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ABSTRACT

The pervasive use of social media gives it a crucial role in helping the public perceive

reliable information. Meanwhile, the openness and timeliness of social networking

sites also allow for the rapid creation and dissemination of misinformation. It be-

comes increasingly difficult for online users to find accurate and trustworthy informa-

tion. As witnessed in recent incidents of misinformation, it escalates quickly and can

impact social media users with undesirable consequences and wreak havoc instanta-

neously. Different from some existing research in psychology and social sciences about

misinformation, social media platforms pose unprecedented challenges for misinfor-

mation detection. First, intentional spreaders of misinformation will actively disguise

themselves. Second, content of misinformation may be manipulated to avoid being

detected, while abundant contextual information may play a vital role in detecting

it. Third, not only accuracy, earliness of a detection method is also important in con-

taining misinformation from being viral. Fourth, social media platforms have been

used as a fundamental data source for various disciplines, and these research may

have been conducted in the presence of misinformation. To tackle the challenges,

we focus on developing machine learning algorithms that are robust to adversarial

manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misin-

formation detection in social media. To tackle the challenges of adversarial attacks,

I propose adaptive detection algorithms to deal with the active manipulations of

misinformation spreaders via content and networks. To facilitate content-based ap-

proaches, I analyze the contextual data of misinformation and propose to incorporate

the specific contextual patterns of misinformation into a principled detection frame-

work. Considering its rapidly growing nature, I study how misinformation can be

detected at an early stage. In particular, I focus on the challenge of data scarcity
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and propose a novel framework to enable historical data to be utilized for emerging

incidents that are seemingly irrelevant. With misinformation being viral, applica-

tions that rely on social media data face the challenge of corrupted data. To this

end, I present robust statistical relational learning and personalization algorithms to

minimize the negative effect of misinformation.
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interactions and feedback.

I have been fortunate to work with many colleagues. I want to thank Xia Hu,

Jundong Li, Fred Morstatter, Liang Du, Liangjie Hong, Mihajlo Grbovic, Justin

Sampson, Kathleen M. Carley, Diane Hu, Harsh Dani, Kewei Cheng, Tahora H.

Nazer, Sicong Kuang, and Giovanni Luca Ciampaglia.

Members of our Data Mining and Machine Learning Lab inspired me a lot through

discussions, group meetings, and project collaborations. I would like to thank Ali Ab-

basi, Huiji Gao, Pritam Gundecha, Isaac Jones, Shamanth Kumar, Suhas Ranganath,

Jiliang Tang, Robert Trevino, Suhang Wang, Reza Zafarani, Philippe Christophe Fau-

con, Yunzhong Liu, Ghazaleh Beigi, Kai Shu, Lu Cheng, Nur Shazwani Kamrudin,

Ruocheng Guo, Kaize Ding, Raha Moraffah, Bing Hu, Matthew Davis, Alex Nou,

and Daniel Howe, for their valuable suggestions and discussions.

I had the privilege of mentoring some terrific undergraduate and master students.

Through The School of Computing, Informatics and Decision Systems Engineerings

capstone program, I worked with Corey Mcneish, Christina Wilmot, Raquel Lippin-

cott, Spencer Graf, Matthew Gross, and Philip Terzic. Through Barrett, The Honors

Colleges Undergraduate Thesis program I had the opportunity to work with Lilian

Ngweta. I have had the privilege of supervising master students who helped with our

iv



projects: Shobhit Sharma, Ashutosh Bhadke, Kunal Bansal, and Venkatesh Magham.

I am grateful to all of the students for their assistance in the lab.

United States would not have been so enjoyable to settle down without the support

of my dear friends. I would especially like to thank Xing Liang, Jundong Li, Fred

Morstatter, Rio Cavendish and all of my other friends for their support.

Finally, to my parents for their love and support through my many years of grad-

uate study. To my wife for always supporting my dreams, ideas and endeavors - none

of my accomplishments are mine alone. To Frankie, our orange tabby friend, for

adopting me and making our apartment a home.

v



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 MISINFORMATION DETECTION OF SPREADERS . . . . . . . . . . . . . . . . . 11

3.1 Exploratory Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Camouflaged Misinformation Spreaders in Social Media. . . . . . . . . . . . 12

3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Detecting Camouflaged Misinformation Spreaders . . . . . . . . . . . . . . . . . 15

3.4.1 Modeling Content Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Detecting Camouflaged Polluters with Discriminant Analysis 16

3.4.3 An Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.4 Time Complexity and Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5.4 Importance of Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . 30

3.5.5 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 MISINFORMATION DETECTION WITH CONTEXTUAL INFORMA-

TION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Misinformation in Social Media: Content and Context . . . . . . . . . . . . . 33

vi



CHAPTER Page

4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Exploiting Context in Detecting Misinformation . . . . . . . . . . . . . . . . . . 35

4.3.1 Sequence Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.2 Embedding of Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 MISINFORMATION DETECTION AT AN EARLY STAGE . . . . . . . . . . . 55

5.1 Data Scarcity at an Early Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Early Detection with Prior Label Information . . . . . . . . . . . . . . . . . . . . . 57

5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3.2 Working of the Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.3 Effectiveness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4.4 Earliness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.5 Rumor Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



CHAPTER Page

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 CLASSIFICATION WITH MISINFORMATION . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Challenges of Misinformation Contaminating Social Media Data. . . . 75

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Robust Statistical Relational Learning with Misinformation . . . . . . . . 78

6.3.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 Time Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.3 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Baseline Methods and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.4 Experiments on BlogCatalog Data . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.5 Experiments on Flickr Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.6 Analysis for Instance Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 PERSONALIZATION IN PRESENCE OF MISINFORMATION . . . . . . . . 92

7.1 Emerging Challenges of Personalization in Social Media . . . . . . . . . . . 92

7.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.3 Personalizing Newsfeed in Social Media . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.1 Content Modeling with Multiple Instance Learning . . . . . . . . . 95

7.3.2 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3.3 Joint Modeling of Posts and Users . . . . . . . . . . . . . . . . . . . . . . . . 99

7.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

viii



CHAPTER Page

7.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 Performance Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.4.2 Earliness of Personalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

BIOGRAPHICAL SKETCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

ix



LIST OF TABLES

Table Page

3.1 Statistics of the Dataset Used in This Study. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Results on TwitterH Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Results on TwitterS Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Average Euclidean Distance Between Nodes with Low Dimensional

Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Statistics of the Datasest Used in This Study. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 The F1-measure of Different Methods on the Task of Social Media News

Categorization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 The F1-measure of Different Methods on the Task of Fake News De-

tection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Two Real-world Examples of Social Media Rumors. . . . . . . . . . . . . . . . . . . 58

5.2 Performance on Detecting Emerging Rumors. . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Three Example Categories of Rumors Detected by CERT. . . . . . . . . . . . . 73

6.1 The Statistics about Employed Datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 Content-centric Features Used in This Study. . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Statistics of the Dataset Used in This Study. . . . . . . . . . . . . . . . . . . . . . . . . . 102

x



LIST OF FIGURES

Figure Page

3.1 Distribution of Posts from Known Misinformation Spreaders and Nor-

mal Users with the First Two Principal Components. Many Posts from

Misinformation Spreaders Are Legitimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Precision and Recall of Different Methods with Varying Ratio of Posi-

tive Examples by Randomly Down-sampling Normal Users. . . . . . . . . . . . 26

3.3 Precision and Recall of CCPDA with Varying Parameters. . . . . . . . . . . . . 28

3.4 Comparison of Training Convergence Speed of Single Thread and Par-

allel Learning in Terms of the Number of Iterations (a) and Time in

Seconds (b). Though Multi-thread SGD Converges with More Itera-

tions, Parallel Optimization Significantly Reduces the Training Time. . . 31

4.1 The Frequency of Users Appearing in Traces of Social Media Messages

Follows a Power-law Distribution, Which Is Similar to the Distribution

of Word Frequencies in Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 An Illustration of the Learning Procedure of the Proposed Framework.

The Framework Consists of Three Components: Inferring Rumor Cat-

egories (Structure Learning), Selecting Discriminative Features, and

Learning the Rumor Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Performance of Traditional Approaches with Chronologically Addi-

tional Training Data, While CERT Uses the Historical Data. . . . . . . . . . . 73

xi



Figure Page

6.1 Illustration of Comparison Between Traditional Relational Learning

and the Proposed Approach with Instance Selection. A Classic Re-

lational Learning Method Directly Constructs a Classifier with Avail-

able Label Information; While the Proposed Framework First Removes

Noise from the Label Information by Actively Selecting Instances, upon

Which a Classifier Is Built. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2 Comparison of Different Methods on the BlogCatalog Dataset with

Macro-F1 and Micro-F1 Measures. Additional Training Instances are

Randomly Selected and Flipped with the Label. . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Comparison of Different Methods on the Flickr Dataset With Macro-F1

and Micro-F1 mEasures. Additional Training Instances Are Randomly

Selected and Flipped with the Label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4 Comparison of Effectiveness of Different Methods in Identifying Misla-

beled Instances for BlogCatalog and Flickr Datasets. Plots Show the

Percentage of Mislabeled Nodes Being Fixed by Checking Instances in

Training Data. RLM Ranks Data Instances with the Learned Weight

in a Descending Order, RNMF Ranks Data with the Training Loss,

and We Adopt a Random Baseline That Selects Nodes at Random. . . . . 90

7.1 Example User Posts and Trending Topics on September 11th, 2016.

The First Post Explicitly Includes the Trending Topic Hashtag, and

the Later Two Are past Posts of Two Users. . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.2 Performance Comparisons for Different Personalization Methods with

95% Confidence Interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xii



Figure Page

7.3 Performance of Different Models with Chronologically Additional Train-

ing Data, While Socdim Uses the Social Network Structures. . . . . . . . . . . 106

xiii



Chapter 1

INTRODUCTION

A rapid increase of social networking services in recent years has revolutionized the

way people communicate and seek information. The openness of social media makes

social networking applications, such as Facebook1 and Twitter2, a popular platform

for the communication of trending and time-sensitive content. A recent study from

Pew Research finds that 62% of adults get their news from social media in United

States, with 29% among them doing so very often3. Therefore, it is of paramount

importance to keep misinformation from being viral in social media.

However, the openness and increasing popularity of social networking platforms

also make them an ideal target for misinformation dissemination. There are several

related terms similar to misinformation. Rather than the concepts that are relatively

easy to distinguish, such as spam and rumor, the most related term is disinformation,

which specially refers to the intentionally spread incidents. In this dissertation, we

refer to misinformation as an umbrella term to include all false or inaccurate informa-

tion that is spread in social media. We choose to do so since on a platform where any

user can publish anything, it is particularly difficult for researchers, or even adminis-

trators of social network companies, to determine whether a piece of misinformation

is deliberately created. The concepts that are covered include disinformation, spam,

rumor, fake news, and all of them share a characteristic that the inaccurate messages

can causes distress and various kinds of destructive effects through social media.

1https://www.facebook.com/
2https://www.twitter.com/
3http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/
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There have been examples of widespread misinformation in social media during the

2016 Presidential Election in the US. An example of misinformation facilitating un-

necessary fears through social media. One such example is PizzaGate, a conspiracy

theory about a pizzeria being a nest of child-trafficking. It started breaking out si-

multaneously on multiple social media sites including Facebook, Twitter and Reddit4.

After being promoted by radios and podcasts5, the tense situation finally motivated

someone to fire a rifle inside the restaurant6. PizzaGate even circulates for a while

after the gunfire and being debunked. Though misinformation has been studied in

psychology and social sciences, characteristics of social networking platforms, together

with the adversarial attacks of misinformation spreaders present novel challenges for

the task of misinformation detection in social media.

First, in the process of information propagation, misinformation spreaders would

exploit vulnerabilities of social networking platforms to avoid being identified. Unlike

traditional classification tasks of social media accounts, misinformation spreaders can-

not be detected through directly modeling their content information or network topol-

ogy. For example, since content on social networking websites is mostly accessible, a

misinformation spreader can copy a great portion of content from legitimate users to

disguise the malicious activities. In addition, since many users carelessly follow back

when being followed on a social networking website, misinformation spreaders can

gain friendship with legitimate users, which makes them difficult to distinguish in the

networks. Last, label information is far less than sufficient for the task. For example,

4https://www.nytimes.com/2016/11/21/technology/fact-check-this-pizzeria-is-not-a-child-

trafficking-site.html
5https://www.nytimes.com/2017/03/25/business/alex-jones-pizzagate-apology-comet-ping-

pong.html
6https://www.nytimes.com/2016/12/05/us/pizzagate-comet-ping-pong-edgar-maddison-

welch.html
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the manipulation of content and network can boil down to a binomial classification

problem given label information. However, considering the scale of social networking

sites, it is impractical to collect labels for individual posts or links.

Second, distinct features of misinformation in social media make it difficult to

directly apply classic content-based methods, while contextual information, which is

abundant on social networking platforms, may provide us more effective features to

characterize misinformation. For example, content of misinformation can be manipu-

lated to be very similar to the content of true news and legitimate information (Piper,

2001). On the other hand, similar messages usually leads to similar traces of informa-

tion diffusion: they are more likely to be spread from similar sources, by similar people

and in similar sequences. Though the diffusion information is pervasively available

on social networks, little has been studied due to its special characteristic. Diffusion

information refers to by whom and when information is spread, and it is very difficult

to directly model. Consider the huge number of social media users and all the possible

combinations of spreaders, diffusion information will be of high dimensionality and

thus may result in sparsity in the feature space.

Third, while traditional classification tasks mainly focus on optimizing perfor-

mance metrics like accuracy and F-measure, misinformation detection approaches

further take into account the earliness of a method. Social and psychological studies

have revealed that misinformation might evolve 70% of its content within 6 transmis-

sions between people (Allport and Postman, 1947). Therefore, ignoring earliness of

intervention makes the intervening campaign downgrade rapidly due to the evolved

content. The earliness, or timeliness of a method describes how fast can a misinfor-

mation detection method be ready to classify misinformation. In this context, the

challenge of data scarcity immerses as a key issue of solving the earliness problem.

Annotating a dataset could be very time-consuming, and it brings in an unavoidable
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delay for existing systems, resulting in significant challenges to enable the system to

detect new incidents of misinformation in a timely manner.

Fourth, it is increasingly risky to depend on social media data for decision making

due to the novel challenges brought by misinformation. The vast amount of online

data allow for an insight into the public opinion that has been utilized for predicting

the stock price (Bollen et al., 2011) and election results (Tumasjan et al., 2010). Most

social media platforms are open to register and easily accessible. For example, thou-

sands of bot accounts were found to intentionally spread misinformation during the

2016 U.S. election7. Beyond detecting misinformation, it is appealing if a algorithm

such as social recommendation or user profiling methods can adaptively mitigate the

negative effect of misinformation.

A key challenge for misinformation-related tasks is that available label information

is very scarce. As malicious behaviors usually involve with a lot of disguise, an effective

machine learning model needs fine-grained and high quality label information to get

training. In order to distinguish such camouflage from a misinformation spreader’s

content, it is ideal to have a label for each post. However, in real-world, collecting

labels for accounts is already challenging, not to mention labels for the posts. With

limited label information, existing studies have to assume content of an account is

homogeneous and mix all posts together as an atom. Therefore, the malicious content

is usually overwhelmed by the vast amount of legitimate content. Similarly, the label

information for each link to classify network manipulation is also very difficult to

obtain.

To complicate the problem, user feedback can be very biased due to the filter

bubble effect (Pariser, 2011). For many other problems, user feedback signals, such

as user clicks and reviews, are regarded as a gold standard. In social media platforms,

7https://www.nytimes.com/2017/09/07/us/politics/russia-facebook-twitter-election.html
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content is being personalized in a framework consisting of two components: model

initialization and model update. A typical personalization model is usually updated

based on how a user reacts to the content generated by the original model. Therefore,

a model actively looks for content that users are more likely to click, and users are

more used to clicking certain content. The reinforcement would finally cause a user

to get exposed to information that conforms to his/her previous beliefs, regardless of

content being true or fake.

In the dissertation, I study the problem of misinformation detection in the context

of social media. In order to tackle the challenges, I investigate the following questions,

• How to detect misinformation spreaders and their misbehavior in the presence

of adversarial attacks through content and network?

• How to identify useful contextual information, and utilize the descriptive pat-

terns to facilitate the detection of misinformation?

• How to deliver an effective misinformation model at an early stage of misinfor-

mation diffusion with the challenge of data scarcity?

• How to mitigate the negative effect of misinformation on a machine learning

model when utilizing the contaminated social media data for research?

To answer the research questions, we summarize the main contributions of the dis-

sertation as follows. I summarize the key characteristics of the task of misinformation

detection that distance it from classic statistical machine learning problems. In order

to tackle the challenges brought by adversarial attacks and lack of labeled data, we

abstract patterns from contextual information to facilitate the task of misinformation

detection in terms of effectiveness and earliness.

Rest of the dissertation is organized as follows. In Chapter 2, I review the related

work. In Chapter 3, I present the proposed adaptive misinformation spreader detec-

5



tion model in the presence of adversarial attacks. In Chapter 4, I discuss a framework

for modeling contextual information to facilitate misinformation detection. In Chap-

ter 5, I propose an early detection model to alleviate the data scarcity problem at

an early stage of misinformation diffusion. In Chapter 6 and Chapter 7, I propose

methods to prevent misinformation from contaminating social media data actively

and passively. Chapter 8 concludes the dissertation and suggest future work
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Chapter 2

RELATED WORK

Due to the recent incidents of misinformation in social media, many studies have

been focusing on the problem of misinformation detection. In this dissertation, I

propose novel statistical machine learning methods to tackle emerging challenges. In

this section, I introduce several streams of related work.

(1) Misinformation Detection in Traditional Media

The study of misinformation detection can be traced back to 1940s (Allport and

Postman, 1945), when psychological studies try to discover the driving forces of mis-

information propagation (Allport and Postman, 1947). Various psychological and

social science theories have been investigated to understand misinformation circulat-

ing among people. For example, a previous study indicates the interplay between

reader sentiment and the diffusion of misinformation, implying that an important

story is more likely to influence its audience (Anthony, 1973). Similarly, anxiety has

also been found to relate to the diffusion of misinformation (Rosnow, 1991), meaning

that people are more likely to propagate misinformation that involve with themselves.

(2) Misinformation Detection in Social Media

In order to tackle the emerging challenges brought by social media, researchers

apply existing psychological and social science theories. For example, anxiety of social

media users have been studied to predict diffusion of misinformation (Oh et al., 2013).

The task of misinformation in social media is usually modeled as a classification

task (Wu et al., 2016b).Qazvinian et al. employ a feature engineering approach to

distinguish misinformation from Twitter’s content stream (Qazvinian et al., 2011).

