross ego-vehicle’s path further down the road). Therefore, visual

information is essential for practical autonomous driving systems. For more details about

the history of using different sensors and methods for autonomous driving systems please

refer to (Janai et al., 2017).

Different from recent works based on estimating a general saliency map of the scene (i.e.,

a heat map which gives each pixel a relative value of its level of saliency), our proposed

method is able to specifically estimate the importance level of all the road users based on

the scene context and ego car’s intention. Furthermore, unlike the works based on estimating

the driver’s gaze fixation map, in this work we propose a road user importance estimation

method based on human-centric importance annotation.

2.5 Meta-Learning for Few-Shot Learning

A meta-learning model is trained over a variety of learning tasks and optimized for the

best performance on a distribution of unseen tasks. This differs from standard machine

learning techniques, which involve training on a single task and testing on held-out

examples from that task. Please refer to https://bair.berkeley.edu/blog/2017/07/18/

learning-to-learn/ for a simple description of meta-learning or learning to learn.

Few-shot classification is an instantiation of meta-learning in the field of supervised

learning. Recently there has been a resurgence of interest in few-shot learning based on

meta-learning (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017; Ravi and Larochelle,

2016; Santoro et al., 2016; Munkhdalai and Yu, 2017; Sung et al., 2018). The existing meta-

learning models for few-shot classification can be divided into three types: the learning to

fine-tune based, RNN based, and metric learning based. For instance, in (Finn et al., 2017)

the MAML model aims to meta-learn an initial condition that is good for fine-tuning on few-

shot problems. The model in (Ravi and Larochelle, 2016) is an LSTM-based optimizer that is

trained to be specifically effective for fine-tuning. In (Santoro et al., 2016), a recurrent neural

network iterates over examples of given problem and accumulates the knowledge required

to solve that problem in its hidden activations. However, these recent works either require

fine-tuning the target problem (Finn et al., 2017; Ravi and Larochelle, 2016), or need the
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use of complex recurrent neural network (RNN) architectures (Santoro et al., 2016; Vinyals

et al., 2016), or are based on complicated inference steps (Fei-Fei et al., 2006). In our work,

the model is simple and fast and does not need any additional process such as fine tuning.

Moreover, we avoid the complexity of recurrent networks, and the issues involved in ensuring

the adequacy of their memory. Instead our proposed approach is defined entirely with feed

forward convolution neural networks.

The metric based few-shot learning has attracted a lot of interests recently (Vinyals et al.,

2016; Snell et al., 2017; Sung et al., 2018). The basic idea is to learn a metric which can

map similar samples close and dissimilar ones distant in the metric space so that a query

can be easily classified. Various metric based methods such as siamese networks (Chopra

et al., 2005), matching networks (Vinyals et al., 2016), prototypical networks (Snell et al.,

2017), and relation networks (Sung et al., 2018) have been proposed. They differ in their

ways of learning the metric. For instance, very recently the relation network (Sung et al.,

2018) proposed to replace the fixed metric learning part (e.g., Euclidean distance) of the

previous works with a deep metric for comparing the relation between images.

The success of metric based methods relies on learning a discriminative metric space. The

proposed method in this research can be categorized as the metric learning based framework.

To reach the full potential of metric based few-shot learning, we augment the classification

loss with a structure-based deep metric learning regularization which enforces the model

to map the samples in the support set to well separated clusters in the embedding space.

This regularization is based on an improved version of deep metric learning framework in

(Oh Song et al., 2017) with no need of sample selection and greedy algorithm. Unlike

the metric learning methods based on contrastive (Chopra et al., 2005) or triplet (Schroff

et al., 2015) loss that are defined in terms of data pairs or triplets, our approach takes into

account the global structure of the embedding space. In fact, the structured margin term

in the loss function measures the quality of clustering the data by taking into account the

relationship between all the data points in the mini batch at once (instead of data pairs or

triplets). Furthermore, this deep learning based metric learning framework does not require

the training data to be preprocessed in rigid paired or triplet format and uses a structured

prediction framework (Tsochantaridis et al., 2004; Joachims et al., 2009) to ensure that
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the score of the ground truth clustering assignment is higher than the score of any other

clustering assignment.

Taking advantage of contextual information in the support set is critical in episode-

based few-shot learning models. A framework for context modeling in the support set was

proposed in (Vinyals et al., 2016) based on a bi-directional LSTM. However, as the number

of classes and shots increases, the model is required to learn longer and more complex

dependencies, which negatively affects both generalization and efficiency. Furthermore, it

imposes an arbitrary ordering on the support set by using bi-directional LSTM (i.e., the

embedding changes if we shuffle the support set samples). Moreover, the meta-learner

architecture proposed in (Mishra et al., 2017) combines temporal convolutions (which

aggregate contextual information from past) with causal attention which pinpoints to specific

pieces of information. In this research, we propose a simpler but effective context-aware query

embedding framework based on attention mechanism and 1-D CNN for taking into account

the context of the support set and its relationship (i.e., task) with query embedding. The

proposed query encoder makes the query embedding task-dependent which helps learning a

meta-learner with higher generalization power.
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Chapter 3

Object Recognition in Distributed

Camera Networks

3.1 Introduction

Because the smart camera networks have become increasingly more affordable and perform

better in balancing the computational power and energy efficiency, they have been employed

in many surveillance tasks including distributed object recognition (Redondi et al., 2015),

(Christoudias et al., 2008), (Ferrari et al., 2004), cross view action recognition (Zheng et al.,

2016) and person re-identification (Lisanti et al., 2015), (Ahmed et al., 2015) to name just

a few.

However, a major challenge in visual sensor networks is limitation in terms of transmission

bandwidth, storage and processing power. In the traditional system design for visual

sensor networks, images are acquired and compressed locally at the camera nodes, and

then transmitted to the base station which performs the specific analysis tasks (e.g., video

surveillance, object recognition, etc.). However, recently, a new paradigm has emerged

based on analyze-then-compress, where the visual content is processed locally at the camera

nodes, to extract a concise representation constituted by local visual features (e.g., SIFT,

SURF, HOG). Such features are then compressed and transmitted to the base station for

further analysis. Since the feature-based representation is usually more compact than the
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pixel-based representation, the analyze-then-compress approach is particularly attractive for

those scenarios for which the bandwidth is scarce (Redondi et al., 2015).

Recently several works have been done towards the analyze-then-compress feature

compression. For instance, in (Mitra et al., 2014) and (Naikal et al., 2010), authors

explore approaches for scalability in large-scale camera networks using recent advances in

Compressive Sensing (CS). In (Naikal et al., 2011b), the dimension of the features is reduced

using an approach based on Sparse Principal Component Analysis (SPCA). Another study

(Turcot and Lowe, 2009), further considered using robust structure-from-motion techniques

(e.g., RANSAC) to select strong object features between two camera views, and subsequently

rejecting weak features from the final stage of object recognition. However, such solutions are

known to break down easily when the camera transformation is large or when the features are

extracted from low-quality images. Moreover, most of the existing approaches (e.g., (Turcot

and Lowe, 2009), (Christoudias et al., 2008)) require the communication between the smart

cameras for selecting the best visual features.

The contributions of this work are as follows:

• First, we propose a method for finding a compact representation of the training set and

paying attention to the most important part of the data. We propose a probabilistic

algorithm based on the divergence between the probability distributions of the visual

features in order to select the most informative visual features and building a compact

and physically meaningful model of the training set.

• Second, we introduce an NMF-based scheme for calculating the low-dimensional codes

for visual feature of each image, before its transmission to the base station and without

any communications between the cameras.

• Third, we elaborate on the distributed recognition task and illustrate the performance

of the proposed approach based on the experiments on two challenging and low-

resolution multi-view datasets.

The remainder of this chapter is organized as follows. Section 3.1.1 explains the baseline of

our proposed distributed object recognition scheme. Section 3.2 elaborates on the proposed
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method for obtaining a compact model of the feature histograms in the off-line training

stage and then Section 3.2.2 introduces a scheme which uses this compact representation of

the training set to encode the histogram of features to low-dimensional codes. Section 3.3

describes the experimental setting, followed by detailed discussion and comparison of the

results. The final section concludes the project.

3.1.1 Distributed Object Recognition-The Baseline

SIFT-like feature descriptors have gained major popularity in object recognition task

in recent years. These high-dimensional descriptors (e.g., SIFT:128-D, SURF:64-D) are

invariant to scale and rotation and therefore are favorable in multi-view object recognition

task. In this work, dense SIFT feature descriptors are computed at a grid of overlapped

patches in the image. These invariant features are further quantized to form a dictionary of

visual words using bag-of-words (BoW ) approach (Lee, 2008). Using hierarchical k-means,

all the feature descriptors are clustered into visual words. Then a term-frequency inverse-

document-frequency (tf-idf ) weighted visual histogram is defined for each image (Nister and

Stewenius, 2006). Each image histogram is a 1000-D vector and is calculated for all the

training and testing images.

In the baseline scenario (without performing any feature selection and compression) the

feature histogram of the test object is sent to the base station and a nearest neighbor search

is conducted in the training set to find the closest histogram for the testing sample. The class

label of the closest histogram in the training set is then used to label the histogram of the

test data. In order to fasten the search procedure, the hierarchy clustering using k-means is

adopted. We cluster the data into a hierarchical of clusters and do a depth-first search to find

the approximate nearest-neighbor to the query point. The chi-square distance is utilized as

closeness measure of two l1-normalized histograms in our Nearest Neighbor classifier. Figure

3.1 shows a simple illustration of this process.
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Figure 3.1: Distributed Recognition - Baseline

3.2 Compact Representation of the Features

In this section we elaborate on the proposed method for finding a compact representation of

the features by paying attention to the most informative part of the data.

3.2.1 Attention-based Feature Selection

In recent years several studies have been carried out in the context of compact dictionary

learning (Jiang et al., 2013; Kong and Wang, 2012; Jiang et al., 2012; Song et al., 2016;

Taalimi et al., 2016b), as an approach for finding a compact representation of the data.

However, the lack of physical interpretation of the compact dictionary (i.e., physical meaning

of each basis in the dictionary) has been a critical shortcoming of the standard dictionary

learning techniques. Inspired by the methods based on non-negative matrix factorization, in

this part of the project, we address this issue by proposing a novel probabilistic approach for

selecting a group of features as a compact representation of all the features in the training

set. In other words the goal is to pay “attention” to the most representative part of the data

and ignore the rest of it. We believe that nothing is more meaningful for representing the

data than the data itself.

Assume there are c classes in the training set and there are N feature histograms hi ∈ Rm

in each class (i.e., H = {h1, . . . ,hN} ∈ Rm×N). When each bin of histogram is divided by

the number of visual words in each cluster, the probability density function (pdf ) which

represents a probability distribution is produced. Therefore, for each class we have N pdf s

as: F = {f 1, . . . ,fN} ∈ Rm×N .
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The objective of this stage of the proposed approach is to compare all the pdf s in each

class and select a few informative ones by solving the following optimization problem:

min
wij

N∑
j=1

N∑
i=1

(
m∑
k=1

((f i(k)− f j(k)) ln(
f i(k)

f j(k)
))wij

s.t.

N∑
i=1

wij = 1, ∀j; (
N∑
i=1

(
N∑
j=1

|wij|q)p/q)1/p ≤ λ

wij ≥ 0, ∀i, j,

(3.1)

where
∑m

k=1((f i(k)− f j(k)) ln( f i(k)
fj(k)

) is the symmetric form of the KL divergence (Kullback

and Leibler, 1951). This term measures the difference between all the probability distribution

pairs in F .

wij is defined as the probability of f i being a representative for f j (i.e., wij ∈ [0, 1]).