Observing misinformation posts usually arise inquiries, Zhao et al. compile regular
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expressions to detect topic with concentrated questions (Zhao et al., 2015). Our

recent work studies linking distributed discussion snippets to alleviate the cold-start

problem (Sampson et al., 2016a). Meanwhile, systems have also been developed to

visualize and track known misinformation (McKelvey and Menczer, 2013; Shao et al.,

2016). Through representing data via intuitive visualization, experts can observe and

understand how misinformation spreads from node to node, so that they are enabled

to supervise the learning procedure of misinformation classifiers with their domain

knowledge and expertise (Cao et al., 2016; Zhao et al., 2014).

(3) Misinformation Spreader Detection

Existing content-based approaches can generally be categorized into unsupervised

and supervised methods. Unsupervised models aim to find content polluters by find-

ing the evidence of abnormality. For example, Lee et al. propose to employ social

honeypots to discover polluters (Lee et al., 2010a), which are based on ideas from

intrusion detection. Supervised methods assume that content polluters share simi-

lar malicious content, which distinguishes them from normal users (Jindal and Liu,

2007). Along the stream of supervised methods, content and other kinds of informa-

tion has been extensively studied, such as the network structures (Hu et al., 2013;

Wang et al., 2012, 2011), sentiment polarities (Ratkiewicz et al., 2011), the frequency

of using hashtags and URLs (Benevenuto et al., 2010), morphological features of mes-

sages (Thonnard and Dacier, 2011), and behavioral characteristics (Fei et al., 2015;

Mukherjee and et al., 2015).

In addition, existing studies also focus on utilizing network information to iden-

tify misinformation spreaders. The network modeling methods can generally be di-

vided into three categories, link-based, neighbor-based and group-based. Link-based

methods assume links are generally regarded as social trust from other users, and

a small number of links might indicate a spammer being fake (Mccord and Chuah,
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2011). The underlying assumption is that social media users are carefully connected,

which might not be true in the real world. Since users would simply follow back

after being followed, social media users with more followees are found to own more

followers generally. A revised solution is to compile features such as the ratio of

follower/followee (Lee et al., 2010b). However, spammers could follow users incre-

mentally and unfollow those who did not follow back seeminglessly, which is transient

and difficult to notice.

(4) Misinformation Diffusion

Information diffusion models are designed to abstract the pattern of information

propagation in a network, such as SIR Model (Kermack and McKendrick, 1927),

Tipping Model (Centola, 2010), Independent Cascade Model and Linear Threshold

Model (Kempe et al., 2003). The diffusion of misinformation is more related to the

trust and belief in social networks. The epidemic models, including SIR and IC, as-

sume the infection occurs between an infectious user and a susceptible user with a

predefined probability. The probability may increase with more interactions or other

contextual conditions. Although the links of a user are independent, a user who has

more infectious friends is more likely to be infected. The tipping and LT models also

contain a parameter to estimate probability of a user being infected based on the

number of activated friends. Generally, given infinite time and an optimal seed set

of senders, they assume all users will be infected. However, the diffusion outcome

of misinformation is often the global recovery or immunity. Such phenomena reveal

that no matter how widespread a piece of misinformation is diffused, some nodes

will not be affected and will keep intervening such diffusion (Acemoglu et al., 2010).

In addition, traditional information diffusion models can be adapted for the task of

misinformation diffusion by adding two user roles, i.e., misinformation diffusers and

targeted receivers (Karlova and Fisher, 2013). When receivers receive some infor-
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mation from diffusers, they judge whether to trust and further pass the information

based on contextual features. A unified model that jointly considers information and

misinformation diffusion is also available (Agrawal et al., 2011).

(5) Social Recommendation

We study robust social recommendation in the presence of misinformation. Rec-

ommender systems aim to predict preferences based on prior behaviors, such as

purchasing or viewing (Herlocker et al., 2000), or based on the similarity between

products and user preferences (Pazzani and Billsus, 2007). Detailed reviews about

recommender systems can be accessed in the survey (Bobadilla et al., 2013). Exist-

ing social recommendation introduces another two data sources, i.e., social network

structures and the user generated content from social media. For example, network-

based algorithms, or relational learning, infer the preferences of a user based on its

neighbors in the network. Network structures can also be transformed into numerical

features (Eldardiry and Neville, 2012; Jensen et al., 2004), and these features are used

to learn user preferences. Other approaches try to interpret a user’s membership of

different social groups (Xu et al., 2008; Neville and Jensen, 2005).
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Chapter 3

MISINFORMATION DETECTION OF SPREADERS

In this chapter, I focus on the problem of detecting misinformation spreaders that

actively manipulate network structures and content information. The distinct char-

acteristics of social media websites bring about novel challenges for the task. I will

introduce the background, formally define the computational problem, and present

the proposed method. Based on datasets obtained from real-world social media plat-

forms, we conduct experiments to compare with state-of-the-art approaches.

3.1 Exploratory Study

In this section, we explore the behavioral characteristics of misinformation spread-

ers. In order for the exploratory study, we manually label posts of known spreaders

with a Twitter dataset. We sample 1,500 misinformation spreaders and 1,500 normal

users from the large dataset. The annotation is conducted by human annotators on
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Users with the First Two Principal Components. Many Posts from Misinformation
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Amazon Mechanical Turk1. Each post is checked by at least five annotators and the

majority label is used. Criteria for the annotators is whether a post violates the

Twitter community rules2. Therefore we obtain a small collection of post labels for

an exploratory study on content.

Content information is usually of high dimensionality that is hard to visualize, so

we use the first two principal components of the content with Principal Component

Analysis (PCA) to show its distribution. We illustrate three kinds of posts, i.e.,

legitimate posts of normal users, polluting and legitimate posts of misinformation

spreaders, in Figure 3.1. Through observing the figure, we find that many posts of a

misinformation spreader are similar to the content of normal users, which manifests

camouflage of misinformation spreaders. Traditional approaches merge posts of an

account altogether as an attribute vector, which would be less distinguishable to

detect camouflaged misinformation spreaders.

3.2 Camouflaged Misinformation Spreaders in Social Media

Internet media continues to pervade our culture, such as social networks, web

forums and the blogosphere. The expansive channel for communication facilitates

information dissemination between a large group of people. However, motivated by

the monetary rewards, misinformation spreaders, which include fraudsters, scammers,

and spammers, unfairly overpower normal users by spreading disinformation, which

undermines the role of Internet media in sustaining a society as a collective entity.

An emerging characteristic that further complicates the problem is the camouflage.

Due to the openness of Internet media, it is easy for misinformation spreaders to

copy a significant portion of content from normal users. The polluting content that

1https://www.mturk.com/
2https://support.twitter.com/articles/18311-the-twitter-rules
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is camouflaged by the legitimate messages can be very deluding due to the cognitive

inertia: once many genuine posts from a fraudster establish trust, the fraudulent post

is likely to convince many of the readers.

Recent studies have investigated the camouflage of fraudsters from the perspective

of network structures (Hooi et al., 2016), proving that network camouflage could be

efficiently detected through studying the abnormality of the density of a graph caused

by the camouflage links. In this section, we focus on precisely the other side of the

problem, i.e., detecting misinformation spreaders in the presence of camouflage. Our

goal is to detect polluters under camouflage.

It is particularly difficult and challenging to detect camouflaged misinformation

spreaders. Due to the massive amount of content information on Internet media,

there is a lack of availability of label information for camouflaged posts. Therefore,

traditional fraud and opinion spam detection approaches (Fei et al., 2015; Jiang et al.,

2016; Liu, 2012) are not applicable for this problem. In addition, existing work

on misinformation spreader detection (Han and Park, 2013; Hu et al., 2014, 2013;

Mukherjee and et al., 2015; Wang et al., 2011) only exploits label information for

accounts, so they cannot account for the camouflage. Another challenge is data

scarcity. Since camouflage can take up the majority of content from a misinformation

spreader, it is not easy to identify the scarce polluting evidence, and manually labeling

it could be time-consuming and labor-intensive.

In order to tackle the challenges, we propose to utilize label information of ac-

counts. Account labels are easier to obtain and publicly available at a relatively large

scale on various platforms, such as social networking sites (Thomas et al., 2011; Webb

et al., 2008), the blogosphere (Kolari et al., 2006), and web forums (Niu et al., 2007).

Our key intuition is to employ discriminant analysis (Fukunaga, 2013) to capture

signals of content pollution with label information of accounts. Motivated by results
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of recent studies that camouflage tends to be random while malicious content is alike

due to the similar fraudulent targets (Hooi et al., 2016), we assume that the inter-

section of misinformation spreaders’ posts in the feature space is more likely to be

a signal of polluting content, which can distinguish misinformation spreaders from

normal users.

Discriminant analysis has only been studied on the level of features, requiring

label information of posts to be available. We make the first attempt to investigate

how Camouflaged Content Polluters can be detected with Discriminant Analysis. In

particular, we introduce a novel method CCPDA, which effectively detects misinfor-

mation spreaders by mining signals of camouflaged pollution.

3.3 Problem Statement

In this section, we introduce the notations used in this section and then formally

define the problem we study.

Throughout this section, matrices are denoted as uppercase bold letters (e.g., V),

column vectors are denoted as lowercase bold letters (e.g., c) and scalars as lowercase

letters (e.g., c). Vi,j denotes the entry at the ith row and jth column of V. Vi,∗

and V∗,j denotes the ith row and jth column of matrix V, respectively. ci means the

ith element of the column vector c. For any vector c ∈ Rp, `q-norm of c is ||c||q

= (
∑p

i=1 |ci|q)
1
q for q ∈ (0,+∞). 〈A,B〉 represents Trace(ATB). I is the identity

matrix and 1 is a vector with all elements to be 1.

Let A = [V,P, t] be a target account set with post information V, user-post

mapping P and identity labels t. The data matrix V ∈ Rm×n is the post information

of all users, where m is the number of posts and n is the number of textual features

extracted from the posts. We denote the user-post association as P ∈ Ru×m, where

u is the number of users. Pi,j equals to 1 if the jth post is posted by the ith account
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and equals to 0 otherwise. t ∈ {0, 1}u×1 records the identity label of all users, where

ti = 1 represents the ith account is a misinformation spreader.

We now define the problem of detecting camouflaged misinformation spreaders as

follows:

Given a set of accounts A with post information V, user-post mapping matrix P,

and identity label information t for partial accounts, our goal is to learn a model with

the best performance to classify whether a user is a misinformation spreader.

3.4 Detecting Camouflaged Misinformation Spreaders

In this section, we introduce our model CCPDA and present the efficient opti-

mization algorithm. In the end, we theoretically discuss the time complexity and its

scalability in real applications.

3.4.1 Modeling Content Information

We represent posts with a data matrix V ∈ Rm×n, where each row represents a

post and each column represents a textual feature. However, since labels of posts are

unavailable, we start with a trivial solution that labels all posts of a known polluter as

polluting. Then it can be reduced to the least square problem (Lawson and Hanson,

1974):

min
w

1

2
||Vw− y||22 +

λ1

2
||w||22, (3.1)

where w ∈ Rn is the model to learn and a regularization term ||w||22 is imposed to

avoid overfitting. The parameter λ1 controls the extent of the model complexity. The

vector y ∈ Rm is the pseudo label that is temporally initialized. The pseudo label

vector can be derived from the account labels y = PT t. However, as investigated

in Section 3.1, posts of misinformation spreaders are not necessarily fraudulent, so

labeling all posts of a misinformation spreader as positive would make the classifier
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lose sensitivity to content pollution and result in a low recall. Next, we discuss how

we incorporate discriminant analysis to solve this problem.

3.4.2 Detecting Camouflaged Polluters with Discriminant Analysis

Preliminarily, we label posts in a trivial manner. In order to enable the modifica-

tion of the label values, we introduce a weighting vector c ∈ Rm for the label vector.

Through incorporating the weight, the label of the ith post becomes ciyi. So the labels

could be updated through updating the weights. Our aim is to filter out camouflage,

i.e., increasing weights of polluting posts and decreasing weights of labels of polluters’

legitimate content. To this end, we reformulate the objective function in Eq.(3.1) as:

min
w,c

1

2

m∑
i=1

(ciyi −Vi,∗w)2 +
λ1

2
||w||22, (3.2)

where ci represents the weight of ith post. Since the normal posts of a misinformation

spreader are initially labeled as positive, which can be viewed as mislabeled examples,

they are more likely to cause a larger reconstruction error during training (Hawkins

and et al., 2002). Therefore, penalizing large errors leads to downweighting labels of

legitimate content. In addition, since labels of legitimate users are of value 0, the

weight does not influence normal users during the optimization.

Since content pollution may only comprise a small portion of all posts, the rep-

resentation of c should be sparse. Motivated by sparse representation learning (Ng,

2004), where only few coefficients are assumed to reveal the key information, we

incorporate an `1-norm with c and reformulate the objective function as follows:

min
w,c

1

2

m∑
i=1

(ciyi −Vi,∗w)2 +
λ1

2
||w||22 + λ2||c||1, (3.3)

where the `1-norm penalizes non-sparse solutions. The parameter λ2 controls the

extent of sparsity, which can be regarded as the discriminant threshold for a post to

16



be selected and labeled as polluting. Through introducing the sparsity regularizer, the

selected entries are likely to be 1 while the unselected entries are likely to be exactly

zero (Ng, 2004), which is favorable since a post is either fraudulent or legitimate in

real-world applications.

Sparse representation methods are used to find dominant signals (Donoho and

Elad, 2003). In traditional studies, the dominance is determined by frequency, mean-

ing that, in the context of misinformation spreader detection, the polluting content

that appears most frequently would be more likely to be selected. This is helpful

for finding content pollution since malicious content is usually similar. However, it

also results in some polluters to be overlooked. If some misinformation spreaders

are involved with a smaller campaign, and the “frequency” does not “exceed” the

discriminant threshold, posts of all these polluters would be disregarded. Therefore,

the polluting information that is useful for identifying future polluters would also be

ignored. In order to fully exploit the label information, we force every polluter to be

selected with some posts by introducing an `G1,2-norm term. The regularization term

is as follows,

`G1,2(c) =
∑
g∈G

||cGg ||21. (3.4)

The `G1,2-norm, which is also called group exclusive penalty (Kong et al., 2014),

is proposed to select discriminant features of different groups. Here, G is the set

of all groups, where Gg denotes the indices of posts in a group g ∈ {1, 2, . . . ,m}.

For example, let Gg = {1, 2, 4, · · · }, then ||cGg || = [c1, c2, 0, c4, 0, . . . , 0]. The `G1,2-

norm first sums up absolute values of intra-group variables and then imposes an `2-

norm to regularize the sum. The minimization process leads to intra-group sparsity.

Concretely, it enforces locally discriminant posts of a polluter to be upweighted while

enforces globally discriminant content to be downweighted.

17



The group exclusive penalty is convex but non-smooth, which is difficult for opti-

mization. In order to solve the problem, we rewrite the `G1,2-norm as follows,

`
Gg
1,2(c) =

1

2

u∑
i=1

(cTPi,∗)
2 (3.5)

=
1

2

u∑
i=1

cTPT
i,∗Pi,∗c (3.6)

=
1

2
cTPTPc, (3.7)

where P denotes the user-post mapping matrix. Since P is a constant matrix, we

introduce M = PTP to replace the product. In M ∈ Rm×m, Mi,j equals to one if

post i and j are generated by the same user and zero otherwise. By rewriting the

regularization term `
Gg
1,2(c), it is convex and smooth, which can be easily incorporated

into the objective function in Eq.(3.3) as:

1

2

m∑
i=1

(ciyi −Vi,∗w)2 +
λ1

2
||w||22 + λ2||c||1 +

λ3

2
cTMc, (3.8)

where the parameter λ3 controls the importance of locally discriminant content.

Since we model individual posts, the resultant data size should be very large. In

order to tackle the challenge of big data, we introduce an optimization algorithm that

can optimize the problem in Eq.(4.5) efficiently.

3.4.3 An Optimization Algorithm

The optimization problem in Eq.(4.5) is not jointly convex with respect to the two

variables w and c together. However, by fixing one of them, the objective function

is convex to the other. So we propose to find optimal solutions through alternatively

updating one by fixing the other.

1)While fixing c, update w: the problem only depends on w. By only considering
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items related to w, we reformulate the objective as follows:

εw =
1

2

m∑
i=1

(ciyi −Vi,∗w)2 +
λ1

2
||w||22, (3.9)

which is reduced to an `2 regularized linear regression problem. In order to cope with

the massive amount of content information, we adopt Stochastic Gradient Descent

(SGD) (Bottou, 2010) to solve the optimization problem. SGD belongs to a class of

hill-climbing optimization technique that seeks a stationary point of a function. To

utilize SGD, we derive the gradient of w as follows:

∂εw
∂w

=
m∑
i=1

VT
i,∗(Vi,∗w− ciyi) + λ1w. (3.10)

Instead of updating in a batch mode, SGD randomly selects data examples from

the total m data instances. The update process can then be significantly accelerated

with the multi-threading manner. A detailed discussion about the performance of

single- and multi-thread implementations of the optimization algorithm is presented

later in Section 3.4.4.

Therefore, the optimal predictor can be achieved through the following update

rules:

w = w− τ ∂εw
∂w

, (3.11)

where τ is a learning rate which we set using backtracking line search (Armijo, 1966).

2)While fixing w, update c: the problem only depends on c. Since the recon-

struction Vi,∗w becomes constant, we use e to replace it, where ei = Vi,∗w. Thus,

Eq.(4.5) can be reformulated as follows:

min
c

1

2

m∑
i=1

(ciyi − ei)2 + λ2||c||1 +
λ3

2
cTMc. (3.12)

Though all components in Eq.(3.12) are convex with respect to c, the `1-norm

makes it non-smooth, which is difficult to optimize. Following (Liu et al., 2009), we
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try to optimize the problem in Eq.(3.12) through reformulating it as an equivalent

smooth and convex problem.

Theorem 1 Eq.(3.12) is equivalent to the following `1−ball constrained smooth con-

vex optimization problem:

min
c∈Z

O(c) =
1

2
||c ◦ y− e||22 +

λ3

2
cTMc,

where Z = {c | ||c||1 ≤ z}.
(3.13)

and ◦ denotes component-wise multiplication. z ≥ 0 is the radius of the `1-ball. λ2

and z have a 1:1 correspondence.

Since ||c||1 is a valid norm, it is a closed convex function. It defines a closed

and convex set Z (Note that Z is not empty, since z > 0 and zero matrix belongs

to Z). The second derivative of O (The Hessian matrix) is symmetric and positive

semi-definite, so (3.13) is convex and differentiable. O is a convex and differentiable

function in a closed and convex set Z, which is equivalent to the problem in Eq.(3.12).

The `1-ball constrained convex problem in Eq.(3.13) can be efficiently solved.

Motivated by (Ji and Ye, 2009), we adopt proximal gradient descent. The update

rule for c can be formulated as follows:

ct = arg min
c∈Z

Pγ,ct−1(c), (3.14)

where the superscript t denotes the number of iteration, and Pγ,ct−1(c) is the convex

problem’s Euclidean projection onto the constraint space (Boyd and Vandenberghe,

2004). The projection can be formulated as follows,

Pγ,ct−1(c) = O(ct−1) + 〈OO(ct−1), c− ct−1〉+
γ

2
||c− ct−1||22, (3.15)

where OO(·) is the derivative of O(·). Since O(·) is convex, OO(·) can be derived

from Eq.(3.13) as

OO(c) = y ◦ c ◦ y− y ◦ e + λ3Mc. (3.16)
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Given a problem in the form of Eq.(3.15), the analytical solution can be directly

obtained (Ji and Ye, 2009). The solution of c can be written as

ctj = max(0, ut−1
j (1− λ3

γ|ut−1
j |

)), (3.17)

where ut = ct − 1
γ
(OO(ct)), which is introduced to replace the gradient step, and utj

and ctj are the jth element of ut and ct, correspondingly.

The detailed algorithm of CCPDA is presented in Algorithm 6. w is updated in

line 3 and c is updated in line 13. From line 4 to line 12, Goldstein-Armijo line search

schemes (Armijo, 1966) are adopted to find an optimal γ.

3.4.4 Time Complexity and Scalability

Here we analyze the time complexity of the algorithm to solve the objective func-

tion in Eq.(4.5). The computational cost for w depends on the constrained linear

regression in Eq.(3.9), which is O(m2n+mn2). The computational cost for c depends

on the calculation of the Euclidean projection, which can be analytically solved in

O(m). In real applications the number of posts m is usually large, while the number

of features n can usually be reduced by feature selection, so the computational cost of

solving Eq.(4.5) is dominantly determined by m. Posts are usually short and sparse,

meaning that many of them are independent. Therefore, SGD can be employed in a

parallel manner to increase the speed. We introduce more details about the model

scalability in Section 3.5.5.

3.5 Experiments

In this section, we conduct experiments to evaluate the effectiveness and efficiency

of the proposed framework. Through the empirical studies, we aim to answer the

following three questions:
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Algorithm 1 Optimization Algorithm for CCPDA

Input: {V,y,P,w0, c0, λ1, λ2, λ3, γ
0,maxiter}

Output: w

1: Initialize w1 = w0, c = c0, t = 1

2: while Not convergent and t ≤ maxiter

3: Update w with Eq.(7.8)

4: Set γ = γ0

5: loop

6: Calculate ct with ct−1, γ and Eq.(3.17)

7: If O(ct) ≤ Pγ,ct−1(ct) then

8: γ = γ/2

9: break

10: end if

11: γ = 2× γ

12: end loop

13: Update ct with ct−1, γ and Eq.(3.17)

14: t = t+ 1

15: end while

• How effective is the proposed approach compared with other methods of misin-

formation spreader detection?

• What are the effects of discriminant analysis on detecting camouflaged misin-

formation spreaders?

• How efficient can the proposed approach process large number of users and

posts?

We begin by introducing the two real-world datasets and compare CCPDA with
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Table 3.1: Statistics of the Dataset Used in This Study.

Posts Reposts Unique Users Positive Ratio

1,150,192 576,167 94,535 7.5%

several competitive methods for detecting misinformation spreaders. Then we study

effects of discriminant analysis with regard to precision and recall. Finally, we present

the performance of CCPDA with the single-thread and multi-thread implementations.

3.5.1 Dataset

We employ two real-world Twitter datasets. Since over 200 million posts are

posted per day on Twitter3, the popularity has made Twitter a testbed for content

pollution research (Hu et al., 2014; Yang et al., 2012). We aim to collect a large

dataset that includes posts about all prior polluting content within a certain period.

Therefore, we collect the first dataset (TwitterS). A small sample of TwitterS has

been used for the exploratory study in Section 3.1.

Existing studies obtain normal accounts through random sampling (Hu et al.,

2013; Thomas et al., 2011), where the cutoff between positive and negative examples

may not be reflective of the original data. In order to keep in line with the real world

distribution, we build up a dataset by randomly crawling all accounts under certain

topics, where labels are obtained using the gold standard (Thomas et al., 2011). In

particular, we randomly sample posts from Twitter in 2013. In May 2016, we crawl

each user in the dataset again and check the account status. We examine the account

status via the statuses/user-timeline API endpoint. The status can take on one of

three values:

• Active: The account is still open on the site, which is regarded as a normal

3https://blog.twitter.com/2011/200-million-tweets-per-day
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account.

• Suspended: The account has been suspended for violating Twitter’s policies.

This is considered a temporary ban, where the user can petition Twitter to have

the account reinstated.

• Deleted: The account has been deleted for violating Twitter’s community

rules. This is considered a permanent ban.

The labels are obtained by using Twitter’s APIs to retrieve the response code for

each account (Kumar et al., 2014). Among the accounts, we discover that 92.5% of the

accounts are active, 4.7% are deleted and the rest are suspended. We consider active

accounts as normal users and the rest as misinformation spreaders in this section

according to conventional settings (Thomas et al., 2011). Statistics on the dataset

are shown in Table 3.1.

The second dataset (TwitterH) is labeled from followers of honeypot accounts (Lee

et al., 2014). Honeypots are social media accounts that are created for collecting evi-

dence of misinformation spreaders. In particular, the honeypots only post completely

randomized content to attract misinformation spreaders who do not care about the

content quality. The accounts that interact (such as retweeting, commenting and

following) with honeypots are thus detected as misinformation spreaders.

TwitterS will be made publicly available upon acceptance, and TwitterH is already

publicly available4. The TwitterH dataset used in our study consists of 11,470 users

in total, with a 50% cutoff between the positive and negative data.

4http://infolab.tamu.edu/data/
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Table 3.2: Results on TwitterH Dataset.
Method Precision Recall F-score

SVM 79.64% 72.47% 75.88%**

GBDT 88.24% 84.26% 86.20%**

AdaBoost 81.35% 69.26% 74.82%**

SSDM 90.87% 83.94% 87.27%*

SVMP 76.33% 88.53% 81.97%**

GBDTP 84.07% 88.47% 86.21%**

AdaBoostP 76.54% 87.57% 81.68%**

SVMIL 89.46% 81.65% 85.38%*

CCPDA 91.20% 88.55% 89.86%

Symbol * indicates that CCPDA outperforms

a given baseline by 0.05 statistical significance

level, ** indicates 0.01.

Table 3.3: Results on TwitterS Dataset.

Method Precision Recall F-score

SVM 29.24% 8.78% 13.53%**

GBDT 69.51% 5.12% 9.66%**

AdaBoost 73.41% 8.24% 14.82%**

SSDM 88.01% 10.11% 18.14%**

SVMP 18.53% 62.14% 28.54%**

GBDTP 55.34% 32.22% 40.72%**

AdaBoostP 27.62% 31.85% 29.59%**

SVMIL 84.36% 13.56% 23.36%**

CCPDA 89.17% 30.26% 45.96%

The symbol * indicates that CCPDA outperforms

a given baseline by 0.05 statistical significance

level, ** indicates 0.01.
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Figure 3.2: Precision and Recall of Different Methods with Varying Ratio of Positive
Examples by Randomly Down-sampling Normal Users.

3.5.2 Settings

In this section, we test the performance with respect to precision, recall and F-

score. In order to investigate the effectiveness of modeling individual posts with dis-

criminant analysis, we include two kinds of baselines: account-centric and post-centric

methods. Account-centric methods conventionally construct an attribute vector from

all posts of a user. Post-centric methods model a user by learning individual posts.

The 10-fold cross-validation is employed to generate all experimental results. We list

all baseline methods below,

• Support Vector Machines (SVM) are supervised learning tools for solving binary

classification, which have been successfully applied to various tasks.

• AdaBoost is a general boosting framework. It builds up classifiers by ensembling

weak classifiers.
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• Gradient Boosted Decision Tree is a boosting algorithm which produces a pre-

diction model in the form of an ensemble of multiple decision trees.

• SVMIL belongs to Multiple Instance Learning (MIL) algorithms which extends

SVM in a multi-instance setting. MIL shares a similar formulation with our

work, assuming that each example contains multiple instances (Zhou, 2004). We

report the best result among all available algorithms in the MIL toolkit (Tax,

2015).

• Social Spammer Detection in Microblogging: Hu et al. proposed a framework

SSDM to detect misinformation spreaders in social media by jointly modeling

network and content information (Hu et al., 2013).

• Post-Centric methods are trained with individual posts. The method is then

named by adding a subscript of P to that of corresponding account-centric mod-

els, such as SVMP , GBDTP and AdaBoostP . Since post labels are not available,

known misinformation spreaders’ posts are all labeled as positive convention-

ally (Markines et al., 2009).

For post-centric methods including CCPDA, a single detected polluting post leads

a user to be classified as positive. For account-centric methods, content of a user is

merged into an attribute vector. Parameters of all methods are tuned via cross-

validation with a separate validation set.

3.5.3 Experimental Results

The results on two datasets are summarized in Table 3.2 and Table 3.3. Based on

the experimental results, we make the following observations:

1) Post-centric methods achieve better recall while account-centric methods achieve

better precision. Since an individual suspicious post causes an account to be classi-
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Figure 3.3: Precision and Recall of CCPDA with Varying Parameters.

fied as a misinformation spreader, post-centric methods are more likely to detect more

polluters, which results in the higher recall. By mixing all content together, account-

centric approaches focus on the apparent misinformation spreaders, so it results in a

higher precision.

2) As shown in Table 3.2, SSDM achieves the second best F-score, showing that

jointly exploiting network and information is effective. CCPDA focuses on content

information, which can be extended with additional information sources such as the

networks.

3) As shown in Table 3.3, GBDTP achieves the second best F-score by capturing
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approximately 1
3

misinformation spreaders with a 55% precision. Since TwitterS

dataset is more skewed, post-centric methods get better F-score by labeling more

misinformation spreaders.

4) SVMIL performs better on precision while worse on recall. The basic assump-

tion of multi-instance learning that positive bags share similar instances leads the

model to focus more on obvious polluting content, and thus it loses the sensitivity to

misinformation spreaders with locally discriminant polluting evidence.

5) CCPDA outperforms all the baselines with respect to F-score. A precision of

91.20% and recall of 88.55% are achieved on the TwitterH dataset. In looking into the

results of other post-centric approaches, we find that they are oversensitive and have

a lower precision. With discriminant analysis, CCPDA achieves a higher precision by

focusing on only the polluting content.

6) We find that all methods perform better on the TwitterH dataset. This is

caused by the data skewness. The cutoff between positive and negative examples of

the TwitterH dataset is almost 1:1, while only 7% in TwitterS are misinformation

spreaders.

Sensitivity to data skewness: In order to test the sensitivity with data skew-

ness, we randomly downsample negative examples to make TwitterS more balanced.

We report results of different methods in Figure 3.2. It can be seen that the precision

of CCPDA is stable with regard to the change of distribution. SVMP achieves better

recall, while its precision falls behind that of CCPDA.

CCPDA outperforms all baseline methods in terms of F-score on real-world data

with different cutoffs. Next, we will further investigate to what extent discriminant

analysis facilitates CCPDA.
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3.5.4 Importance of Discriminant Analysis

In this subsection, we investigate the impact of discriminant analysis on polluter

detection. TwitterS dataset is used for the experiments. In order to visualize the

effect caused by discriminant analysis, we show the precision and recall by varying λ2

and λ3 in Figure 3.3. Note that λ2 controls the global discriminant threshold and λ3

controls local discriminant threshold. First, we notice that, for λ2 the best precision is

achieved when the value is around 0.35 to 0.45, and the best recall is achieved around

0.3 to 0.4, which indicates that focusing on the top polluting few posts ignores useful

information, while focusing on too many would lead the discriminant posts to be

overwhelmed by the rest. Second, with increasing λ3, precision and recall increases

and decreases almost monotonously, which indicates that it controls the trade-off

between accuracy and sensitivity. When λ3 is large, the most discriminant posts are

selected, which results in the model to be more precise. Meanwhile, when λ3 is small,

the local discriminant posts are higher weighted which results in a higher recall.

The results show that CCPDA leverages the sparse structure of posts to find

discriminant content. λ2 and λ3 control the balance between precision and sensitivity.

3.5.5 Performance Analysis

In practice, Internet media such as Twitter and Facebook usually contain a large

number of users and posts. In order to cope with the scalability challenge, we employ

parallel SGD with 8 threads to optimize the model. In this section, we evaluate the

performance of two methods by measuring the convergence speed (training error) of

single-thread SGD and parallel SGD with regard to the number of iterations and the

amount of time.

Figure 3.4(a) shows the training error with varying number of iterations. The
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Figure 3.4: Comparison of Training Convergence Speed of Single Thread and Par-
allel Learning in Terms of the Number of Iterations (a) and Time in Seconds (b).
Though Multi-thread SGD Converges with More Iterations, Parallel Optimization
Significantly Reduces the Training Time.

training error of single-thread SGD decreases faster than that of the parallel method.

After approximately 100 iterations, the training error of parallel SGD converges to

that of the single-thread SGD with 10 iterations. Since posts are usually short and

the content is sparse, parallel updates can significantly accelerate the speed of train-
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ing. Figure 3.4(b) shows the training error with varying time. Given the same time

(4,000 seconds), parallel SGD has run over 30 iterations and achieved a much lower

training error, while single-thread SGD has only run for fewer than 5 iterations. The

experimental results show that CCPDA converges fast and it can efficiently cope with

real-world data at a large scale with multi-threading.

3.6 Summary

Camouflage of misinformation spreaders presents great challenges to Internet me-

dia. In this section, we investigate how the camouflaged polluting signal can be iden-

tified with label information only for accounts. In particular, the proposed framework

utilizes discriminant analysis to discover the key post that distinguishes misinforma-

tion spreaders. Also, we present an efficient algorithm to solve the proposed non-

smooth convex optimization problem. Experimental results on real-world Twitter

datasets demonstrate that the proposed framework can effectively utilize available

information to outperform the state-of-the-art approaches. There are many potential

future extensions of this section. First, it would be interesting to jointly consider

camouflage in other online activities, such as social network structures and user pro-

files, for misinformation spreader detection. Also, polluting strategies may evolve

over time, so it would be useful to explore incremental update rules with streaming

data.
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Chapter 4

MISINFORMATION DETECTION WITH CONTEXTUAL INFORMATION

In this chapter, I focus on the problem of misinformation detection with contextual

information. I will first review the background and introduce how contextual infor-

mation can help expose misinformation. In addition, I will introduce the problem

formulation and present the proposed framework. Real-world data obtained from a

social media platform has been used to evaluate the proposed method against the

state-of-the-art approaches.

4.1 Misinformation in Social Media: Content and Context

As online social networks continue to pervade our culture, social networking sites

have become an attractive platform to facilitate the spread of information. A recent

study from Pew Research claims that 62% of adults get their news from social media

in United States, with 29% among them doing so very often1. Concomitant with

the expansive and varied sources of data are the challenges for personalizing the

massive amount of information and filtering out unwanted messages such as fake

news and spam. However, the sparse and noisy social media content makes it difficult

for traditional approaches, which heavily rely on content features, to tackle these

challenges.

By contrast, our study aims to find additional data sources to solve the problem.

In this section, we focus on the diffusion of information. A key driving force behind

the diffusion of information is its spreaders. People tend to spread information that

caters to their interests and/or fits their system of belief (Del Vicario et al., 2016).

1http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/
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Hence, similar messages usually leads to similar traces of information diffusion: they

are more likely to be spread from similar sources, by similar people and in similar

sequences. Since the diffusion information is pervasively available on social networks,

in this section, we aim to investigate how the traces of information diffusion in terms

of spreaders can be exploited to categorize a message. The message can be a piece of

news, a story or a meme that has been posted and forwarded in social networks, and

those users who post or forward it are the spreaders. Traces of a message refer to by

whom and when the message is spread, i.e., posted or forwarded.

We propose TraceMiner, a novel approach for classifying social media messages

with diffusion network information. TraceMiner takes traces of a message as input

and outputs its category. Consider the huge number of social media users and all

the possible combinations of spreaders, traces will be of high dimensionality and thus

may result in sparsity in the feature space. To cope with the problem, TraceMiner

utilizes the proximity of nodes (Tang et al., 2015) and social dimensions (Tang and

Liu, 2009) manifested in the social network, which have been successfully applied to

capture the intrinsic characteristics of social media users in a myriad of applications.

To demonstrate TraceMiner’s potential on real-world applications, we evaluate it

with traditional approaches on Twitter data. TraceMiner outperforms competitors on

multi-label information classification problems in large graphs. Therefore, TraceM-

iner provides an alternative way for modeling social media messages through learning

abundant diffusion data that has not be fully utilized. Existing graph mining research

mainly focuses on learning representation of graphs and nodes, while little attention

has been paid to classifying information circulating between nodes. TraceMiner dis-

tances from existing graph representation methods by directly modeling information

and making predictions in an end-to-end manner other than providing only an at-

tribute vector or embedding vector.
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4.2 Problem Statement

We consider the problem of classifying social media messages into one or more

categories. We define a graph G ∈ 〈V,E〉, where vi ∈ V with i ∈ [1, |V |] is a

node (user) and E ⊆ V × V is the set of edges. If eij ∈ E, there is an edge

between vi and vj, otherwise there is not. Let M be the set of messages where

mi ∈ M with i ∈ [1, |M |]. Each message mi has a corresponding set of spreaders

{(vmi
1 , tmi

1 ), {(vmi
2 , tmi

2 ), · · · , {(vmi
n , tmi

n )}, where n is the number of spreaders for mi

and vmi
j is a user who spreads mi at the time of tmi

j . Messages are partially labeled

and thus only some of them have an associated class label. We denote the set of labels

as Y , where yi ∈ Y indicates that mi is labeled. Our goal is to learn a model with

the social network graph G and partially labeled message M with the corresponding

diffusion traces and label information Y , to predict ŷ for the unlabeled messages.

Problem definition for traditional approaches: In order to make predictions

for messages, most existing methods take the problem as a text categorization task,

hence, each message mi has a set of spreaders {(vmi
1 , tmi

1 , cmi
1 ), · · · , {(vmi

n , tmi
n , cmi

n )},

where cmi
j is the content information.