Therefore, we must have
∑N

i=1wij = 1, to assure that the probability of each f j being

represented via F = {f 1, . . . ,fN} is equal to one. Hence, the first term in Eq. 3.1 is the

cost of representing f j via f i, which is defined as the divergence measure between them,

times the probability of the occurrence of this event. We define W ∈ RN×N as the probability

matrix for all the f i and f j pairs (i.e., wij is the ith row and jth column entry of the W

matrix). In other word, when f i is a representative for f j, the corresponding row in the

W matrix is non-zero. Since our goal is to find some few representations of f j using f i, we

impose a row-sparsity constraint on the W matrix in order to select only a few f is and set

the other rows of W entirely equal to zero.

In order to achieve this goal, we exploit a joint lp,q norm regularization (the second

constraint in Eq. 3.1), where λ is a regularization parameter and determines the number of

non-zero rows of the W matrix. The lpq norm, is convex for p ≥ 1 and q ≥ 1; otherwise it

is a quasi-norm and is non-convex. In fact, we can consider any q ≥ 1, however, lp,∞ (i.e.,

q = ∞, p ≤ 1) has the property of giving us the real number of non-zero features which is

the desired goal in our feature selection task. The lp,∞ penalty is a convex relaxation of a

pseudo-norm which counts the number of non-zero rows in W . Another consideration in lpq

norm is the choice of p. Some works such as Chartrand and Staneva (2008) have investigated

the lp norm with 0 < p < 1. It is worth noting that for 0 < p < 1, Eq. 3.1 is not a convex
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problem and we cannot guarantee the global minimum and the solution is not unique and it

highly depends on initialization. In other words, even though 0 < p < 1 might lead to more

sparse result, but the solution would not be consistent. Additionally, choosing an optimum

initialization method is not straight forward. Hence, in this work, we consider p = 1 that

leads to a convex problem and global minimum for the optimization problem in Eq. 3.1. As

a result, the proposed optimization problem will have the following form:

min
wij

N∑
j=1

N∑
i=1

(
m∑
k=1

((f i(k)− f j(k)) ln(
f i(k)

f j(k)
))wij

s.t.
N∑
i=1

wij = 1, ∀j;
N∑
i=1

( max
1≤j≤N

wij) ≤ λ

wij ≥ 0, ∀i, j,

(3.2)

We refer to Eq. 3.2 as the Divergence-based Feature Selection (DFS) method. We select

the feature histograms, corresponding to indices of non-zero rows of W as our representative

features in each class and we repeat this process for all the classes in the training set. The

number of selected features for each class is determined by the regularization parameter λ

(i.e., λ is roughly the number of non-zero rows in the W matrix). It is important to note

that the value of λ should satisfy λ ≤ N (i.e., N is the number of training data in each class),

otherwise the W matrix would be the identity matrix, since each probability distribution f i

is the best representation for itself. The convex optimization problem in Eq. 3.2 is solved

using the Alternating Direction Method of Multipliers framework in Boyd et al. (2011).

3.2.2 Generating Low Dimensional Feature Codes

After constructing a compact representation of the feature histograms for all the classes in

the training set, it will be saved in the smart cameras’ memory (we refer to this compact

representation as D). In the on-line testing stage in each camera, a feature histogram hi

is extracted for the ith test image at each of the p local cameras independently, and we

calculate the corresponding code (i.e., si) for each feature histogram, using a supervised

constrained non-negative matrix factorization scheme:
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min
si
{‖hi −Dsi‖22}, i = (1, ..., p),

s.t. si(j) ≥ 0, j = 1, . . . , k,
k∑
j=1

si(j) = 1
(3.3)

where hi ∈ Rm×1, D ∈ Rm×k, si ∈ Rk×1 and k << m. k is the number of features

that have been selected for the whole training set in the previous step (i.e., number of

columns of D), and m is the dimension of the original feature histograms (i.e., 1000 in

our setting). The optimization problem in Eq. 3.3 is developed from the Non-negative

Constrained Least Squares (NCLS) method (Chang and Heinz, 2000) in conjunction with

the sum-to-one constraint. The objective is to minimize the least squares error:

min
si

∥∥∥ĥi − D̂si

∥∥∥2
2
, i = (1, ..., p),

s.t. si(j) ≥ 0, j = 1, . . . , k,

(3.4)

where ĥi and D̂ are the augmented matrices

ĥi =

 δhi

1

 , D̂ =

 δD

1T

 (3.5)

with δ being a small weight and 1T is a row vector of all 1s. This augmentation is

used to incorporate the sum-to-one constraint. The constrained minimization problem in

Eq. 3.4 is solved by a standard active set method (Bro and De Jong, 1997). This process

is simple and can be done fast inside each smart camera. After finding si ∈ Rk×1 in each

camera (i = 1, . . . , p), these low dimensional codes will be sent to the base station for

performing the intended recognition task. Transmitting codes with k dimension instead of

feature histograms with m dimension leads to major saving in bandwidth of the wireless

network (the compression ratio: m/k, k << m) as well as better recognition accuracy.

3.3 Experiments and Results

In this work, we validate our proposed feature encoding scheme on two multi-view recognition

tasks including pedestrian recognition in surveillance video and distributed object recognition

in smart camera networks.
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3.3.1 Datasets

Person Re-ID (PRID) dataset

The Person Re-ID (PRID) dataset (Hirzer et al., 2011) is one of the few multi-view datasets

which includes multi image frames for each pedestrian recorded from two different, static

surveillance cameras. Images from these cameras contain a viewpoint change and a stark

difference in illumination, background and camera characteristics. Since images are extracted

from trajectories, several different poses per pedestrian are available in each camera view.

It contains recorded frames of 475 person trajectories from one view and 856 from the other

one, with 245 persons appearing in both views (Hirzer et al., 2011). Figure 3.2 illustrates

some sample frames of this dataset.

Berkeley Multi-view Wireless

We also employ Berkeley Multi-view Wireless (BMW ) database (Naikal et al., 2010) in order

to evaluate the performance of our proposed algorithm on real multi-view object recognition.

It is important to note that the image quality in this database is considerably lower than

many existing high-resolution databases, which is intended to reproduce realistic imaging

conditions for surveillance applications (Naikal et al., 2010). This fact makes the recognition

more difficult. BMW consists of multiple-view images of 20 landmark buildings on the

Berkeley campus. Few samples of images in this database are shown in Figure 3.3. For each

building, wide-baseline images were captured from 16 different vantage points. Further, at

Figure 3.2: PRID dataset samples
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Figure 3.3: Few sample images of BMW database

each vantage point, 5 short-baseline images were taken by five camera sensors simultaneously,

thereby summing to 80 images per category (Naikal et al., 2010). All images are 640× 480

RGB color images. We divide the database into a training set and a testing set. Between 5

cameras, images from camera #2 captured at the even vantage points of each category are

assigned as the training set, and the remaining images are assigned to the testing set (Naikal

et al., 2011a).

3.3.2 Pedestrian Recognition in Surveillance Video

In the first experiment on PRID dataset, we consider 30 different frames for each pedestrian

in each camera and we randomly choose 20 persons in the dataset for the recognition task.

Hence, there are 1200 images for which we randomly pick half of it as the training set and the

rest as the testing set. The dimension of the original feature histograms is 1000. Figure 3.4

shows the recognition accuracy versus the compression rate using the proposed DFS method.

In this figure, we can observe that with compression rate of 2.94 (i.e., features with

dimension of 340), the accuracy is slightly better than using the original features. The

reason is that our feature selection scheme omits those features which are closer to the

features from other classes than the features in their own class. We define the compression

ratio as dimension of the original features divided by dimension of the encoded features (i.e.,

32



Figure 3.4: Recognition accuracy for different dimensions of the feature histograms using
the DFS method

k in Eq. 3.3). For instance, in Figure 3.4 at the marked point on the curve with compression

ratio of 2.94, the feature dimension is equal to 1000/2.94 = 340. Figure 3.5 illustrates the

recognition accuracy for classification of all the 20 persons in the experiment with 340-D

feature histograms (λ = 17 in Eq. 3.2). It is worth noting that the recognition task in this

experiment is different from person re-identification task which is based on image matching

and retrieval.

3.3.3 Building Recognition in BMW Dataset

In the second experiment (on BMW), there exist 16 different vantage points, and at each

vantage point, images are taken by five cameras simultaneously, thereby summing to 80

images per category. In this section, we compare the recognition accuracy of DFS method

with two other existing works. Table 3.1 demonstrates the classification accuracy of different

methods based on Sparse PCA (SPCA) (Naikal et al., 2011b) and Structure from Motion

(SfM) (Turcot and Lowe, 2009). To have a fair comparison, we set up the same experimental

environment as the other two works. In fact, we only considered 8 images (even vantage

points of camera #2) from each object for training and the rest of images from other cameras

for testing (and compression ratio: 2.4).
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Figure 3.5: Confusion matrix of pedestrian recognition via DFS on PRID dataset using 340-D
features.
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Table 3.1: Comparison of recognition accuracy rate of different methods. For all methods
compression ratio is set to 2.4 : 1.

Class Baseline(%) DFS(%) SPCA(%) SfM (%)
1 97.01 99.00 94.44 83.33
2 85.00 86.34 91.66 90.27
3 79.04 86.00 66.66 58.33
4 97.68 100.00 81.94 65.27
5 85.05 86.03 91.66 81.94
6 88.03 93.23 88.88 87.50
7 92.00 98.00 93.05 86.11
8 99.00 94.01 91.66 72.22
9 89.79 91.56 73.61 63.88
10 74.38 76.43 65.27 61.11
11 82.33 96.52 76.38 69.44
12 85.94 99.25 83.33 70.83
13 92.50 86.00 72.22 52.77
14 92.61 100.00 93.05 90.27
15 83.44 86.01 80.55 75.00
16 83.00 100.00 79.16 80.55
17 100.00 100.00 90.27 84.72
18 94.61 100.00 93.05 100.00
19 89.22 100.00 83.33 86.11
20 90.61 93.05 100 95.83

Avg. 88.68 93.50 84.51 77.77
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For most of the object categories our proposed method, outperforms SPCA and SfM based

approaches. One important reason for outperforming the proposed DFS method compared to

other two methods is that in contrast to SPCA and SfM methods, the physical interpretation

of the reduced space is preserved during the dimensionality reduction procedure which is

critical in the recognition task.

3.4 Summary

In this work, we proposed a probabilistic encoding approach based on divergence of the

probability distributions of the visual features in limited bandwidth distributed camera

networks. The performance of the proposed approach was discussed in two surveillance

recognition tasks. The proposed DFS approach is applicable to the variety of distributed

computer vision tasks based on transmission of the visual features in a network (e.g., cross

view action recognition, person re-identification, etc.).
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Chapter 4

Attention-based Person

Re-identification in Distributed

Camera Networks

4.1 Introduction

Despite recent attempts for solving the person re-identification problem, it remains a

challenging task since a person’s appearance can vary significantly when large variations in

view angle, human pose and illumination are involved. The concept of attention is one of the

most interesting recent architectural innovations in neural networks. Inspired by that, in this

research we propose a novel approach based on using a gradient-based attention mechanism

in deep convolution neural network for solving the person re-identification problem. Our

model learns to focus selectively on parts of the input image for which the networks’ output

is most sensitive to.