4.3 Exploiting Context in Detecting Misinformation

In this section, we introduce how a diffusion trace can be used to facilitate clas-

sification. We first utilize sequential modeling methods to enable sequences to be

used as attribute vectors. To alleviate the sparsity of sequences, we present a novel

embedding method.
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4.3.1 Sequence Modeling

Given the spreader information {(vmi
1 , tmi

1 ), · · · , {(vmi
n , tmi

n )} and the graph G, the

topology of information diffusion can be inferred by graph mining techniques (Gomez Ro-

driguez et al., 2010). The topology, which is usually a tree or forest (multiple trees)

rooted with the initial spreader, contains informative patterns for characterizing a

message. However, it is extremely difficult to directly deal with the tree struc-

ture. Consider two messages with similar diffusion networks, adding or removing

one spreader, or changing any direction of the information flow would lead to a dif-

ferent tree. Theoretically, there can be nn−2 different trees with n number of different

nodes according to the Cayley’s formula (Clarke, 1958).

In order to solve this problem, we convert the tree structure into a temporal

sequence. For example, given the spreaders of mi {(vmi
1 , tmi

1 ), · · · , {(vmi
n , tmi

n )}, we

generate a sequence xi = [(vmi

q(1), t
mi

q(1)), · · · , (v
mi

q(n), t
mi

q(n))] where for any two elements

k and j in the sequence, if k < j, then tmi

q(k) < tmi

q(j), meaning that vmi

q(k) spread the

information earlier than vmi

q(j) did. Therefore, given n nodes, the number of all possible

diffusion networks are reduced to n!. In order to further alleviate the sparsity, we

incorporate social proximity and social dimensions in Section 4.3.2.

However, a possible problem of temporally sequencing spreaders is the loss of de-

pendencies between users. Given vmi and vmj where eij ∈ E. If tmi < tmj , it is likely

that user i spreads it to j or j is influenced by i (Gomez Rodriguez et al., 2010).

Such direct dependency will be of vital importance in characterizing the information.

For example, the information flow from the controller account to the botnet followers

is a key signal in detecting crowdturfing(Gu et al., 2008). But if there is a spreader

(umk , t
m
k ) where < tmi < tmj , in the sequence, i and j will be separated. Therefore, it

would be appealing if the model can take advantage of dependencies between sepa-
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rated and distant items in a sequence. To this end, we propose to apply Recurrent

Neural Networks (RNNs).

RNNs have been successfully applied in a myriad of domains for modeling se-

quential data (Goodfellow et al., 2016), such as information retrieval (Palangi et al.,

2016), sentiment analysis (Socher et al., 2013) and machine translation (Cho et al.,

2014). We propose to use an RNN to sequentially accept each spreader of a message

and recurrently project it into a latent space with the contextual information from

previous spreaders in the sequence. As the RNN reaches the end of the sequence,

a prediction can be made based on the embedding vector produced by the hidden

activations. In order to better encode the distant and separated dependencies, we

further incorporate the Long Short-Term Memory cells into the RNN model, i.e., the

LSTM-RNN.

In information diffusion, the first spreader who initiates the diffusion process is

more likely to be useful for classifying the message (Barbier et al., 2013). Hence,

we feed the spread sequence in the reverse order, where the first spreader in the

sequence directly interacts with the prediction result, and thus it has more impact.

Each spreader is represented by a local RNN. Parameters W of RNNs are shared

across each replication in the sequence and h′ is the previous recurrent output sent

between RNNs to exploit the contextual information. In order to make the prediction,

the last local RNNs are taking the first spreader’s attribute vector, prior recurrent

output (and the label of the message) as input to predict the category of the message

(or to train the RNNs model). In this section, we set the hidden node size (k) as 10.

The way we obtain the attribute vector of nodes is introduced in Section 4.3.2.

Having chosen LSTM-RNNs as our method to classify messages, we now need

a suitable way of learning attribute vectors f , for social media users. An intuitive

way is to utilize the social network graph G to generate embedding vectors (Perozzi
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et al., 2014; Tang et al., 2015), and feed sequences of embedding vectors to the LSTM-

RNNs (Palangi et al., 2016). Such embedding-based preprocessing for sequential data

has been widely used for natural language processing. We follow the practice since 1)

several social graph embedding approaches have been proven useful for classification

tasks, such as LINE (Tang et al., 2015) and DeepWalk (Perozzi et al., 2014), and 2)

users appear in spread traces follow similar distribution of how words appear in the

social media posts.

Figure 4.1 illustrates the distribution of users and words. The distribution in

Figure 4.1(a) comes from a real-world Twitter message trace dataset showing how

users appear in message traces. The distribution in Figure 4.1(b) comes from the same

dataset showing how words appear in message content. They both follow a power-

law distribution, which motivates us to embed users into low dimensional vectors,

as how embedding vectors of words are used in natural language processing (Kim,

2014; Palangi et al., 2016). Several graph embedding algorithms are available, we will

compare their performance and provide our solution and reasons behind our choice in

the next subsection. For the rest of the subsection, we will introduce the optimization

for the proposed LSTM-RNNs.

We show the training of the proposed LSTM-RNNs in Algorithm 6. We input the

labeled spreader sequences X and the corresponding labels Y , which are randomly

split into a training and a validation set in line 2. In addition to the maximum

number of iterationsMaxiter, we also have a function EarlyStop() for controlling early

termination of the training, which takes the loss on the validation set as the input. In

line 1, we initialize the model parameters randomly with Gaussian distribution. From

line 3 to 7, we update W with training data until the maximum epoch is reached

or the early termination condition is met. The loss function used in line 4 is shown
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Figure 4.1: The Frequency of Users Appearing in Traces of Social Media Messages
Follows a Power-law Distribution, Which Is Similar to the Distribution of Word Fre-
quencies in Messages.

below:
|Xtr|∑
i=1

|Ytr = 0|yi log(ŷi) + |Ytr = 1|(1− yi)(log(1− ŷi)), (4.1)

where yi is the true label of i and ŷi is the corresponding prediction. So Eq.(4.1)

calculates the cross entropy between the true labels and the prediction. |Ytr = 0|

(|Ytr = 1|) is the number of negative (positive) instances in the training set. Since we

aim to work on multi-label classification, the data is naturally imbalanced when we

model one of them, introducing the weight helps the model balance the gradient of

skewed data. In next subsection, we will introduce how we generate embeddings and

the reason behind our choice.

4.3.2 Embedding of Users

Given the framework of sequence modeling, the next problem is to find the proper

embedding method that captures the intrinsic features of social media users. As

discussed previously, using embedding vectors can help alleviate the data sparsity
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Algorithm 2 Training Algorithm of LSTM-RNNs

Input: Labeled sequences and labels X, Y

Maximum number of iterations: Maxiter

Early termination function : EarlyStop()

Output: Weights of LSTM-RNNs: W

1: Initialize W randomly with Gaussian distribution, V Loss[Maxiter], i = 0

2: Split X and Y into training and validation set, (Xtr, Ytr) and (Xval, Yval)

3: do

4: Train RNNs with (Xtr, Ytr) for 1 epoch with Eq.(4.1)

5: Test RNNs with (Xval, Yval) to obtain loss V Loss[i]

6: i = i+ 1

7: while EarlyStop(V Loss, i) = FALSE AND (i < Maxiter)

through leveraging social proximity and social dimensions. In this section, among

the existing embedding methods, we will mainly focus on two state-of-the-art ap-

proaches that have been proven effective on social graphs, LINE (Tang et al., 2015)

and DeepWalk (Perozzi et al., 2014). Both LINE and DeepWalk aim to provide a

representation for data instances that captures the inherent properties, such as social

proximity.

These methods mainly focus on the microscopic structure of networks. For ex-

ample, first-order proximity constrains users that are connected to be similar and

second-order proximity constrains users that have common friends to be similar.

LINE achieves this by sampling such nodes from the network and updating their rep-

resentations jointly, while DeepWalk samples a sequence of data with a random walk

algorithm. Nevertheless, for a large social graph, some mesoscopic structure such as

social dimensions (Tang and Liu, 2009) and community structures (Yang et al., 2013)
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Table 4.1: Average Euclidean Distance Between Nodes with Low Dimensional Rep-
resentation.

Method 1st-degree 2nd-degree Intra-group

LINE 5.16 5.00 10.76

DeepWalk 7.74 7.69 6.04

SocDim 6.87 6.12 4.55

are more useful in characterizing information (Laumann and Pappi, 2013). There-

fore, the ideal embedding method should be able to capture both local proximity and

community structures.

Table 4.1 illustrates our results of using different embedding methods. We test

LINE, DeepWalk and SocDim (Tang and Liu, 2009) on Twitter data and show the

distance between neighbors with the new representation. We also detect commu-

nity structures in the network and calculate the average of distances between nodes

that are in the same community. The community detection algorithm is an accel-

erated version of Louvain method (Blondel et al., 2008). As shown in the table,

LINE captures the first and second-degree proximity, while SocDim best captures

the community-wise proximity. Based on the random walk, DeepWalk achieves bet-

ter community-wise proximity, however, it is still outperformed by SocDim, which

directly models the community structure.

In order to capture both the social proximity and community-wise similarity

among users, we propose a principled framework that directly models both kinds of

information. Given the social graph G, we can derive an adjacency matrix S ∈ Rn×n,

where n is the number of users. Our goal is to learn a transformation matrix

M ∈ Rn×k which converts users to a latent space with the dimensionality of k.

Note that we reuse k for brevity of presentation, and the number of features and

hidden nodes in the LSTM-RNNs are not necessarily the same. In order to capture

the community-wise similarity, we introduce two auxiliary matrices, a community in-
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dicator matrix H ∈ Rn×g, where g is the number of communities and tr(HHT ) = n

(only one element is 1 in each row and all the others are 0), and a community rep-

resentation matrix C ∈ Rg×k, where each row ci is an embedding vector describing

the community. In order to capture the community structure, we embed the problem

into an attributed community detection model (Yang et al., 2013):

min
M,H,C

n∑
i=1

||siM− hiC||22 + α||H−MCT ||2F ,

s.t. tr(HHT ) = n,

(4.2)

where siM is the embedding vector and we regularize it to be similar to the repre-

sentation of its corresponding community hiC. The second term aims to achieve the

intra-group coherence by predicting the community assignment by group the embed-

ding vectors of users and communities (Yang et al., 2013). The objective function in

Eq.(5.1) aims to cluster nodes with embedding vectors. In order to further regularize

the clusters to be social communities, we adopt a modularity maximization-based

method, which has been widely used to detect communities with network informa-

tion (Wu et al., 2016a). Specifically, given the adjacency matrix S and the community

membership indicator, the modularity is defined as follows (Tang and Liu, 2009):

Q =
1

2|E|
∑
i,j

(Sij −
didj
2|E|

)(hih
T
j ), (4.3)

where |E| is the number of edges and di is the degree of i. hi is the community

assignment vector for i, and hih
T
j = 1 if i and j belong to the same community,

otherwise hih
T
j = 0.

didj
2|E| is the expected number of edges between i and j if edges

are placed at random. Modularity Q measures the difference between the number of

actual edges within a community and the expected number of edges placed at random.

An optimal community structure H should maximize the modularity Q. By defining

the modularity matrix B ∈ Rn×n where Bij = Sij− didj
2|E| and suppressing the constant
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which has no effect on the modularity, we rewrite Eq.(4.3) as follows:

Q = tr(HTBH).

In order to guarantee that the embedding vectors preserve the community struc-

ture in the latent space, we propose to integrate modularity maximization into the

embedding method. The objective function can be rewritten with the modularity

maximization regularizer as follows:

min
M,H,C

n∑
i=1

||siM− hiC||22 + α||H−MCT ||2F − βtr(HTBH)

s.t. tr(HHT ) = n,

(4.4)

where β controls the influence of community structures. As discussed previously,

the microscopic structure is also of vital importance for generating embedding vec-

tors. In order to jointly consider both mesoscopic and microscopic structures, we

decompose M into a conjunction of a global model parameter M̃ and a localized

variable Mi for each user i (M = M̃ +Mi for each user i). Therefore, M̃ captures

the community structure and Mi can be used to directly apprehend the microscopic

structure between nodes. Motivated by recent research on network regularization, we

fortify the representation of nodes with proximity by the network lasso regularization

term (Hallac et al., 2015): ∑
i,j

Aij||Mi −Mj||2F ,

where A ∈ Rn×n is the microscopic structure matrix, Aij = 1 if we aim to preserve

the proximity between i and j in the latent space. Following conventional graph em-

bedding practices (Tang et al., 2015), we consider first- and second-degree proximity,

meaning that Aij = 1 if i and j are connected or share a common friend. Note that

A can be specified with particular applications. Imposing the Frobenius norm of the
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difference between Mi and Mj incentivizes them to be the same when Aij = 1. By in-

corporating the network lasso regularizer, the objective function can be reformulated

as follows:

min
M,H,C

n∑
i=1

||si(M̃ + Mi)− hiC||22 + α||H− M̃C
T ||2F

− βtr(HTBH) + γ
∑
i,j

Aij||Mi −Mj||2F ,

s.t. tr(HHT) = n,

(4.5)

where γ controls the influence of the network lasso. As we can see, we establish

the consensus relationship between mesoscopic and microscopic network structures

by jointly considering the social communities and proximity. By introducing the

global parameter M̃ and the personal variable Mi, we force both kinds of information

to be preserved in the newly-learnt embedding vectors. However, Eq.(4.5) is not

jointly convex to all the parameters M,H and C. In order to solve the problem, we

separate the optimization into four subproblems and iteratively optimize them. We

will introduce details of the optimization for the rest of the section.

Update M̃ while fixing Mi, H and C: By removing terms that are irrelevant to

M̃, we obtain the following optimization problem:

min
M̃

n∑
i=1

||siM̃ + siMi − hiC||22 + α||H− M̃C
T ||2F , (4.6)

which is convex w.r.t. M̃. In real applications, the number of users n may be huge.

Hence, we adopt a gradient-based update rule as follows:

M̃ = M̃− τ ∂εM̃
∂M̃

, (4.7)

where τ is the step size that can be obtained through backtracking line search (Nocedal

and Wright, 2006). The derivative of M̃ is shown as follows:

∂εM̃
∂M̃

= sTi

n∑
i=1

(siM̃ + siMi − hiC) + α(H− M̃C
T

)C. (4.8)
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Update Mi while fixing M̃, H and C: By removing terms that are irrelevant to

Mi, we obtain the following optimization problem:

min
Mi

n∑
i=1

||siM̃ + siMi − hiC||22 + γ
∑
i,j

Aij||Mi −Mj||2F , (4.9)

which is convex w.r.t. Mi. Similarly, we derive the gradient:

∂εMi

∂Mi

= sTi

n∑
i=1

(siM̃ + siMi − hiC) + γ
∑
i,j

Aij(Mi −Mj). (4.10)

Update C while fixing M̃, Mi, and H: By removing terms that are irrelevant to

C, we obtain the following optimization problem:

min
C

n∑
i=1

||si(M̃ + Mi)− hiC||22 + α||H− M̃C
T ||2F , (4.11)

which is convex w.r.t. C. Similarly, the gradient can be obtained as:

∂εC
∂C

=
n∑
i=1

hTi (hiC− siM̃− siMi) + α(M̃CT −H)TM̃. (4.12)

Update H while fixing M̃, Mi, and C: By removing terms that are irrelevant to

H, we obtain the following optimization problem:

min
H
||SM−HC||2F + α||H− M̃C

T ||2F − βtr(HT(S− B̂)H),

s.t. tr(HHT ) = n,

(4.13)

where B̂ij =
didj
2|E| . Consider that H is an indicator matrix, the constraint makes the

problem in Eq.(4.13) NP-complete, which is extremely difficult to solve. In order

to cope with the problem, we relax the constraint to orthogonality HTH = I and

nonnegativity H ≥ 0 and reformulate the objective function as follows:

εH = − βtr(HTSH) + βtr(HT B̂H) (4.14)

+ ||SM−HC||2F + α||H− M̂C
T ||2F

+ λ||HTH− I||2F ,
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Table 4.2: Statistics of the Datasest Used in This Study.

Messages Posts Unique Users Class Ratio

Real News 68,892 288,591 121,211 0.27(b):0.25(t):0.37(e):0.11(m)

Fake News 3,600 17,613 9,153 0.5:0.5

where λ > 0 should be a large number to guarantee the orthogonal constraint to be

satisfied, and we set it as 108 in this section. We then utilize the property that ||X||2F

= tr(XTX) to reformulate the loss function as follows:

εH = − βtr(HTSH) + βtr(HT B̂H) (4.15)

+ tr(SMMTST + HCCTHT − 2SMCTHT )

+ αtr(HHT + M̂C
T
CM̃T − 2HCM̃T )

+ λtr(HTHHTH− 2HTH + I) + tr(ΘHT ),

where Θ = [Θij] is a Lagrange multiplier matrix to impose the nonnegative constraint.

Set the derivative of ∂εH
∂H

to 0, we have:

Θ = 2SH− 2βB̃H− 2CCTHT + 2SMCT (4.16)

− 2αHT + 2αCM̃T − 4λHHTH + 4λH.

Following the Karush-Kuhn-Tucker (KKT) condition for the nonnegativity, we

have the equation as follows:

(2SH− 2βB̃H− 2CCTHT + 2SMCT − 2αHT (4.17)

+2αCM̃T − 4λHHTH + 4λH)ijHij = θijHij = 0,

which is the fixed point equation that the solution must satisfy at convergence. The

update rule for H can be written as follows:

H = H�

√
−2βB̃H +

√
∆

8λHHTH
, (4.18)
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where ∆ is defined as:

∆ = 2β(B̃H)� (B̃H) + 16λ(HHTH) (4.19)

� (2SH− 2CCTHT + 2SMCT

− 2αHT + 2αCM̃T + 4λH).

The convergence of Eq.(4.19) can be proven as an instance of nonnegative matrix

factorization (NMF) problem (Lee and Seung, 2001).

4.3.3 Time Complexity

TraceMiner consists of two components, LSTM-RNNs and the embedding method.

Though LSTM-RNNs take O(|E|+|V |)-time for backpropagations, the scalability can

be easily increased with deep learning software library like Theano2, especially when

GPU is available.

Since the number of users is usually far larger than the number of features and

number of communities, the embedding method takes O(n2)-time. Only matrix mul-

tiplication is used in all update rules, so the optimization can be accelerated by

utilizing matrix optimization library like OpenBLAS3.

4.4 Experiments

In this section, we introduce experiment details to validate the effectiveness of the

proposed framework. Through the experiments, we aim to answer two questions:

• How well can network information be used to classify social messages compared

with content information?

2http://deeplearning.net/software/theano/
3http://www.openblas.net/
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• How effective are the LSTM-RNNs by integrating with the proposed embedding

method?

Therefore, we test the methods on two different classification tasks with real-world

datasets and include both content-based and network-based baselines for comparison.

4.4.1 Datasets

Over 200 million posts are posted per day on Twitter4 and the popularity has made

Twitter a testbed for information filtering research. In this section, we aim to collect

a large dataset that includes tweets about specific messages. Following (Qazvinian

et al., 2011), we leverage Twitter Search API5 to retrieve tweets of interests by com-

piling queries with certain topics.