Recently, person re-identification has gained increasing research interest in the computer

vision community due to its importance in multi-camera surveillance systems. Person re-

identification is the task of matching people across non-overlapping camera views. A typical

re-identification system takes as input two images of person’s full body, and outputs either

a similarity score between the two images or the decision of whether the two images belong
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to the same identity or not. Person re-identification is a challenging task. In fact, different

individuals can share similar appearances and also appearance of the same person can be

drastically different in two different views due to several factors such as background clutter,

illumination variation and pose changes.

It has been proven that humans do not focus their attention on an entire scene at once

when they want to identify another person (Xu et al., 2015). Instead, they pay attention

to different parts of the scene (e.g., the person’s face) to extract the most discriminative

information. Inspired by this observation, we study the impact of attention mechanism in

solving person re-identification problem. The attention mechanism can significantly reduce

the complexity of the person re-identification task, where the network learns to focus on the

most informative regions of the scene and ignores the irrelevant parts such as background

clutter. Exploiting the attention mechanism in person re-identification task is also beneficial

at scaling up the system to large high quality input images.

With the recent surge of interest in deep neural networks, attention based models have

been shown to achieve promising results on several challenging tasks, including caption

generation (Xu et al., 2015), machine translation (Bahdanau et al., 2014) and object

recognition (Ba et al., 2014). However, attention models proposed so far, require defining an

explicit predictive model, whose training can pose challenges due to the non-differentiable

cost. Furthermore, these models employ Recurrent Neural Network (RNN) for the attention

network and are computationally expensive or need some specific policy algorithms such as

REINFORCE (Ba et al., 2014; Williams, 1992) for training.

In this research, we introduce a novel model architecture for person re-identification task

which improves the matching accuracy by taking advantage of attention mechanism. The

contributions of this research are the following:

• We propose a CNN-based task-driven attention model which is specifically tailored for

the person re-identification task in a triplet architecture. Our model generates highly

discriminative features by fusion of global and local features which are trained based

on two losses.
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• The network is computationally efficient during inference, since it first finds the most

discriminative regions in the input image and then performs the deep CNN feature

extraction only on these selected regions.

• Finally, we qualitatively and quantitatively validate the performance of our proposed

model by comparing it to the state-of-the-art performance on three challenging

benchmark datasets: CUHK01(Li and Wang, 2013), CUHK03 (Li et al., 2014) and

Market 1501 (Zheng et al., 2015).

Generally, existing approaches for person re-identification are mainly focused on two aspects:

learning a distance metric (Liao et al., 2015; Pedagadi et al., 2013; Su et al., 2015) and

developing a new feature representation (Varior et al., 2016c; Zhao et al., 2013b; Liao

et al., 2010; Ojala et al., 2002; Zhao et al., 2013a; Zheng et al., 2015). In distance metric

learning methods, the goal is to learn a metric that emphasizes inter-personal distance and

de-emphasizes intra-person distance. The learnt metric is used to make the final decision

as to whether a person has been re-identified or not (e.g., KISSME (Köstinger et al., 2012),

XQDA (Liao et al., 2015), MLAPG (Su et al., 2015) and LFDA (Pedagadi et al., 2013)).

In the second group of methods based on developing new feature representation for person

re-identification, novel feature representations were proposed to address the challenges such

as variations in illumination, pose and view-point (Varior et al., 2016c). The Scale Invariant

Local Ternary Patterns (SILTP) (Liao et al., 2010), Local Binary Patterns (LBP) (Ojala

et al., 2002), Color Histograms (Zhao et al., 2013a) or Color Names (Zheng et al., 2015)

(and combination of them), are the basis of the majority of these feature representations

developed for human re-identification.

In the recent years, several approaches based on Convolutional Neural Network (CNN)

architecture for human re-identification have been proposed and achieved great results

(Cheng et al., 2016a; Li et al., 2014; Ahmed et al., 2015). In most of the CNN-based

approaches for re-identification, the goal is to jointly learn the best feature representation

and a distance metric (mostly in a Siamese fashion (Bromley et al., 1993)). With the recent

development of RNN networks, the attention-based models have demonstrated outstanding

performance on several challenging tasks including action recognition (Sharma et al., 2015).
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At the time of writing this research, except for one recent work (Liu et al., 2016), the attention

mechanism has not yet been studied in the person re-identification literatures. In (Liu et al.,

2016), the RNN-based attention mechanism is based on the attention model introduced in

(Sharma et al., 2015) for action recognition.

Different from (Liu et al., 2016), in our model the selection of the salient regions is made

using a novel gradient-based attention mechanism, that efficiently identifies the input regions

for which the network’s output is most sensitive to. Moreover, our model does not use the

RNN architecture as in (Liu et al., 2016), thus is computationally more efficient and easier

to train. Furthermore, in (Liu et al., 2016) the attention model requires a set of multiple

glimpses to estimate the attention which is not required in our proposed architecture.

4.2 Model Architecture

In this section we introduce our gradient-based attention model within a triplet comparative

platform specifically designed for person re-identification. We first describe the overall

structure of our person re-identification design, then we elaborate on the network architecture

of the proposed attention mechanism.

4.2.1 Triplet Loss

We denote the triplets of images by < I+i , I
−
i , Ii >, where I+i and Ii are images from the

same person and I−i is the image from a different person. As illustrated in Figure 4.1, each

image initially goes through the global attention network and salient regions of the image

are selected (i.e., Xa). Then only these selected regions of the image pass through the local

deep CNN. The local CNN network then maps this raw image regions to the feature space

< fl(X
a+
i ), fl(X

a−
i ), fl(X

a
i ) >, such that the distance of the learned features of the same

person is less than the distance between the images from different persons by a defined

margin. Hence, the goal of the network is to minimize the following cost function for N

triplet images:

J =
1

N

N∑
i=1

max(
∥∥fl(Xa

i )− fl(Xa+
i )
∥∥2
2
−
∥∥fl(Xa

i )− fl(Xa−
i )
∥∥2
2
+ α, 0), (4.1)
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where α is a predefined margin which helps the model to learn more discriminative features.

Choosing the right triplets is critical in training of the triplet loss. For instance, if we use

easy negative and positive samples for each anchor, the loss would be zero all the time and

the model will not learn anything during training. We define the hard triplets as the triplets

where the distance of the negative sample embedding to the anchor embedding is less than

the distance of the positive sample embedding to the anchor embedding. We also define

semi-hard triplets as triplets that satisfy the following inequality:

∥∥fl(Xa
i )− fl(Xa+

i )
∥∥2
2
<
∥∥fl(Xa

i )− fl(Xa−
i )
∥∥2
2
<
∥∥fl(Xa

i )− fl(Xa+
i )
∥∥2
2
+ α (4.2)

For training of our model we follow the hard and semi-hard negative sample mining

based on the framework proposed in Schroff et al. (2015). It is important to note that the

above triplet architecture is used only in the training phase and during testing, the distances

between embedding of the query and gallery images are computed and used for ranking.

Figure 4.1: The architecture of the proposed Gradient-based Attention Network (GAN) in
training phase.
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4.2.2 Gradient-based Attention Network

The proposed Gradient-based Attention Network (GAN) is capable of extracting information

from an image by adaptively selecting the most informative image regions and only processing

the selected regions at high resolution. The whole model comprises of two blocks: the global

attention network G and the local deep CNN network L. The global network consists of

only two layers of convolution and is computationally efficient, whereas the local network

is deeper (e.g., many convolutional layers) and is computationally more expensive, but has

better performance.

We refer to the feature representation of the global layer and the local layer by fg and

fl, respectively. The attention model uses backpropagation to identify the few vectors in the

global feature representation fg(I) to which the distribution over the output of the network

(i.e., hg) is most sensitive. In other words, given the input image I, fg(I) = {gi,j|(i, j) ∈

[1, d1] × [1, d2]}, where d1 and d2 are spatial dimensions that depend on the image size

and gi,j = fg(xi,j) ∈ RD is a feature vector associated with the input region (i, j) in I,

i.e., corresponds to a specific receptive field or a patch in the input image. On top of the

convolution layers in attention model, there exists a fully connected layer followed by a max

pooling and a softmax layer, which consider the bottom layers’ representations fg(I) as input

and output a distribution over labels, i.e., hg.

Next, the goal is to calculate the attention map. We use the entropy of the output vector

hg as a measure of saliency in the following form:

H =
C∑
l=1

hlg log(hlg), (4.3)

where C is the number of class labels in the training set. In order to find the attention map

we then compute the norm of the gradient of the entropy H with respect to the feature

vector gi,j associated with the input region (i, j) in the input image:

Ai,j =
∥∥∥∇gi,j

H
∥∥∥
2
, (4.4)
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hence, the whole attention map would be A ∈ Rd1×d2 for the whole image. Using the

attention map A, we select a set of k input region positions (i, j) corresponding to the Ai,js

with the k largest values. The selected regions of the input image corresponding to the

selected positions are denoted by Xa = {xi,j|(i, j) ∈ [1, d1] × [1, d2]}, where each xi,j is a

patch in input image I. Exploiting the gradient of the entropy as the saliency measure for

our attention network encourages selecting the input regions which have the maximum effect

on the uncertainty of the model predictions. Note that all the elements of the attention map

A can be calculated efficiently using a single pass of backpropagation. For training of the

global attention network (G), we maximize the log-likelihood of the correct labels (using

cross-entropy objective function).

After selecting the salient patches (Xa) within the input image, the local deep network

(L) will be applied only on those patches. This leads to major saving in computational

cost of the network and accuracy improvement by focusing on the informative regions of the

person’s image. The local deep CNN network (L) is trained on attended parts of the input

image using the triplet loss introduced in Eq. 4.1. We denote the feature representation

created by the local deep network L as fl(X
a).

In the test time, the local feature representation fl(X
a) and the global feature

representation fg(I) are fused to create a refined representation of the whole image. In

feature fusion, we replace the global features (low resolution features) corresponding to

the attended regions (i.e., Xa) with the rich features from the deep CNN (high resolution

features). Fusion of the features which are trained based on two discriminative losses leads

to highly accurate retrieval performance.

4.3 Experiments and Results

4.3.1 Network Design

We implement our network using TensorFlow (et al., 2015) deep learning framework. The

training of the GAN converges in roughly 6 hours on Intel Xeon CPU and NVIDIA TITAN X

GPU. In the global attention network (see Figure 6.1), there are 2 convolutional layers, with
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7× 7 and 3× 3 filter sizes, 12 and 24 filters, respectively. On the top of the two convolution

layers in the global attention network there are one fully connected layer, a max pooling and

a softmax layer. The global attention network is trained once for the whole network with

cross-entropy loss. The set of selected patches Xa is composed of eight patches of size 14×14

pixels (experiments showed that the marginal improvement becomes insignificant beyond 8

patches). The Inception-V3 (Szegedy et al., 2016) model pretrained on Imagenet is used for

the local deep CNN. Inception-V3 is a 48-layer deep convolutional architecture and since it

employs global average pooling instead of fully-connected layer, it can operate on arbitrary

input image sizes. The output of the last Inception block is aggregated via global average

pooling to produce the feature embedding. We use Batch Normalization (Ioffe and Szegedy,

2015) and Adam (Kingma and Ba, 2014) for training our model. We have employed the

same scheme for data augmentation as in (Cheng et al., 2016a). Furthermore, we have used

α = 0.02 in Eq. 4.1 and exponential learning rate decay for the training (initial learning

rate: 0.01).