We deal with two tasks in this section, standard news classification and fake news

detection. News classification is a classical multi-label text categorization problem

and existing efforts have mainly focused on the content. We obtain a news dataset

which was originally used for content-based classification6 by selecting news that has

at least two posts on Twitter. Queries for Twitter Search API are compiled by words

in the title of the corresponding news. Based on the spreaders of news, we try to

use TraceMiner to classify the news into four categories: business (b), science and

technology (t), entertainment (e), medical (m). Statistics about the dataset are shown

in Table 7.2. We sample 68, 892 pieces of news, which relate to 288, 591 posts with

121, 211 unique users. The ratio of different categories is also presented.

The other task is fake news detection. The openness of social media platforms

enables timely information to be spread at a high rate. Meanwhile, it also allows

4https://blog.twitter.com/2011/200-million-tweets-per-day
5https://dev.twitter.com/rest/public/search
6https://archive.ics.uci.edu/ml/datasets/News+Aggregator
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for the rapid creation and dissemination of fake news. Following (Qazvinian et al.,

2011), we retrieve tweets related to fake news by compiling queries with a fact-checking

website. In this section, we choose Snopes7 to obtain ground truth, where we collect

articles tagged with fake news8. In order to obtain non-fake news posts pertaining

to the same topic, we extract keywords in regular expressions as queries to retrieve

posts. Statistics of the dataset is shown in Table 7.2. We collect 3, 600 messages with

50% are fake news.

Table 4.3: The F1-measure of Different Methods on the Task of Social Media News
Categorization.

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

M
icro

-F
1
(%

)

SVM 0.6967 0.7138 0.7447 0.7577 0.7988 0.8096 0.8499 0.8787 0.8996

XGBoost 0.7121 0.7349 0.7512 0.7794 0.8248 0.8250 0.8638 0.8951 0.9047

TM(DeepWalk) 0.7895 0.8081 0.8149 0.8374 0.8569 0.8627 0.8852 0.8917 0.9184

TM(LINE) 0.7691 0.7926 0.8163 0.8379 0.8467 0.8744 0.8980 0.9106 0.9253

TraceMiner 0.8275 0.8460 0.8658 0.8835 0.8885 0.9141 0.9218 0.9357 0.9380

M
a
cro

-F
1
(%

)

SVM 0.6988 0.7260 0.7425 0.7754 0.7665 0.7872 0.8118 0.8314 0.8722

XGBoost 0.7305 0.7438 0.7857 0.7887 0.8144 0.8344 0.8726 0.8941 0.9044

TM(DeepWalk) 0.7746 0.8010 0.8156 0.8313 0.8377 0.8611 0.8646 0.8734 0.8839

TM(LINE) 0.7561 0.7895 0.8019 0.8138 0.8235 0.8568 0.8775 0.8896 0.9153

TraceMiner 0.8181 0.8347 0.8359 0.8549 0.8635 0.8788 0.8779 0.8882 0.9064

4.4.2 Experimental Settings

A core contribution of our work is the idea that spreaders of information can be

used to predict message categories. Therefore, we try to test the effectiveness of the

proposed method comparing with the state-of-the-art content-based approaches. We

experiment a variety of approaches, and report the following two which achieve better

results.

7http://www.snopes.com/
8https://www.snopes.com/tag/fake-news/
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• SVM (Joachims, 1998) trains on content information, which is first prepro-

cessed with Stanford CoreNLP toolkit (Manning et al., 2014). We adopt bigram

and trigram features based on results on the validation set.

• XGBoost (Chen and Guestrin, 2016) is an optimized distributed gradient

boosting library that implements machine learning algorithms under the Gra-

dient Boosting framework. It has been successfully applied to various prob-

lems and competitions. We feed it with the preprocessed content produced by

Stanford CoreNLP. XGBoost presents the best results among all content-based

algorithms we tested.

We propose a novel embedding method to cater to TraceMiner. In order to evalu-

ate its effectiveness, we introduce two variants of TraceMiner and present their results

for comparison:

• TM(DeepWalk) is a variant of TraceMiner by adopting the embedding vectors

from DeepWalk as input. As discussed earlier, DeepWalk captures proximity

between nodes with random walk: nodes that are sampled together with one

random walk are forced to preserve the similarity in the latent space. Therefore,

DeepWalk does not directly model the first and second-degree proximity or the

community structure.

• TM(LINE) is a variant of TraceMiner by adopting the embedding vectors from

LINE. LINE models first and second-degree proximity while does not consider

the community structure between users.

To test the prediction accuracy in terms of both precision and recall, we adopted

the F1-measure to evaluate the performance. Since there are multiple labels to be pre-

dicted, for each task t, F t
1 can be computed. In order to get the overall performance,

50



we first adopt the Macro-averaged F1-measure as:

Macro− F1 =
1

|T |
∑
t∈T

F t
1, (4.20)

where T is the set of all identity labels and F t
1 is the F1-measure of task t.

A possible problem of Macro-F1 is, since the sizes of different categories are dif-

ferent, the task with fewer instances may be overemphasized. In order to cope with

this problem, we adopted Micro-averaged F1-measure. First, we calculate the micro

averaged precision and recall:

Micro− precision =
#TP

#TP + #FP
(4.21)

Micro− recall =
#TP

#TP + #FN
,

where #TP is the number of true positives, #FP is the number of false positives

and #FN is the number of false negatives. Micro-F1 is the harmonic average of

Micro-precision and Micro-recall.

4.4.3 Experimental Results

Table 4.4: The F1-measure of Different Methods on the Task of Fake News Detection.
Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

SVM 0.5825 0.5779 0.6122 0.6194 0.6658 0.7114 0.7224 0.7252 0.7581

XGBoost 0.6558 0.7004 0.7002 0.7153 0.7288 0.7703 0.7984 0.8115 0.8226

TM(DeepWalk) 0.7804 0.7810 0.8078 0.8264 0.8194 0.8491 0.8542 0.8738 0.8894

TM(LINE) 0.7542 0.7547 0.7913 0.8015 0.8083 0.8485 0.8733 0.8936 0.8971

TraceMiner 0.7867 0.7935 0.8344 0.8459 0.8547 0.8751 0.8988 0.9089 0.9124

Social Media News Categorization: The performance of different methods

on Twitter News data with varying training ratio, from 10% to 90%, is illustrated in

Table 4.3. For each experiment, samples are randomly split into training and testing

set. We repeat this process 10 times and report the average results. The highest

performance under each setting is highlighted in bold face.
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In terms of Micro-F1, our proposed model TraceMiner outperforms all the base-

lines and its variations, TM(DeepWalk), TM(LINE). Diffusion-based methods per-

form better than content-based methods. XGBoost performs slightly better than

SVM. TM(DeepWalk) is the runner-up method for 10%, 20% and 50%, and TM(LINE)

is the runner-up for the rest cases. The result shows that when less network data

is available, the random walk-based approach produces better embeddings of users;

And a more deterministic method constraining on social proximity better apprehends

user behaviors when the network information is more complete. TraceMiner achieves

the best result for all tasks. By jointly modeling the microscopic and mesoscopic

structures, TraceMiner is more robust to data sparsity.

In terms of Macro-F1, XGBoost outperforms SVM for all cases. Similar pattern

has again been observed: TM(DeepWalk) outperforms TM(LINE) with less training

information, while TM(LINE) outperforms TM(DeepWalk) when the information is

more complete. TraceMiner still performs the best among most cases until we increase

the training ratio up to 80%. XGBoost and TM(LINE) achieves the best result for

80% and 90%, respectively. Two observations can be made here: with more training

information becoming available, 1) the margin between proposed methods and the

content-based methods becomes smaller; and 2) the margin between TraceMiner and

its variants TM(LINE) and TM(DeepWalk) becomes smaller. Based on the obser-

vations we can draw conclusions that TraceMiner is more useful when less training

information is available, and the proposed TraceMiner can well handle scarce data

in the early phase of learning when less training information is known. XGBoost

gets the best when 80% of information is available. Since text-based categorization

is a well-studied problem, and it is easy to solve when rich information is available,

TraceMiner will be able to complement those cases that are difficult for content-based

approaches to deal with, and such cases are pervasively present in social media mining
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tasks where content information is insufficient and noisy.

Another observation that again validates our findings is that TraceMiner performs

better in terms of Micro-F1. As shown in Eq.(4.20) and (4.21), in a multi-label

classification task, the category with fewer instances is more advantageous for Macro-

F1. The results show that TraceMiner actually ends up with correctly classifying

more instances.

Fake News Detection: The performance of different methods on Twitter fake

news data with varying training ratio, from 10% to 90%, is illustrated in Table 4.4.

Since the dataset is balanced, Micro- and Macro-F1 are the same, so only one set of

results are presented. For the content-based approaches, XGBoost consistently out-

performs SVM for all cases. For the two variants of TraceMiner, similar patterns are

observed: TM(DeepWalk) outperforms TM(LINE) when less training information is

available. TM(LINE) outperforms TM(DeepWalk) when more information is avail-

able for training. It again proves that random walk-based sampling is more effective

for scarce data, and proximity-based regularization better captures data structures

with more training information.

An interesting difference between the results for fake news and the previous ex-

periment is the larger margin between proposed methods and content-based methods.

Unlike posts related to news where the content information is more self-explanatory,

content of posts about fake news is less descriptive. Intentional spreaders of fake news

may manipulate the content to make it look more similar to non-rumor information.

Hence, TraceMiner can be useful for many emerging tasks in social media where ad-

versarial attacks are present, such as detecting rumors and crowdturfing. The margin

between content-based approaches and TraceMiner becomes smaller when more infor-

mation is available for training, however, in these emerging tasks, training information

is usually time-consuming and labor-intensive to obtain.
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Another point we would like to discuss is the performance when the training

information is very insufficient. When 10% of information is available, SVM has an

F1 score of 58% which is slightly better than a random guess, while TraceMiner has an

F1 score of 78%. Although such margin is reduced when more information is available,

the optimal performance with very few training information is of crucial significance

for tasks which emphasize on the earliness. For example, detecting fake news at

an early stage is way more meaningful than detecting it when 90% percent of its

information is known (Sampson et al., 2016b; Qazvinian et al., 2011; Wu et al., 2017b).

In conclusion, TraceMiner provides an effective method for modeling messages diffused

in social media with only network information, which provides a complementary tool

for emerging tasks that require earliness and/or suffers from the scarcity of content

information.

4.5 Summary

In this section, we aim to classify messages spread in social networks, which is a

fundamental problem for social media mining. We observe that for many emerging

tasks, content information is usually insufficient or less descriptive, while pervasively

available network information is left unused. Therefore, we propose a novel method

TraceMiner that classifies social media messages with diffusion traces in social net-

works. To address the problem, we propose an end-to-end classification model based

on LSTM-RNNs. In order to alleviate the data sparsity, we propose an embedding

method that captures both social proximity and community structures. Experimen-

tal results with real-world datasets show that TraceMiner effectively classifies social

media messages and is especially useful when content information is insufficient.
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Chapter 5

MISINFORMATION DETECTION AT AN EARLY STAGE

In this chapter, we focus on delivering an effective misinformation detection model in

an early stage. Since misinformation evolves and spreads rapidly in social networks,

ignoring earliness of intervention makes the intervening campaign downgrade fast due

to the evolved content. I will introduce the computational challenge of data scarcity at

an early stage. Then I will formally define the computational problem, and present

the proposed method. We conduct experiments to evaluate the effectiveness and

earliness of the proposed method against the state-of-the-art approaches.

5.1 Data Scarcity at an Early Stage

The prevalence of social media has revolutionized the way of information dissem-

ination and communication. The openness of social media platforms enables timely

information to be spread at a high rate. Meanwhile, it also allows for the rapid cre-

ation and dissemination of rumors, which could cause catastrophic effects in the real

world within a short period. For example, on April 23rd 2013, the hacked Twitter

account of Associate Press posted a false claim of an attack on the White House,

which was soon covered by news agencies, and wiped out $136 billion in the stock

market within two minutes1. It would be appealing if emerging rumors could be

automatically detected in its early stage.

Classical rumor detection methods highly depend on learning patterns from man-

ually labeled data. A straightforward way is to learn a classifier or regressor based on

1http://www.bloomberg.com/news/articles/2013-04-23/dow-jones-drops-recovers-after-false-

report-on-ap-twitter-page
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labeled rumors, and then the built model can be employed to determine the credibility

of a new message or user. However, in real-world applications, annotating a rumor

dataset could be time-consuming and labor-intensive, sometimes even impractical.

The labeling bottleneck brings in an unavoidable delay for existing systems, resulting

in significant challenges to enable the system to detect new rumors in a timely man-

ner. Therefore, it would be desirable to develop a way for rumor detection without

the labeling process.

While the problem of detecting rumors on social media is relatively new, rumors

have been extensively investigated for years in social and psychological studies. The

literature can be traced back to (Allport and Postman, 1947). A conventional method-

ology of studying rumors is to analyze the testimonies. The origins, consequences and

potential impact of a rumor can be well estimated by linking it to a historical rumor

through examining the behaviors of social participants who are exposed to it (An-

thony, 1973; Rosnow, 1991), since similar rumors usually trigger similar reactions,

such as curiosity, inquiry, and anxiety. Although the content on social networks is

informal, its significant role in understanding a rumor has been found (Oh et al.,

2013). Motivated by the previous findings, we explore the possibility of using the

abundant labeled data from prior rumors to facilitate the detection of an emerging

rumor.

However, it is particularly difficult and challenging to directly use labeled data

from one rumor to build a detection model for the other, a.k.a. cross-training. Cross-

training can be successfully applied to problems of which different tasks are simi-

lar. Since rumor data is highly topic-sensitive, the vocabulary and word choice may

vary substantially between different rumors. Therefore, directly applying an existing

dataset would lead to the inclusion of noisy features and thus may negatively inhibit

the prediction accuracy. In addition, since a certain category of rumors may trigger

56



specific reactions, e.g., wedge-driving rumors cause hatred and atrocity rumors arouse

astonishment, it is ideal to find useful patterns within a category. Due to the lack

of availability of the category information, it is difficult to find the scarce patterns

out of miscellaneous labeled data. Also, since social media users tend to communi-

cate concisely and casually (Kietzmann et al., 2011), the short content may further

exacerbate the scarcity problem.

In order to tackle the aforementioned challenges, we present a novel learning frame-

work to detect emerging rumors with existing labeled data from prior rumors. The

proposed framework is built upon a sparse representation model, and it jointly selects

descriptive features from prior labeled data and trains the topic-independent classifier

with selected features. The proposed framework extends the earliness bottleneck of

current rumor detection methods.

5.2 Problem Statement

D = {d1,d2, . . . ,dm} ∈ Rm×n is the data matrix with each row di ∈ Rn being a

data instance and each column fi ∈ Rm being a vector of each feature. y ∈ {−1, 1}m

is the label vector for training data. yi = 1 if i refers to a rumor, and otherwise,

yi = −1. Given the data matrix D, label vector y, we aim to learn a predictor that

accurately classifies rumors and non-rumors based on the social media posts.

5.3 Early Detection with Prior Label Information

5.3.1 Motivation

In Table 5.1, we display rumors about two topics. The first rumor in Table 5.1(a)

is about endorsements for the presidential candidate. The rumor says a famous

evangelist urged Christians to vote for Donald Trump, otherwise they will face death
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Table 5.1: Two Real-world Examples of Social Media Rumors.

(a) An Example Rumor about the Presidential

Election and the Corresponding Social Media

Posts.

Rumor

Rightwing Christian says elect

#trump or face #deathcamps run by

#liberals http://bit.ly/2as5MJ5 .

Post #1
Christian conservative gets political.

Can’t fix stupid but it can be blocked.

Post #2
So, when did bearing false witness be-

come a Christian value?

Post #3

Graham Says Christians Must Support

Trump or Face Death Camps. Does he

still claim to be a Christian?

(b) An Example Rumor about the Ferguson

Protests and the Corresponding Social Media

Posts.

Rumor

A Ferguson protesting sign reads ’No

Mother Should Fear for Her Son’s Life

Every Time He Robs a Store.’

Post #1
i’ve just seen the sign on fb. you can’t

fix stupid.

Post #2
THIS IS PURE INSANITY.. HOW

ABOUT THIS STATEMENT.

Post #3

No Mother Should Have To Fear For

Her Son’s Life Every Time He Robs A

Store #AllLivesMatt

camps. The following three sentences are posts of the rumor. The second rumor

in Table 5.1(b) is about a Ferguson protester. The rumor says the sign that the

protesters are holding reads “No Mother Should Fear for Her Son’s Life Every Time

He Robs a Store”. The bias of word choice of different rumor topics makes it difficult

for cross-training. For example, the classifiers trained on the first rumor, which use

features such as “political” and “Christian” would be useless in identifying posts of

the second rumor.

In the literature of social and psychological studies, both rumors can be catego-

rized as wedge-driving rumors (Allport and Postman, 1947) that feed on hate. In

the user posts, we find contents that express hostility similarly, such as “fix stupid”

and “pure insanity”. These similar expressions are useful in identifying future wedge-

driving rumors, which may or may not be related to the two topics. Therefore, we

aim to discover the topic-independent patterns in user posts.
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5.3.2 Working of the Framework

In order to build the framework that can exploit prior labeled data, two main issues

remain to be solved. An ideal case for selecting topic-independent features is that we

group rumors by their categories and find discriminative features for each category,

such as hatred features for wedge-driving rumors, worrying features for anxiety-arising

rumors, and astonishment features for atrocity rumors. However, rumor categories

are unavailable. In order to solve the problem, we adopt structure learning-based

feature selection in this section. Motivated by recent research on unsupervised feature

selection (Li et al., 2016), for an unlabeled dataset, we can effectively select features

by preserving the intrinsic structure of data. In our work, the structure is the rumor

category, and within the same category, rumors trigger similar contents.

As conventional practices in unsupervised feature selection approaches, the se-

lected features can then be used for training a classifier. However, the supervised

information, i.e., the rumor labels, has not been considered in the feature selection

process, which leads to the issue that the selected features may fail to capture the key

knowledge of rumors. A more coherent method is to integrate the feature selection

and classification processes into a unified framework.

Figure 5.1 illustrates the three components of the proposed framework. The frame-

work is built upon sparse representation learning methods, which simultaneously in-

fers the category structure of rumor data and selects discriminative features. The

rumor label is also jointly utilized by supervising the feature selection process which

results in an optimal rumor classifier.
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Figure 5.1: An Illustration of the Learning Procedure of the Proposed Framework.
The Framework Consists of Three Components: Inferring Rumor Categories (Struc-
ture Learning), Selecting Discriminative Features, and Learning the Rumor Classifier.