4.3.2 Datasets

There are several benchmark datasets for evaluation of different person re-identification

algorithms. In this research we use CUHK01 (Li and Wang, 2013), CUHK03 (Li et al.,

2014) and Market 1501 (Zheng et al., 2015) which are three of the largest benchmark datasets

suitable for training the deep convolutional network. The following figures show some sample

images from each dataset.

CUHK01 dataset contains 971 persons captured from two camera views in a campus

environment. Camera view A captures frontal or back views of a person while camera B

captures the person’s profile views. Each person has four images with two from each camera.

We use 100 persons for testing (Figure 4.2).

CUHK03 dataset contains 13, 164 images of 1, 360 identities. All pedestrians are

captured by six cameras, and each person’s image is only taken from two camera views.

It consists of manually cropped person images as well as images that are automatically

detected for simulating more realistic experiment situation. In our experiments we used the

cropped person images. We use 100 persons for testing (Figure 4.3).
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Figure 4.2: CUHK01 image samples

Figure 4.3: CUHK03 image samples

Market1501 dataset contains 32, 688 bounding boxes of 1, 501 identities, most of which

are cropped by an automatic pedestrian detector. Each person is captured by 2 to 6 cameras

and has 3.6 images on average at each viewpoint. In our experiments, 750 identities are used

for training and the remaining 751 for testing (Figure 4.4).

4.3.3 Evaluation Metric and Results

We adopt the widely used Rank1 accuracy for quantitative evaluations. Also, since the mean

Average Precision (mAP) has been used for evaluation on Market 1501 data set in previous

works, we use mAP for performance comparison on Market 1501 as well. For datasets with

two cameras, we randomly select one image of a person from camera A as a query image

and one image of the same person from camera B as a gallery image. For each image in the
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Figure 4.4: Market 1501 image samples

query set, we first compute the distance between the query image and all the gallery images

using the Euclidean distance and then return the top n nearest images in the gallery set. If

the returned list contains an image featuring the same person as that in the query image

at k-th position, then this query is considered as success of rank k. Table 4.1 shows the

rank1 accuracy of our model compared to state-of-the-art. It can be observed that the GAN

(ours) outperforms all the other methods. Very recently other method (SPReID (Kalayeh

et al., 2018)) has been proposed that set a new state-of-the-art. Even though, (Kalayeh

et al., 2018) is published after the proposed method in this research, but we include it in our

comparisons for completeness (last row in Table 4.1). One success (top) and fail (bottom)

case in rank1 retrieval on Market 1501 data set using GAN is shown in Figure 4.5.

Furthermore, GAN is computationally more efficient compared to the case where the

local CNN is applied on the whole input image. In practice we observed a time speed-up by

a factor of about 2.5 by using GAN (fusion of local and global features) in test stage (tested

on 100 test images).

4.3.4 Interpretable Deep Retrieval Model

The visualization of the attention map in our proposed Global attention net is shown in

Figure 4.6 and 4.7. These samples are part of the test query samples in Market 1501 dataset

that are correctly re-identified by our model. These results show how the network is making

its decisions and it thus makes our deep learning model more interpretable.
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Table 4.1: Rank1 accuracy (%) comparison of the proposed method to the
state-of-the-art.

Method Market 1501 CUHK01 CUHK03 mAP (Market)

KISSME (Köstinger et al., 2012) - 29.40 14.12 19.02
GS-CNN (Varior et al., 2016a) 65.88 - 61.08 39.55

DGD (Xiao et al., 2016) 59.53 - - 31.94
LS-CNN (Varior et al., 2016b) 61.60 - 57.30 35.30

SCSP (Chen et al., 2016) 51.9 - - 26.35
DNS (Zhang et al., 2016) 55.40 - - 35.68

Spindle (Zhao et al., 2017a) 76.90 - 88.50 -
P2S (Zhou et al., 2017) 70.72 77.34 - 44.27

PrtAlign (Zhao et al., 2017b) 81.00 88.50 81.60 63.40
PDC (Su et al., 2017) 84.14 - 88.70 63.41
SSM (Bai et al., 2017) 82.21 - - 68.80
JLML (Li et al., 2017) 85.10 87.00 83.20 65.50

TriNet (Hermans et al., 2017) 84.92 - - 69.14

Ours 86.67 89.90 88.80 75.32

SPReID (Kalayeh et al., 2018) 93.68 - 94.28 84.92

Figure 4.5: Rank1 retrieval on Market 1501. Top figure shows an example of successful
retrieval using our model and the bottom figure shows a fail case for rank1. However in the
fail case, GAN can still retrieve the image in rank4. left images are the query and the right
images are the ranked images using GAN.
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Figure 4.6: Visualization of the attention map produced by our proposed method

48



Figure 4.7: Visualization of the attention map produced by our proposed method (2)
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For example, the visualization of the results shows how the attention model is able to focus

on very detailed and discriminative parts of the input image (e.g., person’s face, backpack,

shoes, legs, t-shirts, things in their hands) Also, we can observe that by using our attention

model, our re-identification system can successfully ignore the background clutter.

4.4 Conclusion

In this research, we introduced an attention mechanism for person re-identification task

and we showed how paying attention to important parts of the person’s image while still

considering the whole image information, leads to highly discriminative feature embedding

space and an accurate person re-identification system. Furthermore, thanks to the

computational efficiency resulting from the attention architecture, we would be able to use

deeper neural networks and high resolution images in order to obtain higher accuracy.
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Chapter 5

Context Aware Road-user importance

Estimation (iCARE)

5.1 Introduction

Road-users are a critical part of decision-making for both self-driving cars and driver

assistance systems. Some road-users, however, are more important for decision-making than

others because of their respective intentions, ego-vehicle’s intention and their effects on each

other. In this research, we propose a novel architecture for road-user importance estimation

which takes advantage of the local and global context of the scene. For local context, the

model exploits the appearance of the road users (which captures orientation, intention, etc.)

and their location relative to ego-vehicle. The global context in our model is defined based

on the feature map of the convolutional layer of the module which predicts the future path

of the ego-vehicle and contains rich global information of the scene (e.g., infrastructure, road

lanes, etc.), as well as the ego-vehicle’s intention information. Systematic evaluations of our

proposed method against several baselines show promising results.

In real-world driving, at any given time, there can be many road-users in the ego-vehicle’s

vicinity. Some road-users directly affect ego-vehicle’s behavior (i.e. brake, steer), while some

could be a potential risk and others who do not pose a risk at this time or in the near future

(as illustrated in Figure 5.1). The ability to discern how important or relevant any given

road-user is to an ego-vehicle’s decision is vital for building trust with human drivers or
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passengers, transparency with law makers, promoting human-centric thought process, etc.,

for both driver assistance systems and self-driving cars. In this research, we propose to

estimate road-user importance based on visually guided information.

Given a single image of a driving scene, visually, humans have an unparalleled ability

to determine which road-users are affecting or likely to affect the ego-vehicle’s behavior.

Humans leverage information such as traffic rules, intended path of ego-vehicle, potential

trajectory of road participants, location, etc. As many of these information can be inferred

from the image, we propose a method to estimate road-user importance by fusion of local

and global context. We call this method, Context Aware Road-user Importance Estimation

(iCARE).

In iCARE, local context is represented by appearance of road-users (which captures

orientation, intention, etc.) and their location relative to ego-vehicle. Global context is

represented with the feature map of the last convolutional layer of the model which is trained

to predict the future path of the ego car. To some extent this can be considered intention-

based context because this same representation can be used to predict future path of ego-

vehicle. To this end, the main contributions of this research are as following:

• Designing a new image-based framework for estimating the importance level of road-

users which is critical for autonomous driving and advanced driver-assistance systems.

Figure 5.1: Illustration of an ideal road-user importance estimation during a left turn
maneuver. In a driving scenario, there can be many road-users. However, when given an
ego-vehicle’s path, some road-users are more important for decision-making.
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• Proposing a novel context aware architecture and a new way of representing the global

context of the scene based on predicting the intention (future path) of the ego-vehicle.

• Systematic quantitative and qualitative evaluation of the proposed method against

several baselines.

Recently many efforts have been devoted to development of vehicles with higher level of

autonomy based on scene understanding.

For instance, driver’s gaze has been wildly studied for determining saliency map

and intention prediction relying only on fixation maps (Pugeault and Bowden, 2015).

(Underwood et al., 2011) inspects the driver’s attention specifically towards pedestrians

and motorbikes, and exploits object saliency. In (Palazzi et al., 2017), a computer vision

based model is proposed to predict saliency by conducting a data-driven study on drivers’

gaze fixations. However, driver’s gaze is not always a valid indication of saliency since the

driver might look at many unimportant objects in the scene as well.

Different from our proposed method, prediction of important objects is also studied

by (Kuen et al., 2016; Li et al., 2016). (Kuen et al., 2016) uses recurrent attention

and convolutional-deconvolutional network to tackle the salient object detection problem.

Furthermore, the proposed model in (Li et al., 2016) takes a strategy for encoding the

underlying saliency prior information, and then sets up a multi-task learning scheme for

exploring the intrinsic correlations between salient object detection and semantic image

segmentation. However, these methods are not applicable to road-user importance estimation

in driving scenario which highly depends on the ego car’s intention and its interaction with

other road-users.

Another approach for solving the saliency estimation problem in autonomous driving

is using sensor-based methods. LiDAR (Halterman and Bruch, 2010), radars, lasers and

sonars (Park et al., 2003) are popular sensors to detect surrounding objects in autonomous

systems. For instance, (Sheu et al., 2007) uses smart antennas and proposes a distance

awareness system for important object estimation. The model proposed by (Chen et al.,

2017) combines the front view of the LiDAR point cloud with region-based features from

the bird’s eye view for 3D object detection. However, the salient objects are not necessarily
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the nearest object (e.g. nearest object like a parked car may not pose as much a threat as

a pedestrian intending to cross ego-vehicle’s path further down the road). Therefore, visual

information is essential for practical autonomous driving systems. For more details about

the history of using different sensors and methods for autonomous driving systems please

refer to (Janai et al., 2017).

Different from recent works based on estimating a general saliency map of the scene (i.e.,

a heat map which gives each pixel a relative value of its level of saliency), our proposed

method is able to specifically estimate the importance level of all the road-users based on

the scene context and ego car’s intention. Furthermore, unlike the works based on estimating

the driver’s gaze fixation map (Cornia et al., 2018), in this research we propose a road-user

importance estimation method based on human-centric importance annotation.

5.2 Method

An overview of the proposed model which we refer to as Context Aware road-user importance

Estimation model or iCARE is shown in Figure 5.2. There are two main stages in the

proposed model. First, an important road-user proposal generator provides potentially

important road-user proposals and then in the second stage, context is incorporated into

the system in order to estimate the importance level of road-users. The next subsections

describe these stages in more details.

5.2.1 Important road-user Proposal Generation

In a busy intersection, there can be many road-users in the scene and our proposed model

is designed to first select potentially important road-users among them. Thus, first we

need a hard attention mechanism to pick these potentially important road-users out of the

whole scene. In this stage, a detection model (Ren et al., 2015) is exploited in order to

generate the potentially important road-users. The important road-user proposal generation

is performed by using the Region Proposal Network (RPN) which predicts object proposals

and at each spatial location, the network predicts a class-agnostic objectness score and a
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Figure 5.2: The iCARE model exploits local (i.e. appearance, location) of road-users
and global (i.e. intention based context) of the scene to estimate importance of respective
road-users.

bounding box refinement for anchor boxes of multiple scales and aspect ratios. Using non-

maximum suppression with an intersection-over-union (IoU) threshold, the top box proposals

are selected. Then, region of interest (RoI) pooling is used to extract a fixed-size feature map

for each box proposal. These feature maps then go through the final fully connected layers

where the class label (i.e, important road-user) and bounding box refinements for each box

proposal are obtained. This stage of our model is applied to select more likely candidates

of importance, where further consideration into context is necessary to accept or reject the

proposal.