5.3.3 Problem Definition

D = {d1,d2, . . . ,dm} ∈ Rm×n is the data matrix with each row di ∈ Rn being a

data instance and each column fi ∈ Rm being a vector of each feature. y ∈ {−1, 1}m

is the label vector for training data. yi = 1 if i refers to a rumor, and otherwise,

yi = −1. Given the data matrix D, label vector y, we aim to learn a predictor that

accurately classifies rumors and non-rumors based on the social media posts.

Motivated by recent research on feature selection (Li et al., 2016), we start with

a matrix factorization formulation:

min
U,V

1

2
||D−UVT ||2F ,

where || · ||F denotes the Frobenius norm. The original data matrix is decomposed

into two factors, U ∈ Rm×k is the low-rank representation of users, and V ∈ Rn×k is

the low-rank representation of features with k � n. The factorization separates data

from feature by k latent factors, which enables the clustering and feature selection

to be jointly performed. In order to force the user factor U to be cluster indicators

instead of latent factors, we impose a constraint on U:

min
U,V

1

2
||D−UVT ||2F ,

s.t. U ∈ {0, 1}m×k,U1 = 1

(5.1)

where 1 is a vector with all elements equal to 1. The m rows are then clustered into

k clusters. However, due to the constraint on U, it is difficult to solve the problem
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in Eq.(5.1). Motivated by research on spectral clustering (Von Luxburg, 2007), we

introduce an orthogonal constraint on the rows to relax it. Eq.(5.1) can then be

rewritten as follows:

min
U,V

1

2
||D−UVT ||2F ,

s.t. UTU = I,U ≥ 0

(5.2)

where I is an identity matrix and thus rows in U are orthogonal to each other.

The orthogonal constraint ensures that data instances are clustered into different

rumor categories. For each rumor category, we aim to select descriptive features. To

this end, we try to select key features while force the unselected features to be zero.

In the literature of sparse learning and feature selection, it can be done by imposing

an `2,1-norm (Hastie et al., 2015). Motivated by recent studies on embedded feature

selection (Wang et al., 2015), we rewrite Eq.(5.2) as follows:

min
U,V

1

2
||D−UVT ||2F + α||V||2,1,

s.t. UTU = I,U ≥ 0

(5.3)

where the `2,1-norm regularizer selects features that best preserve the structure of

clustering U. α controls the extent of sparsity.

Through solving Eq.(5.3), we can obtain the low-rank representations. However,

the labeled data that are available for distinguishing rumor and non-rumor content

has not been exploited. The resultant representation would fail to capture the key

signal that reveals the appearance of rumors of a category. Motivated by Collective

Matrix Factorization-based relational learning (Singh and Gordon, 2008; Wu et al.,

2016a), we introduce a classification loss term in the objective function. We adopt

the hinge loss used in Support Vector Machines (SVMs), and Eq.(5.3) is reformulated
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as:

min
U,V,w

1

2
||D−UVT ||2F + α||V||2,1 + β

m∑
i=1

h(uiV
Twyi),

s.t. UTU = I,U ≥ 0

(5.4)

where h(·) is the hinge loss and β controls the extent that the training information

influences the feature selection and structure learning processes. uiV
T is the recon-

structed formulation of a data instance. w is the model parameter of the SVMs,

and uiV
Tw denotes the prediction with given low-rank representations. To make it

convenient for optimization, we adopt the smoothed hinge loss (Rennie, 2005) for h(·)

as follows:

h(θ) =


1
2
− θ θ ≤ 0

1
2
(1− θ)2 0 < θ < 1

0 θ ≥ 1

where the loss function is smoothed when θ = 1, and the corresponding optimization

task of computing its gradient is more tractable. The gradient of the smoothed hinge

loss is

h′(θ) =


−1 θ ≤ 0

θ − 1 0 < θ < 1

0 θ ≥ 1

(5.5)

Next, we will introduce how to optimize the objective function in Eq.(5.4) effi-

ciently.

5.3.4 Optimization

The objective function in Eq.(5.4) is not convex w.r.t. all three variables, i.e.,

U,V, and w. However, Eq.(5.4) is convex in each of the three variables separately.
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Hence, we update each of them by fixing the other two iteratively.

Modeling Rumor Category

First, we introduce how U can be updated by fixing V and w. By removing terms

that are irrelevant to U, Eq.(5.4) can be reformulated as follows:

min
U

1

2
||D−UVT ||2F + β

m∑
i=1

h(uiV
Twyi).

s.t. UTU = I,U ≥ 0

(5.6)

The problem in Eq.(5.6) is an orthogonality constrained optimization problem.

The problem can be solved in the Crank-Nicolson scheme. Following (Wen and Yin,

2013), U can be efficiently updated as follows:

U← (I +
τ

2
Q)−1(I− τ

2
Q)U, (5.7)

where τ is the step size and Q is a skew-symmetric matrix, which leads to the descent

along geodesics and inside the feasible set. Q can be constructed as

Q = [U,G][G,−U]T

= UGT −GUT ,

(5.8)

where G is the gradient of the optimization objective in Eq.(5.6). Since both terms

in Eq.(5.6) are convex, the gradient can be obtained with Eq.(5.5) as

Gi,j = [UVTV −DV]i,j + β[h′(uiV
Twyi)yiw

TV]j,

where [·]i,j is the (i, j) entry of the matrix and [·]j is the jth entry of the vector. A prob-

lem of directly updating Eq.(5.7) is that the time complexity is high, since the inverse

operation dominates the calculation when m is large. In order to solve the problem,
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we rewrite the objective function as follows by applying the SMW formula (Sherman

and Morrison, 1950; Wen and Yin, 2013):

(I +
τ

2
Q)−1(I− τ

2
Q)U

= (I +
τ

2
[U,G][G,−U]T )−1(I− τ

2
[U,G][G,−U]T )U

= U− τ [U,G](I +
τ

2
[G,−U]T [U,G])−1[G,−U]TU

(5.9)

By reformulating the objective function in Eq.(5.7), only the inverse of (I +

τ
2
[G,−U]T [U,G]) needs to be calculated, which takes O(k3). Since k is the number

of clusters and normally k � n and k � m, the inverse operation is much easier to

solve and no longer dominates the computation.

In order to find the optimal step size τ in Eq.(5.7), we first introduce the Armijo-

Wolfe condition (Fletcher, 2013)

L(Uτ ) ≤ L(Uτ=0) + ρ1τL′(Uτ ), (5.10)

L′(Uτ ) ≥ ρ2L′(Uτ=0),

where Uτ is the trial point of gradient descent given a specific τ , and Uτ=0 is the

value by setting τ to zero. ρ1 and ρ2 are two parameters satisfying that 0 < ρ1 <

ρ2 < 1 (Moré and Thuente, 1994). L(·) is the loss function in Eq.(5.6), and L′(·) is

its gradient.

The optimal value of τ can be obtained through curvilinear search (Box et al.,

1969) with Armijo-Wolfe condition in Eq.(5.10), and details are presented in Algo-

rithm 3.
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Algorithm 3 Curvilinear Search for τ

1: Initialize τ > 0

2: Until Eq.(5.10) is satisfied

3: Set τ ← τ
2

4: Return τ

Selecting Features

Now we are introducing how V can be updated given fixed U and w. The optimization

function of V can be formulated based on Eq.(5.4) as

min
V

1

2
||D−UVT ||2F + α||V||2,1 + β

m∑
i=1

h(uiV
Twyi), (5.11)

where constraints on U are removed. The objective function in Eq.(5.11) is similar

to that of multi-task feature selection (Obozinski et al., 2006). The update rule for

V can be obtained by taking the derivative and setting it to zero. The derivative can

be formulated as

V −DTU + αCV + β
m∑
i=1

(yih
′(uiV

Twyi))wui, (5.12)

where C is a diagonal matrix where Ci,i = 1
2||vi||2 . C is constructed to obtain the

derivative of the `2,1 regularization term of V (Tang and Liu, 2012). By setting

Eq.(5.12) to zero, the update rule of V can be written as:

V← (I + αC)−1(DTU− β
m∑
i=1

(yih
′(uiV

Twyi))wui). (5.13)

Learning Rumor Classifier

Finally, we will introduce how the rumor classifier can be obtained given fixed U and

V. By removing terms that are irrelevant to w, Eq.(5.4) can be rewritten as

min
w
β

m∑
i=1

h(uiV
Twyi) +

γ

2
||w||22,
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where we add a regularization term to avoid over-fitting, and γ to control the com-

plexity of w. Since both terms are smooth and convex, the update rule of w can be

written as

w← w − η
(
β(yih

′(uiV
Twyi))VuTi

)
, (5.14)

where η is the step size and can be efficiently estimated with backtracking line

search (Nocedal and Wright, 2006).

Analysis

Given update rules of U, V and w, the problem can be efficiently solved by a Stochas-

tic Gradient Descent algorithm (SGD). SGD solves the optimization problem in the

hill-climbing scheme by seeking the stationary point. The optimization process can

be found in Algorithm 4. U, V and w are updated alternatively from line 3 to line

5. Since the objective function decreases for each of the subproblems, and Eq.(5.4)

has lower bounds such as zero, Algorithm 4 converges. As mentioned earlier, the

inverse operation in Eq.(5.9) can be quickly done in O(k3). The inverse operation

in Eq.(5.13) can be solved in O(n) since (I + αC) is a diagonal matrix. Therefore,

the complexity of one iteration (lines 3-5) is dominated by the matrix multiplication,

which can be efficiently solved since the data matrix D obtained from social media

contents is usually sparse. In addition, the experimental results on our datasets show

that the algorithm often converges in less than 20 iterations.

5.4 Experiments

In this section, we conduct experiments to assess the performance of the proposed

framework, namely Cross-topic Emerging Rumor deTection (CERT), with real world

social media data. In particular, we aim to answer the following two questions through

experiments:
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Algorithm 4 Early Detection of Emerging Rumors

Input: Data matrix D, label vector y, maximal number of iterations I

Output: U, V, w

1: Generate U, V and w randomly

2: For i=1 to I do

3: Update U by Eq.(5.9)

4: Update V by Eq.(5.13)

5: Update w by Eq.(7.8)

6: If convergence Break

7: End For

8: Return U, V, w

• How effective is CERT in detecting emerging rumors in social media by lever-

aging prior labeled data of rumors?

• How quickly can CERT detect emerging rumors after rumors start being spread

with only prior labeled data of rumors?

We begin by introducing how we obtain the real-world social media data and

the corresponding ground truth. Then we introduce the experimental setup and

baselines for comparison. Based on the experimental results, we finally investigate

the effectiveness and the earliness of CERT on rumor detection.

5.4.1 Datasets

Over 200 million posts are posted per day on Twitter2 and the popularity has made

Twitter a testbed for rumor detection research (Qazvinian et al., 2011; Sampson et al.,

2016a; Zhao et al., 2015). In this section, we aim to collect a large dataset that includes

2https://blog.twitter.com/2011/200-million-tweets-per-day
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tweets about all prior rumors within a certain period. Following (Qazvinian et al.,

2011), we leverage Twitter Search API3 to retrieve tweets of interests by compiling

queries with a fact-checking website.

In order to validate and debunk unverified information, several fact-checking web-

sites have been developed. Verification of rumors on fact-checking websites is mainly

run by professional editors and trusted information sources. Though fact-checking

sites may cover only a small portion of rumors in social media, the identified rumors

offers us valuable resources to evaluate rumor detection algorithms. In this section,

we choose Snopes4 to obtain ground truth, which is the top rumor reference site ac-

cording to Alexa5. In order to obtain non-rumor posts pertaining to the same topic,

we extract keywords in regular expressions as queries to retrieve posts.

With queries generated from 252 rumors from June 30th to July 11th, we collect

9,918 tweets and hire two human annotators to manually verify that they are rumors.

The annotators classify a tweet by reading the content and referring to the Snopes

article. The inter-judge agreement over all data instances achieves a high Cohen’s κ

score 0.93, which demonstrates the annotation accuracy. An expert makes the final

judge when annotators disagree with each other. The resultant dataset contains 1,618

rumor instances and 8,300 non-rumor instances.

5.4.2 Experimental Settings

We follow conventional settings (Qazvinian et al., 2011) to evaluate the perfor-

mance with Precision, Recall, and F-measure. All other parameters are set with

cross-validation based on a holdout dataset. Next, we will introduce methods that

3https://dev.twitter.com/rest/public/search
4http://www.snopes.com/
5http://www.alexa.com/topsites/category/Society/Folklore/

Literature/Urban Legends
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we use to compare with CERT. First, we aim to investigate how effective is CERT in

detecting emerging rumors with the historical rumors. Since CERT jointly clusters

rumors, selects features and trains a classifier, first, we introduce three variants of the

proposed method to validate different aspects of CERT:

• Pooling trains the classifier on the prior training data directly without cluster-

ing data or selecting features, and we adopt the linear-SVM as the classifier. As

shown in Figure 5.1, the way of CERT to model prior labeled data is to cluster

them into different rumor categories. On the contrary, Pooling directly learns

a classifier with all prior labeled data. Hence, Pooling is used to validate the

necessity of structure learning and feature selection.

• Elastic Net trains the classifier by imposing a sparsity regularization term to

select features. Pooling aims to evaluate structure learning and feature selection

as a whole, while Elastic Net only tests the effectiveness of feature selection.

Elastic Net aims to learn a sparse classifier with fewer selected features without

clustering data instances into rumor categories. So the result can be used to

validate the necessity of structure learning.

• KM SVM first clusters data instances and trains a classifier for each cluster.

KM SVM is designed to evaluate the method that separately clusters data and

trains classifiers. Since we propose to unify the data clustering and classifier

learning processes, the result of KM SVM can be used to validate the necessity

of the joint learning framework. Given a test instance, we first find the closest

cluster center and apply the corresponding classifier of the cluster to determine

the label of the test instance.

Several methods have been proposed to identify unverified information from social

media. In order to compare with the state-of-the-art approaches, we include the
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following methods:

• FE LL (Qazvinian et al., 2011): Rumors that are widespread in social media

usually share similar patterns in terms of content and diffusion. In order to

capture the patterns of rumors, Qazvinian et al. implement a method to extract

relevant features that capture the patterns of rumors. Based on the extracted

features and labeled instances, classifiers are trained to predict rumors. The

adopted classifier is a `1-regularized log-linear model.

• LK RBF (Sampson et al., 2016a): A problem that hinders the early detection

of rumors is the data scarcity: only few comments are available and they are

scattered in different discussion threads. In order to relieve the scarcity, a pos-

sible way is to combine these individual tweets from different threads together

as a “conversation”. Sampson et al. propose several methods to combine tweets

and try different supervised learning methods to classify rumors. We choose the

URL-based method to combine tweets and the RBF kernel method as the clas-

sifier, which achieve the best performance in that work and also on our dataset.

LK RBF is effective for detecting rumors in the early stage, and the comparison

can be used to evaluate the earliness of CERT.

We design two experiments to show the performance of CERT. In the first ex-

periment for studying the effectiveness, we arrange rumors in the chronological order

by the starting time, and we take the first 50% for training and the rest for test-

ing. Therefore, all methods predict new rumors with historical training data and

the experiment shows the performance on cross-training. In the second one, baseline

methods are trained on the rumors for evaluation, and the training data is added in

the chronological order by the generation time. The second experiment shows the

minimum time that could be saved by CERT regardless of the annotation.
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Table 5.2: Performance on Detecting Emerging Rumors.

Approaches Precision Recall F-score

Pooling 76.13% 60.20% 67.23%

Elastic Net 79.56% 65.62% 71.92%

KM SVM 70.12% 72.55% 71.31%

FE LL 86.29% 85.33% 85.81%

LK RBF 80.16% 64.62% 71.56%

CERT 92.18% 88.15% 90.12%

5.4.3 Effectiveness Analysis

The comparison of the performance is shown in Table 5.2. Precision shows how

accurate rumors can be detected, recall shows how sensitive the models are to rumors,

and F-score (F-1 measure) is the harmonic mean of precision and recall. Based on the

results shown in Table 5.2, we draw the following observations. The three variants,

i.e., Pooling, Elastic Net, and KM SVM, cannot effectively detect emerging rumors

with historical training data. Imposing a feature selection is useful since Elastic Net

outperforms Pooling. Disjointly clustering and detecting rumors with KM SVM does

not achieve comparable results, which proves the necessity of a coherent method.

Among the two rumor detection methods, i.e., FE LL and LK RBF, FE LL

achieves the better results and is the runner-up among all methods, showing that

feature engineering helps detect rumors better. The feature engineering process can

be integrated into CERT easily. CERT outperforms existing methods by jointly

grouping data instances, selecting features and learning classifiers. The result em-

pirically demonstrates that CERT is effective in exploiting knowledge in historical

training data.
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5.4.4 Earliness Analysis

In the second experiment, we allow existing rumor detection methods to be trained

on rumors that are for evaluation. Through incrementally adding training data in the

chronological order, we will be able to estimate the time that can be saved by utilizing

historical data. The results on earliness are shown in Figure 5.2. Note that, CERT

is trained only with historical data, meaning that when the other two methods are

trained on more labeled data of the emerging rumor, CERT is not retrained and only

exploits the prior labeled data.

At an early stage with 10% to 50% training data, LK RBF outperforms FE LL

regarding F-score, showing that linking and combining posts with the same URLs

alleviates the data scarcity problem. With more data being generated, the advantages

of linking data become diminishing, and FE LL outperforms LK RBF. The result

shows that FE LL is more effective with abundant training data, while LK RBF is

more useful for an emerging rumor. However, the best baseline achieves the result of

CERT with 70% training data, which has an average time lag of 22 hours. Therefore,

we empirically prove that the use of CERT not only yields effective classifiers but also

finds emerging rumors faster than existing approaches.

5.4.5 Rumor Categories

An intermediate task is to cluster rumors into categories, which is helpful for the

detection since rumors of the same category trigger similar reactions (DiFonzo and

Bordia, 2007). To help understand the clustering results, we show three example cate-

gories and the corresponding top rumors in the category. The results are illustrated in

Table 5.3, including wedge-driving rumors, dread rumors and curiosity rumors. The

name of the three clusters is acquired through manual checking. We see that rumors
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Table 5.3: Three Example Categories of Rumors Detected by CERT.

Wedge-Driving Rumors Dread Rumors Curiosity Rumors

President Obama claimed that

Americans would be better off

under the martial law during

an interview with Washington

Post.

Police in assessed that an en-

counter with three men at Sil-

ver Lake Park was an at-

tempted human trafficking in-

cident.

A North Carolina provider

of mental health services is

named “Nutz R Us.”

A Black Lives Matter protest

in Memphis obstructed I-40,

leading to the death of a crit-

ically ill child transplant pa-

tient.

A “purge” event is planned for

9 July 2016 in Baton Rouge kill

all police officers.

A fisherman captured a 3,000

lb. great white shark out of

the waters in the Great Lakes

Michigan.

A police officer shot two-year-

old Malik Gibson after mistak-

ing his pacifier for a gun.