5.2.2 Context Aware Representation

iCARE takes advantage of the local (i.e. appearance, location) and global context towards

estimating importance of road-users.

Local Appearance Feature

The appearance feature of the road-users contains very rich information about orien-

tation, dynamics, intention, distance, etc. of the road-users. In this work, we use the

Inception-ResNet-V2 (Szegedy et al., 2017) model as feature extractor in conjunction with
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the road-user proposal generator model. To train the important road-user proposal generator

model, we first initialize it with Faster R-CNN trained on COCO object detection dataset

(Lin et al., 2014) and then train it based on the important road-user annotations in our data

set. To generate the appearance feature for each potential important road-user proposal,

we take the final output of the model and select all bounding boxes where the probability

of belonging to the “important” class exceeds a confidence threshold. For each selected

proposal, the appearance feature is defined as the output of the region of interest (RoI)

pooling layer for that bounding box.

Location Feature

road-users with different sizes and distances to the ego-vehicle have different attributes

which can make them better distinguishable. In our model, for each proposal of important

road-user, we consider a 4D vector as the location feature floc which is defined as:

floc = [((xmax + xmin)/2, ymax), h, w], (5.1)

where ((xmax + xmin)/2, ymax) is the coordinate of the middle bottom point of each proposal

bounding box and h and w are the height and width of the bounding box, respectively.

The location feature helps the system to learn the correlation between proximity, mass and

importance.

Intention-based (Global) Context

Intention of the ego car plays a major role in estimating the importance of road-users. For

instance, if the ego car’s intention is to make a left turn in an intersection, then road-users

on the right side of the intersection may be considered relatively less important road-users.

In order to incorporate the intention of the ego car, we design a model (inspired by (Bojarski

et al., 2016), where the model learns a mapping between an image and instantaneous steering

angle) which takes as input a single image of the scene and predicts a 10D vector of the

future path of the car. The future path vector is constructed of 10 steering angle values,

representing the next 10 spatial steps of the car with 1-meter equal spacing. The model

for predicting the future path (shown in blue in Figure 5.2) consists of convolution layers
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followed by fully connected layers with batch normalization and drop out layers in between.

The flatten feature of the last convolution layer is used as the context feature.

Feature Fusion

In this part of the model, the local (i.e., appearance and location features) and global

features (i.e., intention-based context) are concatenated together and followed by 4 fully

connected layers to estimate importance of a road-user (shown in magenta in Figure 5.2).

To study the effect of intention and context, we consider a version of our model were instead

of context, the 10D ground truth future path vector is used as an input to the model and

the results are compared. Furthermore, an ablation study is performed on combinations of

the features (i.e. appearance, spatial, intention context and the future path of the car as

input) which will be elaborated in the next section.

5.3 Experiments

5.3.1 Data set

The data set used for training and evaluation of the proposed iCARE model is collected at

Honda Research Institute and includes the aligned-view images that are generated by putting

together (and aligning) the images from three cameras (i.e., left, center and right views).

The data set consists of 6 hours of driving including around 2.7 hours of intersections. The

data is collected from driving on the streets of Mountain View and Sunnyvale in California.

There are 743 total intersection segments which include 307908 total frames.

The important road-users in image sequences are annotated every 30 frames (i.e., 1

annotation per second). The annotations are generated by human annotators who are given

the video sequences and instructions about the driving rules. There are 9995 total frames

of annotations, of which 6924 total road-users are annotated as important. An annotated

image may include between zero to five important road-users. Some examples from the data

set are illustrated in Figure 5.3.
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Figure 5.3: Examples of the images and annotations in our data set

The data is split to training set and testing set with 13624 and 4749 images, respectively.

Only images with annotation (i.e., with at least one important road-user in them) are used

for training, but testing is performed on all images in the test set.

5.3.2 Implementation Details

In our model, the aligned view images are re-sized from their original size (i.e., 4394× 1100)

to 1024 × 275 before going into the deep neural network model. Tensorflow v1.4 is used as

our deep learning framework on a Tesla V100-SXM2 NVIDIA GPU with 32 gigabytes of

memory.

For the intention-based context extractor branch, we use 5 convolution layers followed

by 4 fully connected layers. Batch normalization (Ioffe and Szegedy, 2015) is used for faster

training and also there are drop out layers (with keep-prob = 0.6) between the fully connected

layers to avoid over fitting. The intention-based context branch is trained and tested based on

the same data split used for important road-user proposal generation. The last convolution

layer of this model is extracted and flattened to 1164D vector and used as the context feature
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for each image. Mean Square Error (MSE) is used as loss function for training of this part

of the model.

The local features from the proposal generator and the context features are fused (i.e.,

concatenated) and then go through 4 fully connected layers with 128, 128, 64 and 1 neurons

with batch normalization and drop out between the layers. Binary cross entropy is used as

the loss function for the final classification step (i.e., important vs not important road-users).

Adam optimizer (Kingma and Ba, 2014) with β1 = 0.9 and β2 = 0.99 and learning rate of

0.01 is used for optimization of the loss functions in all parts of our model. Moreover, the

Relu (Nair and Hinton, 2010) is used as non-linearity throughout our model.

5.3.3 Evaluation and Results

Since the number of not important road-users is larger than number of important road-users

in our data set, we need to deal with data imbalance problem in training our model. In fact,

in the training set there are 4699 important samples and 8925 not important samples. In

order to solve the data imbalance problem we assign appropriate weights for the loss terms

of each class (i.e., 1 : 2). Furthermore, data imbalance causes the classification accuracy

metric (i.e., unweighted accuracy) to not be able to precisely estimate the performance of

the model. Hence, we use the precision-recall curve and F1 score to evaluate our model. The

F1 score is the harmonic average of the precision and recall, and it reaches its best value at

1 (perfect precision and recall) and worst at 0.

The precision-recall curves for different experiment settings are shown in Figure 5.4. The

F1 score is shown in parenthesis for each experiment, as well. In Figure 5.4, the red curve

(denoted as appearance (0.65)) is the setting where only the appearance feature taken from

the important road-user proposal is used to estimate the road-user importance. Using only

the appearance features, our model achieves F1 score of 0.65.

The green curve (denoted as: appearance + spatial + path (0.67) in Figure 5.4)

corresponds to the setting where the future path is used as an input to the model and is

concatenated with appearance and location features. This combination of the features yields

an F1 score of 0.67 which is 3% higher than using only the appearance feature. The light blue

curve which achieves the best performance (F1 = 0.69) is when the intention-based context
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Figure 5.4: Precision-recall curves (and F1 scores) for different experiment settings. Best
viewed in color.

of the scene is incorporated to the system along with the local features (i.e., appearance and

location features). This result shows the importance of exploiting intention-based global

context representation of the scene.

Moreover, the magenta curve illustrates the experiment setting where the appearance of

the road-users is not exploited but only location and future path (as input) are used. The

results show that this setting achieves the lowest performance of F1 = 0.60 as it is expected.

It shows the importance of using the appearance features which has rich information about

the orientation, type, etc. of the road-users. It is worth noting that the reported results in

this section are all based on testing on all the images in the testing set where event images

without any ground truth important road-user annotation are also considered for testing.

Testing only on images with annotation achieves results with around 10% improvement

compared to the reported results. The qualitative results of road-user importance estimation

using our proposed model are illustrated in Figure 5.5.

In this Figure, the blue bounding boxes correspond to the ground truth annotation

and the yellow bounding boxes correspond to the estimation of the model when using only
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the appearance feature. The red bounding boxes show the result of our iCARE model

which considers the intention based context of the scene as well as the appearance and

location features of the road-users. It can be seen in Figure 5.5-(a), when using only the

appearance feature, model gives false positive estimations for the cyclist on the right hand

side of the intersection. Also, for the car on the most left hand side, only the iCARE can

successfully detect the important road-users based on the learned intention from the scene

context. Furthermore, Figure 5.5-(b) and (c) show two very common cases in our test set

that incorporating the ego car’s intention based context helps to get rid of the false positive

estimations when using only the appearance of the road-users. In one experiment we also

compare the performance of our model when using the future path of the ego car as input

to the model versus when the model uses the context from path prediction (i.e., iCARE).

Figure 5.6 shows some examples of this experiment.

Figure 5.5: Examples of performance comparison of using appearance feature only (yellow)
vs iCARE (red) and ground truth (blue).

61



Figure 5.6: Comparison of performance of iCARE model (red) vs fusion of appearance,
spatial and input future path features (green). The blue bounding boxes show the ground
truth annotations for important road-users. The intensity of the red color shows the level of
importance of each road-user estimated by iCARE. Best viewed in color.

In this Figure the red layover color demonstrates the output of the iCARE model and the

intensity of the red color illustrates how important that road-user is based on the prediction of

our model. The blue bounding box corresponds to the ground truth and the green bounding

box corresponds to the experiment setting where the future path of the ego car has been used

as input feature (along with the appearance and location feature). It can be observed that

using the 10D future path vector as input is not as effective as using the future path context.

For instance, it can be observed in Figure 5.6-(a)-(b) that when using the future path as

input, model can not estimate the important road-users properly, and also it sometimes leads

to false positives as it is shown in Figure 5.6-(c).

Moreover, the estimation error in predicting the future path of the car is shown in Figure

5.7. It can be observed that the estimation error increases as the distance to the ego vehicle

increases.

Some examples of our model’s failure estimations are shown in Figure 5.8. For instance in

Figure 5.8-(a), the iCARE model is not able to detect the left car in the intersection. This is
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Figure 5.7: Ego-vehicle future path prediction error versus distance from ego-vehicle.

mainly due to lack of road-user’s intention information (i.e. if the white car’s intention is to

turn right then it is not indeed important, but if it is going straight it should be considered as

important). Moreover, when some road-users are very far away from the ego car (Figure 5.8-

(b)), iCARE estimates them as not important. Another failure case is due to mis-detection

and other unavoidable causes (Figure 5.8-(c)). Interestingly, sometimes estimations of the

iCARE does make sense even though those road-users have not been annotated as important

(e.g., traffic sign in Figure 5.8-(c)).

In another experiment, we investigate the subjectivity issue in road-user importance

estimation. In fact, even though most drivers agree on the obvious important road-users

(e.g., a pedestrian in front of the moving ego car, etc.), different drivers might have different

opinion about importance of some of the road-users. In order to study this subjectivity,

annotation from a different annotator is used to test our model. The performance of iCARE

versus appearance-based baseline when trained with first annotation and tested with second

annotation is shown in Figure 5.9. This Figure shows precision-recall curves of the proposed

iCARE model (shown in light blue) with F1 = 0.59 and appearance-based baseline (shown

in red) with F1 = 0.53. It can be observed that even though the iCARE model achieves
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Figure 5.8: Three examples of failure cases of iCARE model estimations. (red: iCARE
estimation, blue: ground truth, yellow: using only appearance feature for importance
estimation.)

lower accuracy (compared to train and test with same annotation), it still works fairly well

and has a consistent behavior with our previous results.