NASA has warned of imminent

disaster due to the trajectory

of Nibiru.

Researchers sequenced octopus

genomes and discovered alien

DNA.
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Figure 5.2: Performance of Traditional Approaches with Chronologically Additional
Training Data, While CERT Uses the Historical Data.

are clustered cohesively, and the cohesiveness explains how it facilitates selecting key

features from sparse data.

5.5 Summary

Circulating online rumors have become a key issue for today’s social media sites.

They may result in catastrophic effect both online and offline quickly. After they

go viral, it is extremely difficult to eliminate their existence. In order to detect
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rumors at an early stage, we propose to directly train a classifier based on readily

available labeled data from prior rumors. Motivated by traditional studies on rumors,

we introduce a novel framework that jointly clusters data, selects features, and trains

classifiers. An optimization approach is also presented to solve the problem efficiently.

The proposed framework, CERT, largely breaks the bottleneck of the time lag from

annotating datasets. Experimental results illustrate the effectiveness and earliness of

CERT on real-world data.
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Chapter 6

CLASSIFICATION WITH MISINFORMATION

In this chapter, I study the problem of mitigating the negative effect of misinformation

on a machine learning algorithm. I focus on statistical relational learning, which is

mostly based on social media data and has been widely applied. I will first introduce

the emerging challenges brought by misinformation. In addition, I will present the

proposed method and evaluations based on real-world data.

6.1 Challenges of Misinformation Contaminating Social Media Data

Relational learning (RL) utilizes relationships between instances manifested in a

network to improve the predictive performance of various network mining tasks. The

triumphant applications of RL have been witnessed in a myriad of domains, such

as social networks (e.g., Flicker), language networks (e.g., Wikipedia), and citation

networks (e.g., DBLP). The vast amount of social media content, ranging from daily

chatter, conversations to information sharing and news reports, together with auto-

matic modeling of the content information, allow for an insight into the public opinion

that has been utilized for recommender systems (Guy et al., 2010), targeted adver-

tising (Tucker, 2014), and even predicting the stock price (Bollen et al., 2011) and

election results (Tumasjan et al., 2010).

However, due to emerging challenges brought by malicious social media users, it

is increasingly risky to depend on social media data for decision making. Most social

media platforms are open to register and easily accessible, which enables malicious

users to spread misinformation while easily disguise their accounts. For example,

thousands of bot accounts were found to intentionally spread misinformation during
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the 2016 U.S. election1. To complicate the problem, in order to avoid being detected,

they copy legitimate content from normal users (Wu et al., 2017a) and farm links

with other people (Hooi et al., 2016). The manipulated content and links camouflage

the malicious users that further lead to a polluted dataset on which decision makers

may rely to design public policies.

In this section, we precisely focus on the computational challenge brought by

emerging misinformation in social media data. Existing efforts in this area mainly

focus on a deletion-based way to solve the problem: building a detection model to

identify polluted points, removing them from the data, and learning a predictive

model with the refined dataset. However, the ground truth data for the malicious

users itself can be very difficult to obtain. Hence, a deletion-based method is limited

by the availability of additional label information. In real applications, for sake of

simplicity, noisy data are often directly used. Therefore, it would be appealing if the

negative effect of noisy data instances can be seamlessly mitigated.

The task of learning a predictive model in the presence of misinformation is par-

ticularly difficult, if not impossible, especially when we are lacking availability of

labels of malicious users. In order to tackle the challenge, we assume that the real

performance can be tested on a holdout dataset, and the optimal performance can

be achieved by selecting only the unpolluted data instances. Therefore, an optimal

set of model coefficients can be achieved by exhausting all possible combinations of

instances. Given the size of the selected instance set, the task is a NP-hard problem

due to the combinatorial property. Since the size is also a variable and the size of a

dataset is usually very large, it is computationally unfeasible to directly search for it.

To this end, we propose a novel relational learning method, Relational Learning with

Misinformation (RLM), to identify the set of instances in polynomial time.

1https://www.nytimes.com/2017/09/07/us/politics/russia-facebook-twitter-election.html
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In order to tackle the computational challenge, we utilize the social network struc-

ture to facilitate the search for optimal coefficients. As revealed in social identity

theory (Hogg, 2016), the membership of social community is likely to indicate the

similar identity shared among all community members, and the community structure

is relatively less susceptible to be affected by malicious behaviors. Hence, we propose

to model the community structure with an adaptive group Lasso approach to solve

the instance selection problem for relational learning.

6.2 Problem Statement

Given a set of social media users, and consider V ∈ Rm×n is the attribute matrix

wherem is the number of users and n is the number of features, P ∈ Rm×m denotes the

adjacency matrix manifested by the social network structure where Pi,j = 1 indicates

that user i follows j and it equals to 0 otherwise, t ∈ {0, 1}m is a label vector

represents whether a user contains a certain social tag. Given label information for a

subset of users t ∈ {0, 1}mtr , due to the influence of misinformation, the label vector

is noisy and thus there are k instances mislabeled, we aim to predict labels for the

rest mte unlabeled users where m = mtr +mte. More formally, the problem is stated

as follows:

Input

a user-attribute matrix V , an adjacency matrix P and the label information

ytr = {0, 1}mtr for a subset of mtr users.

Output

labels of test users, tmte = {0, 1}mte , where mte is the size of testing data.

A mislabeled instance indicates that the label fails to reveal the true identity of

the user. In the process of learning, we posit the existence of misinformation and
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Figure 6.1: Illustration of Comparison Between Traditional Relational Learning
and the Proposed Approach with Instance Selection. A Classic Relational Learning
Method Directly Constructs a Classifier with Available Label Information; While the
Proposed Framework First Removes Noise from the Label Information by Actively
Selecting Instances, upon Which a Classifier Is Built.

aim to select top k instances that are not mislabeled to build an optimal predictive

model. The social labels can be obtained from different sources on different platforms.

For example, Flickr users can join different groups and BlogCatalog users are able to

subscribe and add tags for themselves. The group memberships and interest tags can

be extracted as labels.

6.3 Robust Statistical Relational Learning with Misinformation

In order to illustrate our intuition, we illustrate the framework of classic relational

learning and the proposed approach in Figure 6.1. A conventional practice of dealing

with social media network data is to construct a classifier with the data matrix ex-

tracted from users. Considering potential negative effect brought by misinformation,

we argue a model with better accuracy can be obtained by selecting a subset of in-

stances for training. As shown in Figure 6.1, an additional instance selection module

is introduced.

Social networking platforms allow users to freely post content information, which

reveals the preference and interests of a user and thus could be utilized to charac-

terize the user in relational learning. To this end, a classifier can be constructed by
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minimizing:

1

2
||Vw − y||22, (6.1)

where V ∈ Rm×n is the data matrix, and m is the number of users and n is the

number of textual features. Linear regression is adopted here for generality, and

w ∈ Rn represents the model coefficients that need to be optimized. y ∈ Rm is

the label vector of training data. Throughout the paper, we focus on a binomial

classification setting which can be easily extended to the multinomial case.

In order to avoid over-fitting, a regularization term is often adopted to control the

model complexity. The model can then be formulated as:

1

2
min
w
||Vw − y||22 +

λ1

2
||w||22, (6.2)

where λ1 controls the cutoff between model complexity and accuracy. A larger λ1

leads to a more simplified model. The formulation achieves an optimal w through

minimizing the training error. Considering the negative effect of misinformation, we

introduce to integrate instance selection as,

min
w,c

1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22

subject to
∑
i

ci = k, c ∈ {0, 1}m,
(6.3)

where we introduce an instance selection term c ∈ {0, 1}m to select k instances

to only have influence on the classifier, and k is a predefined budget. Due to the

combinatorial nature, it is an NP-hard problem which can be difficult to solve. It

could also be laborious to find an optimal k. In order to cope with the computational

challenge, we try to leverage the social network structures.

On a social networking site, users can be organized by assorted social groups and

communities. Since the community structure is often induced from the homophily or
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proximity relationship between users, it provides a valuable perspective of user pro-

files (Hogg, 2016). Here, we posit the correlation between social community structure

and the information quality that, users belonging to the same group are more likely

to provide content of similar quality. The community structure is also more robust

to the link farming of malicious users: randomly establishing a link with a legitimate

user can be relatively easy, while establishing links with multiple users belonging to

the same community can be very difficult.

Next, we define an index tree to denote the social community structure for brevity

of presentation,

Definition 1 Index tree: Let T denote a tree of depth d, where non-leaf nodes

represent social communities and leaf nodes are users. Let Ti = {Gi
1, G

i
2, . . . , G

i
ni
}

denote the nodes on layer i, where n0 = 1 and ni is the number of nodes on layer i.

Given i < d, Gi
j represents jth group on the ith layer. G0

1 = {1, 2, . . . ,m} contains

indices of all users. In order to maintain a tree structure, nodes should satisfy the

following conditions: 1) Nodes on the same layer share no indices with each other

(Gi
j ∩ Gi

k = ∅,∀i = 0, . . . , d, j 6= k, j ≤ ni, k ≤ ni); 2) Given a non-root node Gi
j, we

denote its parent node as Gi−1
j0 (Gi

j ⊆ Gi−1
j0 , 1 < i ≤ d).

In order to obtain such a group structure, we select a hierarchical community

detection method, namely Louvain (Blondel et al., 2008), where maximum modularity

is used to optimize the group structure. The code is available2.

Given a social community structure, the task of instance selection can boil down

to community selection. Though the search space is significantly reduced, exhausting

all possible combinations can also be time-consuming. To this end, we further relax

2https://perso.uclouvain.be/vincent.blondel/research/louvain.html
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the constraint on c and rewrite the optimization objective in Eq.(6.3),

min
w,c

1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22 + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2

subject to
∑
i

ci = k,

(6.4)

where we relax the instance selection vector c to be a non-binary vector. In order

to make the vector more “binary” to align it with the objective of instance selection,

we propose to force more entries in c to be exact 0 or 1. Specifically, we integrate

a structured sparsity regularizer ||cGi
j
||2. λ2 is used to control the extent of sparsity.

The adopted sparsity regularizer is a tree-structured group Lasso (Hastie et al., 2015),

d∑
i=0

ni∑
j=1

||cGi
j
||2, (6.5)

where an `2-norm is imposed on each member of a group, and an `1-norm is imposed

on weights of all groups. This `21-norm is iteratively imposed on the social community

structure in a bottom-up manner. The combination of `1- and `2-norm leads to sparse

representation of c, while `1-norm determines the organization of sparsity (Meier

et al., 2008). In particular, imposing `1-norm within each group leads to the inter-

group sparsity, i.e., weights of users in some groups are selected to be assigned higher

weights, while users in other groups are with lower weights. Therefore, by minimizing

the training error, groups that lead to better accuracy are selected by the sparse

representation of c.

6.3.1 Optimization

In this section, we introduce how we optimize the problem efficiently. Two vari-

ables need to be optimized in Eq.(6.4), c for instance selection and w for classifying

users. The problem is not jointly convex w.r.t. both variables simultaneously. As

a conventional practice, we alternatively optimize one variable by fixing the other.
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The optimization problem boils down to two convex optimization tasks, and we keep

iterating over them until convergence.

Instance Selection

Here we focus on optimizing c while keep w being fixed. Since the squared loss

(Vw−yi)
2 becomes a constant, we replace it with p, where pi = (Vi,∗w−yi)

2. The

objective can then be reformulated as:

min
c

1

2

m∑
i=1

cipi + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2

subject to
∑
i

ci = k,

(6.6)

where the regularizer ||w||22 that is fixed here is also omitted. It is easy to prove that

Eq.(6.6) is strongly convex but not directly differentiable, i.e., it is convex and non-

smooth with respect to c. In order to find the solution for the optimization problem

in Eq.(6.6), we reformulate the problem as follows:

φλ2(c) = arg min
c

1

2
||c− x||2 + λ2

d∑
i=0

ni∑
j=1

||cGi
j
||2, (6.7)

where x ∈ Rm and xi =
p−1
i∑m

k p−1
k

. Therefore, the equality constrained optimization

problem is transformed to a Moreau-Yosida regularization problem with the euclidean

projection of c on to a vector x (Lemaréchal and Sagastizábal, 1997). The new

formulation is continuously differentiable and it admits an analytical solution (Liu and

Ye, 2010). Given a proper λ2, the optimal c ∈ Rm can be obtained in an agglomerative

manner, which is shown in Algorithm 6. In the algorithm, the superscript of c is used

to denote the layer of the tree, meaning that the output of the algorithm is c0. The

bisection method can be implemented to find the optimal λ2. Empirically, λ2 can

be initialized as

√
||l′ (0)||22∑d

i=0 ni
, where l(c) = 1

2
||c − x||2. Then we use φλ2(−l

′
(0)) to test
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whether λ2 achieves the certain threshold. When φλ2(−l
′
(0)) = 0, which means λ2

is large enough to generate a trivial solution, we start looking for the lower bound as

follows:

λ
(lower)
2 = max{λ(i)

2 |λ
(i)
2 =

λ
(i)
2

2i
, π

λ
(i)
2

(−l′(0)) 6= 0} (6.8)

otherwise, if φλ2(−l
′
(0)) 6= 0, we start looking for the upper bound as follows:

λ
(upper)
2 = min{λ(i)

2 |λ
(i)
2 = 2iλ

(i)
2 , πλ(i)2

(−l′(0)) = 0} (6.9)

Algorithm 5 Solution of Moreau-Yosida Regularization

Input: {c, G, λ2}

Output: c0.

1: Set cd+1 = x,

2: for i = d to 0 do:

3: for j = 1 to ni do:

4: Compute:

ciGi
j

=


0 if ||ci+1

Gi
j
||2 ≤ λ2,

||ci+1

Gi
j

||2−λ2

||ci+1

Gi
j

|| ci+1
Gi

j
if ||ci+1

Gi
j
||2 > λ2,

5: end for

6:end for

In Algorithm 6, we traverse the tree in an agglomerative manner, i.e., from leaf

nodes to the root node. At each node, the `2-norm of the weight c can be reduced

by at most λ2 as shown in step 4. After the traverse, the analytical solution of c can

be achieved.
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Predictor Training

When c is fixed, the problem only depends on w. We reformulate the objective

function as follows:

εw =
1

2

m∑
i=1

ci(Vi,∗w − yi)
2 +

λ1

2
||w||22. (6.10)

Therefore, the problem is reduced to an `2 regularized weighted linear regression

problem, which is to minimize the cost εw. Since social media users and their corre-

sponding contents may be massive, a scalable optimization method is needed. Here

we use Stochastic Gradient Descent (SGD) (Bottou, 2010). Since Eq.(6.10) is convex,

the corresponding gradient can directly be obtained as:

∂εw
∂w

=
m∑
i=1

ciV
T
i,∗(Vi,∗w− yi) + λ1w. (6.11)

SGD is scalable since data examples can be updated in parallel (Zinkevich et al.,

2010). Detailed discussions about the performance can be found in Section 3.5.

6.3.2 Time Complexity Analysis

Here we analyze the time complexity of the algorithm. The computational costs

include computation of c and w. The computational cost for c comes from estimating

the Moreau-Yosida regularization problem, which takes
∑d

i=0

∑ni

j=1 |Gi
j|. The compu-

tation of w is a standard `2 regularized regression problem, which can be accelerated

with the parallel implementation. The calculation of Louvain method could also

speed up and it needs to be done only once as preprocessing (Blondel et al., 2008).

Since the optimization is conducted in an alternative manner and both sub-tasks are

convex, both procedures will monotonically decrease. In addition, since the objective

function has lower bounds, such as zero, the above iteration converges.
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Figure 6.2: Comparison of Different Methods on the BlogCatalog Dataset with
Macro-F1 and Micro-F1 Measures. Additional Training Instances are Randomly Se-
lected and Flipped with the Label.

6.3.3 Convergence Analysis

Here we analyze the convergence condition. Since the optimization is conducted

in an alternative manner and both sub-tasks are convex, both procedures will mono-

tonically decrease. In addition, since the objective function has lower bounds, such

as zero, the above iteration converges.

6.4 Experiments

RLM is proposed to seamlessly mitigate the negative effect of misinformation in a

relational learning method. In this section, we aim to answer two research questions:

• How effective is the proposed method compared with other approaches in terms

of classification accuracy?

• In the presence of misinformation, can the proposed RLM identify and down-

weight the anomalous training instances?

To answer the questions, we conduct experiments on two real-world social media

datasets. Next, we will introduce the adopted datasets and experimental settings.
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Table 6.1: The Statistics about Employed Datasets.
# of Instances # of Labels # of features

BlogCatalog 5198 6 8189

Flickr 7575 9 12047

6.4.1 Datasets

We conduct experiments on two real-world social media datasets that are publicly

available3. Table 6.1 illustrates some statistics about the two datasets. The users are

randomly sampled from the two websites. Assorted features are extracted, such as

text and scalar features like age. Following previous work (Perozzi et al., 2014; Wu

et al., 2016a), we adopt the user interest tags in BlogCatalog and group memberships

in Flickr as labels.

6.4.2 Baseline Methods and Metrics

Our work focuses on classifying instances in a graph. Therefore, we compare with

state-of-the-art classification methods with content and network information. We

follow experimental settings of graph representation learning approaches by learning

a classifier upon the learned dimensions.

• Graph Regularized NMF : aims to utilize both content and network information

to characterize attributed graph nodes (Cai et al., 2011). Based on the assump-

tion of homophily, connected nodes are regularized to be predicted with similar

labels. We denote the method as GNMF.

• Robust NMF : In order to deal with the anomalous instances in a dataset, in the

area of robust statistics. We adopt Correntropy Induced Metric Non-Negative

Matrix Factorization (Du et al., 2012) which extends NMF by incorporating

3http://socialcomputing.asu.edu/
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a correntropy induced metric to mitigate the negative effect of non-Gaussian

noise. The method is denoted as RNMF.

• Relational Learning with Social Status : Our previous work that particularly

focuses on modeling social network users by integrating social status into the

relational learning framework. We denote the approach as RESA.

• DeepWalk : is a state-of-the-art graph embedding algorithm that learns dis-

tributed representations of social network users, which reports optimal accuracy

on the BlogCatalog and Flickr datasets (Perozzi et al., 2014).

• Attributed DeepWalk : extends DeepWalk by jointly considering the attribute

information of graph nodes and reports optimal results among a variety of

methods on learning attributed graphs (Yang et al., 2015).

6.4.3 Experimental Settings

To test the prediction accuracy in terms of both precision and recall, we adopted

the F1-measure to evaluate the performance. Since the adopted dataset contains

multiple class labels, and the instance number of different class labels is unbalanced,

we adopt Macro-F1 and Micro-F1 to evaluate the performance of different methods.