5.4 Conclusion and Future works

In this research, we investigated the effect of ego car’s intention and its context on

estimating road-users importance using only images taken from 3 cameras in front of the

car. The proposed iCARE model estimates the important road-users based on a 2-stage

recognition framework, where the first stage generates important road-user proposals using

an importance-guided training scheme. In the second stage, model selectively picks the most

important road-user proposals by taking into account the location and intention context

information. Our future work is to incorporate the intention of the road-users into our model
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Figure 5.9: Precision-recall curves for iCARE (light blue) and the baseline (red) when
trained on the first annotation and test on the second annotation.

which plays an important role in determining which road-user is important. Furthermore,

incorporating other contextual information (e.g., depth, motion, etc.) can be an interesting

line of future research for road-user importance estimation.
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Chapter 6

Class-Discriminative Meta-Learning

based Few-Shot Learning

Although deep learning-based approaches have been very effective in solving problems with

plenty of labeled data, they suffer in tackling problems for which labeled data are scarce.

In few-shot classification, the objective is to train a classifier from only a handful of labeled

examples. In this research, we propose an attention-based context-aware query embedding

encoder for incorporating support set context into query embedding and generating more

discriminative and task-dependent query embeddings.

Moreover, we propose a few-shot learning framework based on structured margin loss

which takes into account the global structure of the support set in order to generate a highly

discriminative feature space where the features from distinct classes are well separated in

clusters. The task-dependent features help the meta-learner to learn a distribution over tasks

more effectively. Extensive experiments based on few-shot, zero-shot and semi-supervised

learning on three benchmarks show the advantages of the proposed model compared to

state-of-the-art.

6.1 Introduction

Deep learning has made major advances in many areas, but still has limitations when it comes

to problems with limited number of labeled data. In practice, many learning problems require
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rapid inference from small amount of data. In particular, many practical recognition systems

should be able to recognize a new category from a handful of training images. Humans on the

other hand are able to rapidly learn new classes. For example, a child can learn to recognize

a new object by only seeing one picture of that object. Human can recognize objects even

without seeing the examples of that object category and just by hearing the description of

that object (similar to zero-shot learning). This significant gap between human and machine

learning provides fertile ground for few-shot learning developments.

Few-shot classification is a task in which a classifier must be able to generalize from

few examples. Recently there has been a surge of interest in using meta-learning (learning-

to-learn) for few-shot learning (Snell et al., 2017; Vinyals et al., 2016; Ren et al., 2018;

Sung et al., 2018). These approaches use a meta-learning strategy which includes extracting

some transferable knowledge from a set of tasks and transferring the knowledge to quickly

adapt to new tasks without suffering from the overfitting that might happen when applying

deep models to problems with small amount of data. Specifically, these meta-learning based

models utilize sampled mini-batches called episodes during training, where each episode is

designed to mimic the few-shot task by sub-sampling classes as well as data points. The use

of episodes makes the training problem more faithful to the test environment and thereby

improves generalization (Vinyals et al., 2016). In fact, the meta-learner learns a strategy for

generalizing to an unseen task from a similar task distribution. Here instead of learning the

distribution of data samples (as in regular machine learning algorithms), the model learns

the distributions of tasks.

Several successful directions have been explored recently for meta-learning-based few-

shot learning, including learn to fine-tune (Finn et al., 2017; Ravi and Larochelle, 2016),

sequence based methods (Santoro et al., 2016), and metric learning models (Vinyals et al.,

2016; Snell et al., 2017; Sung et al., 2018). However, there are still challenges in solving the

few-shot learning problem. For instance, even though reducing the intra-class variation is a

very critical factor in the current few-shot classification problem setting, recent works seldom

explicitly study it. In this work, we address this issue by defining a structured-based margin

loss to explicitly decrease the intra-class distance between feature embedding of each class in

the support set and create a structured support set embedding. The structured-based margin
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considers the relationship between all the support set samples in minimizing the loss and

guide the model to learn a deep metric to cluster the support set embeddings and generates

a highly discriminative feature space where all classes are well separated. We refer to the

proposed Class-Discriminative Few-Shot learning framework in this research as CDFS.

In episode-based few-shot learning frameworks a task is defined based on context of

support set and its relationship with the query in each episode. It has been shown in

(Oreshkin et al., 2018), that incorporating the task information to the feature embedding can

highly improve the performance of few-shot classification as in Prototypical Networks (Snell

et al., 2017). The proposed context-aware query embedding in this research incorporates the

task information into query embedding in each episode using attention mechanism and 1-D

CNN.

Besides few-shot learning, we also show performance of our proposed model for zero-shot

classification. In the zero-shot setting, each class comes with a category description (meta-

data) giving a high-level description of the class rather than a small number of labeled

examples. We therefore learn an embedding of the meta-data into a shared space to serve

as the prototype for each class. Classification is performed, as in the one-shot scenario, by

finding the nearest class prototype for an embedded query point.

The main contributions of this research are summarized as follows:

• Regularizing the few-shot classification setting with a structured-based margin loss

which takes into account the global structure of the support set feature space and

learns to explicitly reduce the intra-class variation in order to map the data to a highly

discriminative feature space where the few-shot classification is most effective.

• Proposing a context-aware query embedding module which takes into account the

support set’s context and generates task-dependent feature representations which

would help the meta-learner to learn a distribution over tasks more effectively.

• Performing extensive experiments based on few-shot, one-shot, zero-shot and semi-

supervised learning schemes to show the advantages of the proposed model compared

to state-of-the-art.
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Recently there has been a resurgence of interest in few-shot learning based on meta-

learning (Finn et al., 2017; Vinyals et al., 2016; Snell et al., 2017; Ravi and Larochelle,

2016; Santoro et al., 2016; Munkhdalai and Yu, 2017; Sung et al., 2018). The existing meta-

learning models for few-shot classification can be divided into three types: the learning to

fine-tune based, RNN based, and metric learning based. For instance, in (Finn et al., 2017)

the MAML model aims to meta-learn an initial condition that is good for fine-tuning on few-

shot problems. The model in (Ravi and Larochelle, 2016) is an LSTM-based optimizer that is

trained to be specifically effective for fine-tuning. In (Santoro et al., 2016), a recurrent neural

network iterates over examples of given problem and accumulates the knowledge required

to solve that problem in its hidden activations. However, these recent works either require

fine-tuning the target problem (Finn et al., 2017; Ravi and Larochelle, 2016), or need the

use of complex recurrent neural network (RNN) architectures (Santoro et al., 2016; Vinyals

et al., 2016), or are based on complicated inference steps (Fei-Fei et al., 2006). In our work,

the model is simple and fast and does not need any additional process such as fine tuning.

Moreover, we avoid the complexity of recurrent networks, and the issues involved in ensuring

the adequacy of their memory. Instead our proposed approach is defined entirely with feed

forward convolution neural networks.

The metric based few-shot learning has attracted a lot of interests recently (Vinyals et al.,

2016; Snell et al., 2017; Sung et al., 2018). The basic idea is to learn a metric which can

map similar samples close and dissimilar ones distant in the metric space so that a query

can be easily classified. Various metric based methods such as siamese networks (Chopra

et al., 2005), matching networks (Vinyals et al., 2016), prototypical networks (Snell et al.,

2017), and relation networks (Sung et al., 2018) have been proposed. They differ in their

ways of learning the metric. For instance, very recently the relation network (Sung et al.,

2018) proposed to replace the fixed metric learning part (e.g., Euclidean distance) of the

previous works with a deep metric for comparing the relation between images.

The success of metric based methods relies on learning a discriminative metric space. The

proposed method in this research can be categorized as the metric learning based framework

and the global version of the triplet loss (Schroff et al., 2015). To reach the full potential

of metric based few-shot learning, we augment the classification loss with a structure-based
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deep metric learning regularization which enforces the model to map the samples in the

support set to well separated clusters in the embedding space. This regularization is based

on an improved version of deep metric learning framework in (Oh Song et al., 2017) with no

need of sample selection and greedy algorithm. Unlike the metric learning methods based

on contrastive (Chopra et al., 2005) or triplet (Schroff et al., 2015) loss that are defined

in terms of data pairs or triplets, our approach takes into account the global structure of

the embedding space. In fact, the structured margin term in the loss function measures

the quality of clustering the data by taking into account the relationship between all the

data points in the mini batch at once (instead of data pairs or triplets). Furthermore, this

deep learning based metric learning framework does not require the training data to be

preprocessed in rigid paired or triplet format and uses a structured prediction framework

(Tsochantaridis et al., 2004; Joachims et al., 2009) to ensure that the score of the ground

truth clustering assignment is higher than the score of any other clustering assignment.

Taking advantage of contextual information in the support set is critical in episode-

based few-shot learning models. A framework for context modeling in the support set was

proposed in (Vinyals et al., 2016) based on a bi-directional LSTM. However, as the number

of classes and shots increases, the model is required to learn longer and more complex

dependencies, which negatively affects both generalization and efficiency. Furthermore, it

imposes an arbitrary ordering on the support set by using bi-directional LSTM (i.e., the

embedding changes if we shuffle the support set samples). Moreover, the meta-learner

architecture proposed in (Mishra et al., 2017) combines temporal convolutions (which

aggregate contextual information from past) with causal attention which pinpoints to specific

pieces of information. In this research, we propose a simpler but effective context-aware query

embedding framework based on attention mechanism and 1-D CNN for taking into account

the context of the support set and its relationship (i.e., task) with query embedding. The

proposed query encoder makes the query embedding task-dependent which helps learning a

meta-learner with higher generalization power.
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6.2 Method

In this section we first describe the meta-learning based few-shot classification. We then

elaborate on components of our proposed model including structured support set embedding

and context-aware query embedding modules.

6.2.1 Few-Shot Classification

The meta-learning based few-shot classification is defined based on episodic training. The

idea behind the episodic paradigm is to simulate the few-shot task that will be encountered

at test time. In each training iteration, an episode is formed by randomly selecting NC

classes from the training set with K labeled samples from each class to act as the support

set S = {(xi, yi)}mi=1, where m = K × NC and a query set Q = {(xi, yi)}
NQ

i=1 of different

examples from the same NC classes. Each xi ∈ RD is an input vector of dimension D

and yi ∈ {1, 2, . . . , NC} is a class label. Training on such episodes is done by feeding the

support set S to the model and updating the model’s parameters to minimize the loss of its

predictions for the examples in the query set Q. This form of training allows the model to

extract transferable knowledge based on different classification tasks seen in the episodes so

the model can exploit this knowledge in testing stage to classify the query samples coming

from new unseen classes.

In the proposed model, we employ a few-shot learning structure based on episodic training

as in Prototypical Networks (Snell et al., 2017) which uses the support set S to extract a

prototype cj ∈ RN from each class j = 1, . . . , NC through an embedding function fφ(x) :

RD → RN , where φ is the learnable parameters of the neural network. Each prototype is

defined as the mean vector of the embedded support points belonging to its class:

cj =
1

|Sj|
∑

(xi,yi)∈Sj

fφ(xi), (6.1)

where i = 1, . . . , K. The samples in the query set are then classified based on their distance

to the prototype of each class and a distribution over classes for a query point xq is defined

based on a softmax over distances to the prototypes in the embedding space (Snell et al.,
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2017):

pφ(y = j|xq) =
exp(−d(cj, fφ(xq)))∑
j′ exp(−d(cj′ , fφ(xq)))

(6.2)

It has been shown in (Snell et al., 2017), that the prototype in Eq. 6.1 yields cluster

representatives with the prototype as the cluster center and there is one cluster per class

when a Bregman divergence such as squared Euclidean distance is used.

In order to learn more discriminative embeddings for the few-shot learning task, in this

research we propose to impose a constraint based on structured margin on support set, to

explicitly enforce the class separation in embedding space based on the global structure of

the support set (Sec. 6.2.2). Furthermore, a context-aware query embedding module is

proposed to create task-dependent query features and also to pull the feature embedding of

the query towards corresponding class prototype in support set (Sec. 6.2.3). A toy example

showing the effect of proposed Class-Discriminative Few-Shot learning (CDFS) model on

feature space in a 5-shot, 3-way classification task is demonstrated in Figure 6.1. The model

architecture is shown in Figure 6.2.

6.2.2 Structured Support Set Embedding

Similar to metric-based few-shot learning methods (Snell et al., 2017; Vinyals et al., 2016;

Sung et al., 2018), our model learns a nonlinear embedding function fφ(x), parameterized

Figure 6.1: Toy example showing the effect of proposed Class-Discriminative Few-Shot
learning (CDFS) model on embedding space.
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Figure 6.2: Model architecture for 5-way, 1-shot classification.

as a neural network, that maps examples into a space where examples from the same class

are close and those from different classes are far apart. The embedded point fφ(x) is then

classified by a classifier, e.g., the softmax classifier. In this research, our objective is to learn

highly discriminative features with the joint supervision of softmax loss and Structured

Support Set (S3) loss as follows:

L = Lsoftmax + λ× LS3, (6.3)

where Lsoftmax is:

Lsoftmax =
1

NQ

∑
(xi,yi)∈Qj

[
d(cj, gθ(fφ(xi)))+

log
∑
j′

exp(−d(cj′ , gθ(fφ(xi))))

]
,

(6.4)

which is simply defined based on the average negative log-probability of the correct class

assignments, for all query examples. gθ(.) is the context-aware query embedding function
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to be described in Sec. 6.2.3 and λ is a scalar used for balancing the two loss functions.

LS3 is the Structured Support Set (S3) loss which guides the training by enforcing a margin

∆(y, ŷ) based on the global structure of the support set as follows:

LS3(X, fφ) =[
F (X, ŷ; fφ) + γ∆(y, ŷ)− F (X,y; fφ)

]
+

,
(6.5)

∆(y, ŷ) = 1− AMI(y, ŷ), (6.6)

where [z]+ = max(z, 0) and X = {x1, . . . ,xm} is the set of samples in the support set and

ŷ and y are the predicted and ground-truth support set labeling assignments, respectively.

This loss encourages the model to learn an embedding function fφ such that the ground

truth labeling score for the support set F (X,y; fφ) is greater than the score for any other

label assignments of the set F (X, ŷ; fφ), at least by the structured margin ∆(y, ŷ). F is

defined as a scoring function that encourages the embeddings of samples in each class to

be as close as possible to the prototype of that class and reduces the intra-class distance

between embeddings of each class and results in a compact feature representation of that

class around its prototype as follows:

F (X, ŷ; fφ) = −
∑
xi∈X

min
j
||fφ(xi)− ĉj||22, (6.7)

where xi is the ith data sample (e.g., image) in the support set and j = 1, . . . , NC .

The structured margin has been used in structure prediction problems such as structured

SVM (Finley and Joachims, 2008), structured KNN (Pugelj and Džeroski, 2011), etc., where

the problem involves predicting structured objects. In our problem the structured output

is defined as the labeling configuration of the support set. We define the structured margin

∆(y, ŷ) to measure the quality of the label assignment of the support set as in Eq. 6.6,

where AMI is the Adjusted Mutual Information and is defined as:

AMI(y, ŷ) =
MI(y, ŷ)− E{MI(y, ŷ)}

max{(H(y), H(ŷ))} − E{MI(y, ŷ)}
, (6.8)

74



where MI is the mutual information which is a non-negative quantity which quantifies the

information shared by the two label sets (i.e., clusterings), E{MI(y, ŷ)} is the expected

value of the MI, and H is the entropy. The AMI takes a value of 1 when the two sets are

identical and 0 when the MI between two sets equals the value expected due to chance alone.

In fact, AMI is an adjustment of the MI score to account for chance. Our experiments show

that using AMI gives slightly better results compared to NMI and other similarity measures.

For more details about AMI please refer to (Romano et al., 2016).

Training of the model is performed by minimizing the average loss, iterating over training

episodes and performing a gradient descent update for each. For more details about

optimization for structured prediction please refer to (Tschiatschek et al., 2014; Lin and

Bilmes, 2012; Oh Song et al., 2017; Tschiatschek et al., 2014). All parameters of our model

lie in the embedding function and by using the combination of softmax loss and structured

margin loss, the model learns a discriminative embedding function with two key learning

objectives, inter-class dispersion and intra-class compactness as much as possible, which are

essential to few-shot learning.

6.2.3 Context-Aware Query Embedding

The goal of this part of the model is to create task-dependent query embeddings and pull

them towards their class prototypes based on the task context in each episode. Task-

dependent query features help the meta-learner to learn a more effective distribution over

the tasks. Let fφ(xq) be the embedding of a query image taken from the CNN and cj

be the prototype of the jth class. For each sample in the query set Q, a context vector

vq is extracted from the support set based on the similarity of the query embedding and

the prototypes in the support set. The context vector is calculated using a content-based

attention mechanism as follows:

a(cj, fφ(xq)) =
exp(−d(cj, fφ(xq)))∑NC

n=1 exp(−d(cn, fφ(xq)))
, (6.9)

vq =

NC∑
j=1

a(cj, fφ(xq))cj, (6.10)
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where a represents the attention weight and d is, again, the Euclidean distance. The more

similar a query embedding to a prototype of a class, the larger is the attention weight of that

prototype in context vector. The content-based attention has the property that the context

vector vq will not be sensitive to the order of the prototypes in the support set since it is

the weighted sum of them. In other words, the similarity information retrieved from the

support set would not change if we randomly shuffle the prototypes in the support set. After

calculating the context vector for each query member, fφ(xq) and vq get concatenated and go

through a 1-D convolutional block. The convolutional block consists of batch normalization,

ReLU activations and pooling. The output of the query encoder is gθ(fφ(xq),vq) where θ

is the trainable parameter of the encoder (i.e., 1-D CNN). Figure 6.3 illustrates the details

of query embedding module by a toy example of 5-way classification task. The non-linear

function gθ is trained to infer the relationship between query and support set and modify

the query feature to increase the discrimination power of the model. Figure 6.3 shows an

example of how query encoder can modify the query embedding to be closer to the prototype

of the matched class in the support set.

Figure 6.3: Context-aware query embedding architecture. In this example the query
embedding fφ(xq) and the top prototype c1 in the support set are in class 1. Change of
blue color of the query embedding shows how the encoder pulls this feature towards the
prototype of class one (i.e., c1) by incorporating the task context in episodes. In general,
during training, the non-linear function gθ learns how to modify the query embedding based
on support set context to achieve optimum classification performance.
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Table 6.1: Number of samples in episodes in different few-shot classification setting for
Omniglot dataset during training.

Experiment num. of queries num. of support set samples num. episode samples
5-way 1-shot 19 5 100
5-way 5-shot 15 25 100
20-way 1-shot 10 20 220
20-way 5-shot 5 100 200

6.2.4 Zero-Shot Learning and Semi-Supervised Adaptation

In Zero-Shot Learning (ZSL) we are given a class attribute vector rj for each class instead

of the support set of training data in the few-shot learning setting. In order to have our

proposed model to work in zero-shot setting we define the prototype cj = fφ2(rj) to be the

embedding of the attribute vector (different from the query embedding fφ), since its modality

is different from query images. Classification is performed, as in the few-shot scenario, by

finding the nearest class prototype for an embedded query point.

Another capability of the proposed model in this research is to adapt to semi-supervised

classification in testing stage. Specifically, in the semi-supervised scenario, the model needs

to adapt to tasks which contain both labeled and unlabeled samples. We assume that we

have access to a few labeled examples and many unlabeled examples from the classes in the

support set. Since our model is able to generate highly distinguishable feature embeddings

in form of separate clusters, unlabeled samples are clustered to the corresponding classes

in test time. The prototypes are estimated at test time using the labeled and unlabeled

samples and then the query samples are classified based on the nearest prototype. We will

show that taking advantage of unlabeled samples can improve the few-shot classification

accuracy. This semi-supervised setting can be extended to training stage as in (Ren et al.,

2018), where they also consider the scenario in which the unlabeled support set may contain

samples from irrelevant classes.

6.3 Experiments and Results

For fair comparison we follow the same experiment setting as in most recent few-shot learning

works (Snell et al., 2017; Sung et al., 2018; Vinyals et al., 2016). We evaluate our approach on
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three related tasks: few-shot classification on Omniglot (Lake et al., 2011) and miniImagenet

(Vinyals et al., 2016), zero-shot classification on Caltech-UCSD Birds-200-2011 (CUB) (Wah

et al., 2011), and semi-supervised few-shot adaptation on miniImagenet. Like most few-shot

learning models we utilize four convolutional blocks for the embedding module to make the

experiments comparable. Specifically, each convolutional block comprises a 64-filter 3 × 3

convolution, batch normalization layer (Ioffe and Szegedy, 2015), a ReLU nonlinearity, and

a 2× 2 max-pooling layer. When applied to the 28× 28 Omniglot images this architecture

results in a 64-dimensional embedding. We use the same encoder for embedding (i.e., fφ) of

both support and query points. The query embedding is modified further by a 1-D CNN in

query encoder.

The 1-D CNN in the query embedding module has a convolutional block, batch

normalization, and non-linear activation ReLU. As the input tensors are one-dimensional

representations of the query images, the convolutional filters are one dimensional of size

1 × 3. Our model is trained end-to-end via SGD with Adam (Kingma and Ba, 2014). We

use an initial learning rate of 10−3 and cut the learning rate in half every 2000 episodes. We

observe that the classification performance of our model remains largely stable across a wide

range of small λ values, so we fix it to 0.005. Also, the γ in Eq. 6.7 is set to 0.01. Optimizing

the loss in our model does not need any complex selection of the training samples such as

pairs or triplets. Consequently, the learning of our CNN based model is more efficient than

methods based on contrastive or triplet loss and is easy to implement. Moreover, the learning

objective of our loss is intra-class compactness, which is critical for discriminative feature

learning in few-shot classification. We implement our model using the TensorFlow (Abadi

et al., 2016) deep learning framework on an Intel Xeon CPU and two NVIDIA TITAN X

GPU.

6.3.1 Few-Shot Learning

We perform experiments for few-shot classification on Omniglot (Lake et al., 2011) and

miniImagenet (Vinyals et al., 2016) datasets as follows.
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Table 6.2: Omniglot few-shot classification. Results are accuracies averaged over 1000 test
episodes and with 95% confidence intervals where reported.

Model Fine Tune 5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

MANN (Santoro et al., 2016) N 82.8% 94.9% - -
C SIANETS (Koch et al., 2015) N 96.7% 98.4% 88.0% 96.5%
CL SIA NETS (Koch et al., 2015) Y 97.3% 98.4% 88.1% 97.0%
MNETS (Vinyals et al., 2016) N 98.1% 98.9% 93.8% 98.5%
M NETS (Vinyals et al., 2016) Y 97.9% 98.7% 93.5% 98.7%
SIAMEMORY (Kaiser et al., 2017) N 98.4% 99.6% 95.0% 98.6%
NSTAT(Edwards and Storkey, 2016) N 98.1% 99.5% 93.2% 98.1%
METNETS (Munkhdalai and Yu, 2017) N 99.0% - 97.0% -
MAML (Finn et al., 2017) Y 98.7% 99.9% 95.8% 98.9%
RELATION NET (Sung et al., 2018) N 99.6% 99.8% 97.6% 99.1%
PROTO NETS (Snell et al., 2017) N 98.8% 99.7% 96.0% 98.9%
CDFS (ours) N 99.7% 99.8% 98.4% 99.5%

Omniglot

Omniglot dataset contains 1623 characters (classes) from 50 different alphabets. There are

20 samples in each class, drawn by different people. For this experiment all input images

are resized to 28 × 28. Following previous few-shot classification works, we augment new

classes through 90, 180 and 270 rotations of existing data and use 1200 original classes plus

rotations for training and remaining 423 classes plus rotations for testing. The few-shot

classification accuracy on Omniglot is computed by averaging over 1000 randomly generated

episodes from the testing set. During training, the 5-way 1-shot contains 19 query images,

the 5-way 5-shot has 15 query images, the 20-way 1-shot has 10 query images and the 20-way

5-shot has 5 query images in each episode. The total number of samples in each episode for

different settings during training is show in Table 6.1.

During testing, there are one and five query images per class for the 1-shot and 5-shot

experiments, respectively. The results of 5-way and 20-way classification for 1-shot and 5-shot

classification are shown in Table 6.2. The best-performing methods are highlighted. The

proposed method achieves state-of-the-art performance under 20-way experiments setting

and competitive results for 5-way classification. Specifically the proposed method has
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Table 6.3: miniImageNet few-shot classification. Results are accuracies averaged over 600
test episodes and with 95% confidence intervals where reported.

Model Fine Tune 5-way Acc.
1-shot 5-shot

MATCHING NETS (Vinyals et al., 2016) N 43.5% 55.3%
META NETS (Munkhdalai and Yu, 2017) N 49.2% -
MAML (Finn et al., 2017) Y 48.7 % 63.1%
META-LEARN LSTM (Ravi and Larochelle, 2016) N 43.4% 63.1%
RELATION NET (Sung et al., 2018) N 50.4% 65.3%
PROTOTYPICAL NETS (Snell et al., 2017) N 49.4% 68.2%
CDFS (ours) N 52.7% 72.8%

improved its baseline based on Prototypical Nets. (Snell et al., 2017). For 5-way 5-shot

setting almost all methods perform perfectly since it is a rather easy classification task.

miniImageNet

The miniImagenet dataset, consists of 60, 000 RGB images with 100 classes, each having

600 examples and we resize input images to 84 × 84. 64, 16, and 20 classes are used for

training, validation and testing, respectively. During training, there are 80 and 75 images

in one episode of 5-way 1-shot and 5-way 5-shot setting. In fact, the 5-way 1-shot setting

contains 15 query images, and 5-way 5-shot setting has 10 query images for each of the

NC classes in each training episode. Few-shot classification accuracies on miniImagenet are

shown in Table 6.3. All accuracy results are averaged over 600 test episodes and are reported

with 95% confidence intervals. For each experiment setting the best-performing method is

highlighted. The proposed method achieves state-of-the-art result in both 1-shot and 5-shot

settings without any fine-tuning. Table 6.3 shows that our proposed method can improve

the 1-shot and 5-shot accuracy of Prototypical Nets by around 3% for 1-shot and 4% for

5-shot in 20-way classification.

6.3.2 Zero-Shot Classification

We use the Caltech-UCSD Birds (CUB) 200-2011 dataset in order to evaluate our proposed

method for zero-shot learning. The CUB dataset contains 11, 788 images of 200 bird species.
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Table 6.4: Zero-shot classification accuracies on CUB-200.

Model Feature Ext. 50-way Acc.
SJE (Akata et al., 2015) GoogLeNet 50.1
ESZSL (Romera-Paredes and Torr, 2015) GoogLeNet 47.2
SSE-RELU (Zhang and Saligrama, 2015) VGG-19 30.4
JLSE (Zhang and Saligrama, 2016) VGG-19 42.1
SYNC-STR(Changpinyo et al., 2016) GoogLeNet 54.5
SEC-ML (Bucher et al., 2016) VGG-19 43.3
REL. NET (Sung et al., 2018) N-GoogLeNet 62.0
PROTO.NETS (Snell et al., 2017) GoogLeNet 54.6
CDFS (ours) GoogLeNet 55.8

We divide the classes into 100 training, 50 validation, and 50 test. For images we use 1024-D

features extracted by applying GoogLeNet (Szegedy et al., 2015) pre-trained on ImageNet.

We also augment images using the procedure in (Snell et al., 2017). For class attribute for

zero-shot setting the 312-dimensional attribute vectors provided with the CUB dataset are

used. These attributes encode various characteristics of the bird species such as their color,

shape, and feather patterns.

We use an MLP network on top of both the 1024-dimensional image features and the 312-

dimensional attribute vectors to produce a 1024-dimensional output space. We normalize

the class prototypes to be of unit length, since the attribute vectors come from a different

modality than the images. Training episodes were constructed with 50 classes and 10 query

images per class. The embeddings were optimized via SGD with Adam at a fixed learning

rate of 10−4. The result of zero-shot learning is shown in Table 6.4. The second column

demonstrate the type of feature extractor that these methods use for extracting image

features (i.e., either VGG-19 (Sung et al., 2018) or GoogLeNet (Szegedy et al., 2015)).

It can be observed that Relation Net. (Sung et al., 2018) outperforms other methods.

However, this method is not directly comparable with other methods since its image

embedding subnet and how the visual feature space is computed are slightly different from

other methods as discussed in (Sung et al., 2018). Our proposed method is the second best

performing approach in zero-shot learning.
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6.3.3 Semi-supervised Adaptation

We assume that we have access to a few labeled examples (i.e., five example per class)

and many unlabeled examples from the same classes in the support set. Since our model

is able to generate highly distinguishable feature embeddings in form of separate clusters,

unlabeled samples are clustered to the corresponding classes in test time. The prototypes are

estimated at test time using the labeled and unlabeled samples and then the query samples

are classified based on the nearest prototype. We use miniImagenet for this experiment and

the 5-way 1-shot setting contains 15 query images, and 5-way 5-shot setting has 10 query

images for each of the classes in each training episode. Table 6.5 shows how the number of

unlabeled examples at test time affects the classification accuracy of the trained model. The

results indicate that more unlabeled samples yield better performance, however, with the

increase of the number of unlabeled samples, the improvement plateaus. Please note that

semi-supervised setting is only for test time and the training needs the full label set.

6.3.4 Ablation Study

In order to evaluate the effect of context-aware query encoder and the S3 loss we perform

the following ablation study. The first experiment setting is training and testing the model

without using the query encoder which we denote by CDFS-NoQE. The second scenario is

to remove the S3 loss during training which we denote by CDFS-NoS3. For this experiment

the miniImagenet is used in 5-way 5-shot setting and all the experimental parameters are

the same as in Sec. 6.3.1. It can be observed from Table 6.6 that removing either the

S3 regularization or the query encoder causes the performance to drop since it reduces the

discriminative power of the model. However, removing the S3 loss has more negative effect

Table 6.5: 5-way testing accuracy using CDFS method on miniImagenet for the semi-
supervised scenario for different number of unlabeled samples per class (n).

n 1-shot 5-shot
5 52.9 73.0
10 54.0 74.3
20 55.2 74.8
40 58.9 75.1
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Table 6.6: Ablation study to evaluate the effect of S3 loss and query encoder in the CDFS
model on miniImagenet dataset.

Model 5-way 5-shot
CDFS-NoQE 70.6
CDFS-NoS3 69.1
CDFS (full) 72.8

on accuracy and causes a drop of 3.7% in accuracy which shows the importance of this

regularization in performance of the model.

6.4 Conclusion

In this research, we introduced a simple but effective few-shot learning model which can

produce highly discriminative embedding space with low intra-class variance. With removing

the softmax loss and defining the episodes as one set without a query, the proposed approach

can be considered as a few-shot clustering method which learns a deep non-linear metric in

order to learn to cluster the data in few-shot setting using meta-learning. The future work

is to extend the proposed framework to unsupervised few-shot classification by following the

idea of learning to cluster proposed in this work.
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Chapter 7

Conclusion and Future Works

In this dissertation, the importance of attention mechanism in recognition tasks in computer

vision was studied by designing novel attention-based models and four scenarios were

investigated that represent the most important aspects of attention mechanism.

An attention-based model was designed to reduce the visual features’ dimensionality by

selectively processing only a small subset of the data. We studied this aspect of the attention

mechanism in a framework based on object recognition in distributed camera networks.

However, the proposed model for feature selection is not limited to camera networks and can

be used in any scenario where the goal is to extract the most informative part of the data.

Furthermore, an attention-based image retrieval system (i.e., person re-identification)

was proposed which can learn to focus on the most discriminative regions of the person’s

image and process those regions with higher computation power using a deep convolutional

neural network. Furthermore, we showed how visualizing the attention maps can make deep

neural networks more interpretable. In other words, by visualizing the attention maps we

can observe the regions of the input image where the neural network relies on, in order to

make a decision. Future work can be adding a temporal attention to the proposed model to

study the effect of spatio-temporal attention on video-based recognition tasks.

Moreover, in this dissertation a model for estimating the importance of the objects in a

scene based on a given task was proposed. The proposed model estimates the importance of

the road users that a driver (or an autonomous vehicle) should pay attention to in a driving

scenario in order to have safe navigation. In this research, we investigated the effect of ego
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car’s intention and its context on estimating road users importance using only images taken

from 3 cameras in front of the car. The proposed iCARE model estimates the important road

users based on a 2-stage recognition framework, where the first stage generates important

road user proposals using an importance-guided training scheme. In the second stage, model

selectively picks the most important road user proposals by taking into account the location

and intention context information. Our future work is to incorporate the intention of the

road users into our model which plays an important role in determining which road user is

important. Furthermore, incorporating other contextual information (e.g., depth, motion,

etc.) can be an interesting line of future research for road user importance estimation.

Last but not least, an attention-based module and a new loss function were proposed in

order to incorporate the context of the task into the feature representations of the samples

and increasing the few-shot recognition accuracy. In this research, we introduced a simple

but effective few-shot learning model which can produce highly discriminative embedding

space with low intra-class variance. With defining the episodes as one set without a query,

the proposed approach can be considered as a few-shot clustering method which learns a deep

non-linear metric in order to learn to cluster the data in few-shot setting using meta-learning.

The future work is to extend the proposed framework to unsupervised few-shot classification

by following the idea of learning to cluster proposed in this work. The approach of learning to

learn, or meta-learning, is a key stepping stone towards versatile models that can continually

learn a wide variety of tasks throughout their lifetimes. Regarding the exciting power of meta-

learning to deal with new tasks, we expect to see great surge of interest for applications and

improvements of meta-learning based models in the near future.

To sum up, in this dissertation, we showed that attention can be multi-facet and studied

the attention mechanism from the perspectives of feature selection, reducing computational

cost, interpretable deep learning models, task-driven importance estimation, and context

incorporation. Regarding the effectiveness of attention mechanism in different aspects of

computer vision and deep learning, in future, we expect to see developments of numerous

novel attention-based models and use of these models in various new tasks as well.
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