Macro-F1 is the arithmetic average of all classes, and it can be formulated as,

Macro− F1 =
1

|T |
∑
t∈T

F t
1, (6.12)

where T is the set of all identity labels and F t
1 is the F1-measure of task t.

A possible problem of Macro-F1 is, since the size of different labels varies, the

task with fewer instances may be overemphasized. Therefore, Micro-F1 is adopted to
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Figure 6.3: Comparison of Different Methods on the Flickr Dataset With Macro-F1

and Micro-F1 mEasures. Additional Training Instances Are Randomly Selected and
Flipped with the Label.

mitigate the effect. First, we calculate the micro-averaged precision and recall:

Micro− precision =
#TP

#TP + #FP
(6.13)

Micro− recall =
#TP

#TP + #FN
, (6.14)

where #TP is the number of true positives, #FP is the number of false positives

and #FN is the number of false negatives. Then Micro-F1 is the harmonic average

of Micro-precision and Micro-recall. In addition, five-fold cross-validation is adopted

for all experiments, and the reported results are the average of all five folds.

In order to study the effect of misinformation, we randomly select instances in the

training set to flip their labels. The classification is conducted in a One versus All

(OvA) setting, so flipping the label means changing the label value to the opposite,

i.e., 0 to 1 or 1 to 0. Based on the modified training dataset, we learn the classifier

and report the experimental results.

6.4.4 Experiments on BlogCatalog Data

The performance of different methods on BlogCatalog dataset with varying per-

centage of flipped instances, from 4% to 20%, is illustrated in Figure 6.2. The x-axis
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denotes the percentage of flipped instances, which are randomly sampled from the

training set. From the experimental results we draw following observations:

• The proposed approach RLM outperforms all baselines in both settings. The

margin between RLM and the runner-up models varies with different percentage

of mislabeled data instances.

• The performance of Attributed DeepWalk is the runner-up method in both

settings, which implies that both network and content information is useful in

modeling a user.

• Since the class distribution of BlogCatalog data is relatively less skewed, the

Macro- and Micro-F1 results do not show drastic differences.

• DeepWalk has the lowest Micro- and Macro-F1 among all six methods. Since

DeepWalk investigates only the network information, the result reveals that

content information is vital in characterizing social media users.

6.4.5 Experiments on Flickr Data

The performance of different methods on Flickr dataset is illustrated in Figure 6.3.

Based on the experimental results, we draw following observations,

• The proposed RLM achieves the optimal Macro-F1 (Figure 6.3(a)) and Micro-

F1 (Figure 6.3(b)) on the Flickr dataset.

• Different from the results of BlogCatalog, GNMF is the runner-up for Macro-F1

and RNMF is the runner-up for Micro-F1. Based on the definitions of Macro-

and Micro-F1, the result indicates that RNMF performs better at a class with

more data instances, while GNMF performs relatively better on more smaller

classes.
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Figure 6.4: Comparison of Effectiveness of Different Methods in Identifying Misla-
beled Instances for BlogCatalog and Flickr Datasets. Plots Show the Percentage of
Mislabeled Nodes Being Fixed by Checking Instances in Training Data. RLM Ranks
Data Instances with the Learned Weight in a Descending Order, RNMF Ranks Data
with the Training Loss, and We Adopt a Random Baseline That Selects Nodes at
Random.

• The runner-up method for BlogCatalog, Attributed DeepWalk, is with a rela-

tively low F1 measure on the dataset of Flickr. The method assumes nodes in the

same latent community are more likely to have similar representations. How-

ever, since label information for Flickr is the group memberships, it is likely that

users form a group without having similar interests or similar content, which

contradicts the assumption of Attributed DeepWalk.

• The Macro-F1 measure is generally better than the Micro-F1 measure of all

methods. Since we randomly select training instances without considering the

class distribution, these minority classes are more vulnerable to the flipping

attacks.

6.4.6 Analysis for Instance Selection

In this section, we study how well the proposed RLM can identify the mislabeled

data instances. We use different methods to select suspicious data instances that
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are more likely to have been flipped. RLM downweights instances that are more

likely to contain misinformation, so the weights are used to rank all data instances

in a descending order. RNMF also directly models the negative effect of noisy data

points, which is also adopted here. A baseline of Random is also introduced for

comparison purposes, which selects instances at random. The results in Figure 6.4

show that adopting RLM allows us to efficiently find the mislabeled data points

without checking too many instances, outperforming the other two baselines.

6.5 Summary

The massive amount of social media data allows automatic modeling of users in

the social media network. Relational learning, which particularly focuses on intercon-

nected data instances, have been successfully applied in a myriad of applications. An

emerging challenge of utilizing social media data is the negative effect brought up by

the misinformation. In this section, we precisely focus on the problem of mitigating

its harm. In particular, we propose a unified framework that simultaneously selects

data instances and learn a relational learning model. In order to allow for efficient

optimization, we utilize the social community structure to effectively find groups of

instances. We also transform the combinatorial problem into a convex optimization

problem with relaxations. Experimental results on real-world datasets show the supe-

riority of the proposed approach over competitive baseline methods. We also conduct

experiments to understand how RLM selects and downweights data instances.
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Chapter 7

PERSONALIZATION IN PRESENCE OF MISINFORMATION

In this chapter, I study the problem of personalizing social newsfeed with content

and contextual information. I focus on optimizing both accuracy and earliness of

the method, aiming at avoiding attention to be distracted by misinformation at an

early stage. I will first review background of the problem. Second, I will formally

define the task and present the proposed method. Experiments are presented based

on real-world data over the state-of-the-art methods.

7.1 Emerging Challenges of Personalization in Social Media

Microblogging has become a main platform for dissemination of emerging issues,

and some news broke out on Twitter1 even before CNN. A recent study shows that

62% of American adults get news on social media2. Since various topics are trending

simultaneously, it is critical to find a tailored list catering to users’ interests. In this

section, we aim to present a personalization system that tailors a personalized list of

trending topics that are interesting to read for social media users.

A vital feature of trending topic personalization is its earliness. For example,

the best timing to recommend topics for a baseball game is when it is ongoing since

the stories become outdated soon after the match ends. Traditional approaches for

personalization are incapable of dealing with trending topics since they rely on the

accumulation of training data, such as contents for content-based filtering, and user-

item interactions for collaborative filtering. For trending topics, both kinds of data are

1http://www.twitter.com/
2http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-2016/
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Figure 7.1: Example User Posts and Trending Topics on September 11th, 2016. The
First Post Explicitly Includes the Trending Topic Hashtag, and the Later Two Are
past Posts of Two Users.

generated with the topic going viral and becoming less attractive to read. Therefore,

a key challenge of early personalization is to solve the cold-start problem.

Meanwhile, the auxiliary information is pervasively present on social networks. An

auxiliary data source is the historical posts of users. Figure 7.1 shows an example of

user posts and Twitter trending topics on September 11th, 2016. There were over 600

trending topics on Twitter that day in the United States, including “HillaryFaint” and

“HillarysHealth” that were about Hillary Clinton’s health issues3, and “StanTheMan”

which was about the US Open 2016 final4. The preferences of the first user can be

easily found because of the post. But for the second and third user, the interests can be

easily found only if their past posts can be used, since the second user posted on men’s

single of US Open, and the third user was interested in Hillary’s upcoming fundraising

trip. Another auxiliary data source is the links between users. “Birds of a feather

flock together”, the principle of homophily reveals that friends on social networks

are more likely to be interested in similar topics. A nice property of both kinds of

auxiliary information is that they exist before a trending topic starts emerging, which

can help solve the cold-start problem.

3http://www.foxnews.com/politics/2016/09/11/hillary-clinton-has-medical-episode-at-911-

ceremony-source-says.html
4http://www.npr.org/2016/09/12/493563737/stan-wawrinka-beats-defending-u-s-open-

champion-novak-djokovic
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However, the auxiliary content information is hard to deal with. As shown in Fig-

ure 7.1, we lack labels for those posts that reveal user interests. Since the majority of

user posts are irrelevant with a particular topic, adopting all posts would unavoidably

introduce noise. Also, it would be time-consuming and costly to annotate these posts

from a large number of posts manually. Therefore, the desirable method should be

able to automatically identify and exploit the related posts for personalizing trending

topics.

In this section, we present a graph-regularized multiple instance learning frame-

work, Trending Topic Personalization approach (TTP), to personalize trending top-

ics in an early stage. To solve the cold-start problem, TTP leverages social network

structures to find the historical posts from like-minded users that would be useful for

enriching the content of trending topics and preferences of users. To the best of our

knowledge, this is the first work investigating personalization of trending topics on

microblogging platforms.

7.2 Problem Statement

Let U denote the user set U = {u1, . . . ,um}. m represents the number of users

and each user has a set of posts ui = {pi1, . . . ,pi|ui|}. Each post is an attribute

vector, i.e., pij ∈ Rn, where n is the number of textual features. y ∈ {−1, 1}m is

the label vector denoting whether a user is interested in a topic. Given a trending

topic, yi = 1 (user i is interested in the topic) if one of i’s posts contains the hashtag

of the trending topic, and yi = −1 otherwise. Let A denote the set of social links

between microblogging users, where aij = 1 if i follows j and aij = 0 otherwise. We

now formally define the problem of personalizing trending topics as follows:

Given a trending topic, users U, the network information A, and partial labels

for training data y, our goal is to learn an optimal function f that accurately predicts
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users in the test data who are interested in the topic.

7.3 Personalizing Newsfeed in Social Media

In this section, we first present how we exploit the additional user posts, and then

discuss how social network information can be integrated into a unified framework.

Finally, we present the framework that utilizes both content and network information

with its optimization.

7.3.1 Content Modeling with Multiple Instance Learning

Collaborative filtering models user interests by analyzing user-item correlations,

which performs well when enough correlations are accumulated. However, a trending

topic becomes popular immediately; so the correlations are not sufficient. There-

fore, we aim to solve this problem by starting with a Content-Based Filtering (CBR)

method. To predict a user’s interests toward a trending topic based on content infor-

mation, we adopt a logistic regression model, which has conventionally been used for

CBR (Pazzani and Billsus, 2007; Agarwal and Chen, 2009). The formulation of the

optimization problem is shown as follows,

f(ui) =
1

1 + exp(−w · ψ(ui)− b)
, (7.1)

where f(ui) denotes the prediction result that whether user i is interested in the

trending topic. b is the model bias and w is the vector of model parameters. b and

w are the parameters to optimize in a logistic regression model. ψ(·) maps a user to

an attribute vector.

ψ(·) generates an attribute vector based on posts of users. For a user with a

positive label (yi = 1), posts explicitly containing the trending topic are very few.

Therefore, if only these posts are used, the corresponding attribute vector should
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be very sparse. If all posts of the user are selected, noisy information would be

unavoidably included. Therefore, an appealing model should be able to identify

those implicitly correlated posts automatically. Motivated by the related research of

computer vision, we propose to adopt Multi-Instance Learning (MIL).

A research problem in computer vision is lack of fine-grained labels. Take scene

classification as an instance (Zhou and Zhang, 2006), although labels are usually only

available for the entire picture, the key object that determines the label of a picture

usually takes up a small portion of the entire picture. In order to better understand

characteristics of a specific object of interest, in MIL, each picture is represented as

a bag of subimages. Instead of learning the whole image, fractions that represent the

object of interest are automatically identified and better modeled. Similar to MIL,

in microblogging sites, a user contains a “bag” of posts and only few are related to

a specific topic. Therefore, we pose the personalization problem into an MIL task by

reformulating Eq. (7.1) as follows,

f(pik) =
1

1 + exp(−w · pik − b)
, (7.2)

where f(pik) predicts the label for a single post pik. By aggregating prediction of all

posts, the estimation of a user can be obtained as follows,

f(ui) =

∑|ui|
k=1 f(pik) · exp(αf(pik))∑|ui|

k=1 exp(αf(pik))
, (7.3)

where a softmax function is the aggregate results of a user. α is a parameter intro-

duced to determine the extent of softness of the combination. Given the label vector

y, the optimal parameters w, b for a topic j can be obtained through minimizing the

following cost function,

ε(w, b) =
1

2

m∑
i=1

(yi − f(ui))
2 +

λ

2
wTw + γ|w|1, (7.4)
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where wTw is a regularization term to avoid over-fitting by penalizing the model

complexity, of which the extent is controlled by λ. Since among the many words

only few are correlated with a trending topic, we invoke an `1 regularizer to induce

sparsity.

Microblogging users are interconnected by “following” and being “followed”. Ac-

cording to the principle of homophily (McPherson et al., 2001), interconnected friends

are likely to have similar interests. In this section, we propose to leverage the ho-

mophily to alleviate the cold-start problem. We regard two users who follow each

other as friends. Assume E represents friendship between users, where eit = 1 if

ait = ati = 1, and otherwise eit = 0. Therefore, the homophily can be modeled by

minimizing the following graph-based regularizer

∑
eit∈E

eit(f(ui)− f(ut))
2, (7.5)

which smooths the prediction results of friends by penalizing the large difference

between them. For the ease of integrating Eq. (7.5) with the optimization objective

in Eq. (7.4), we introduce to rewrite the graph-based regularizer as a graph Laplacian

form. Motivated by graph learning literature, the regularizer can be rewritten as

f tLf , where f ∈ Rm is the prediction results of users. L is the normalized Laplacian

matrix of the corresponding social graph (Merris, 1994) with the graph structure of

E. Specifically, the Laplacian L can be obtained through:

L = D− E,

where D ∈ Rm×m is a diagonal matrix and the diagonal elements are calculated as

dii =
∑m

k=1 eik. The normalized Laplacian can then be calculated as:

L = D−
1
2 LD−

1
2 .

97



Incorporating the normalized graph Laplacian norm as a regularizer rewrites the

objective in Eq. (7.4) as follows:

ε(w, b) =
1

2

m∑
i=1

(yi − f(ui))
2 +

λ

2
wTw + γ|w|1 +

µ

2
f tLf, (7.6)

where the graph-based regularizer is reformulated and the resultant objective remains

convex. µ controls the extent of penalization when the prediction results are different

for friends. Since the amount of content information is massive, an efficient opti-

mization method is required. Next, we introduce how we efficiently obtain optimal

parameters w, b with additional content and network information.

7.3.2 Model Fitting

For simplicity of presentation, we first augment w by incorporating b as w0, which

can be implemented by adding an additional feature. Thus we aim to learn the optimal

predictor as follows:

ŵ = arg min
w

1

2

m∑
i=1

(yi − f(ui))
2 +

λ

2
wTw + γ|w|1 +

µ

2
f tLf. (7.7)

Since we employ a logistic model independent for each feature, features can be

calculated separately when updating w. Since both the normalized Laplacian and

`1-regularizer are convex, we adopt projected gradient descent to update each feature

wk as follows:

∂ε

∂wk
=

m∑
i=1

(yi − f(ui))
∂f(ui)

∂wk
+ λwk + γ · Sign(wk)

+ µ
m∑
ij=1

Ljif(ui)
∂f(ui)

∂wk
, (7.8)

where Lji is the value of the corresponding entry in the normalized Laplacian ma-

trix and ∂f(ui)
∂wk

is the gradient of softmax. The gradient of softmax can be further

decomposed by each post pij as follows:
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∂f(ui)

∂wk
=

|ui|∑
j=1

∂f(ui)

∂f(pij)

∂f(pij)

∂wk
, (7.9)

where the derivative of the logistic regression of posts can be computed by conven-

tional approaches, and the derivative of the softmax aggregation function in terms of

a post pij can be computed as follows:

∂f(ui)

∂pij
=

(1 + αf(pij)− αf(ui)) exp(αf(pij))∑|ui|
j=1 exp(αf(pij))

. (7.10)

In traditional MIL approaches, labels are only available for bags. In our case, labels

are also available for some posts. Next, we will introduce the reason and present how

we jointly model both of them.

7.3.3 Joint Modeling of Posts and Users

In order to integrate labels of posts, we propose to build up pseudo-users. It has

been shown that directly incorporating instance labels would overshadow the effect

of bag labels (Settles et al., 2008). A possible way to avoid the problem is to create

singleton bags. Motivated by related research in multi-instance learning (Settles et al.,

2008), we create a pseudo user for each labeled post, who contains only the labeled

post. The nice property is to enable models to benefit from both user (bag)- and post

(instance)-level training information. Adding pseudo users also results in a change

of the graph. Here, we connect the pseudo user with its author only. The detailed

algorithm is shown in Algorithm 6.

In Algorithm 6, the user set U and adjacency matrix E contain pseudo-users which

are generated by labeled posts. Line 1 initializes the iteration identifier and other

parameters, values of which are found through cross-validation on a holdout dataset.

From line 4 to line 12 we aim to find the optimal learning rate with backtracking line

search (Boyd and Vandenberghe, 2004). Line 13 updates the parameters with the
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Algorithm 6 Personalizing Trending Topics in Microblogging

Input: Posts from Users: U;

Vector of Twitter User Labels: y;

Adjacency Matrix of Users: E;

Parameters : λ, γ, µ;

Maximum Number of Iterations : I.

Output: Logisitic Predictors: w.

1: Initialize t = 1; Set λ, γ, µ.

2: while Not convergent and t ≤ I

3: Calculate ∂ε
∂w

with Eq.(7.8)

4: Set τ = 1

5: loop

6: If ε(w − τ ∂ε
∂w

) ≥ ε(w)- τ
2
|| ∂ε
∂w
||2 then

7: τ = 0.5τ

8: end if

9: Else

10: τ = 2× τ ; Break

11: end else

12: end loop

13: w = w− τ ∂ε
∂w

14: end while
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Table 7.1: Content-centric Features Used in This Study.

Feature Name Explanation

Words # of occurrences of words

Hashtags # of occurrences of hashtags

BigramW # of occurrences of bigrams of words

BigramH # of occurrences of bigrams of hashtags

Emoticons # of occurrences of emoticons

Sentiment Avg. sentiment of emoticons

gradient.

7.3.4 Discussion

Next, we will introduce how the textual features are extracted from posts, and we

will also discuss the time complexity of the proposed framework.

Features Used in this Study We derive six types of features in this section,

which are shown in Table 7.1. Words directly characterize the content of posts.

Hashtags are indicative for semantic of a post. We remove hashtags of trending topics.

The bigram features of hashtags and words can represent common semantic in real

applications. Also, we use the sentiment polarity of emoticons in posts as features.

The sentiment of emoticons can be estimated through resolving the description of

emoticons5 with AFINN (Nielsen, 2011).

Time Complexity and Running Time The time complexity for an iteration

over all users and features is O(mnd2), where m is the number of users, n = max(|ui|)

is the maximum number of posts, and d is the number of textual features. A nice

property is that the computation can be employed in parallel. In particular, different

features (wk) can be updated simultaneously. The parallel implementation of the

5http://emojipedia.org/twitter/
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Table 7.2: Statistics of the Dataset Used in This Study.

Topics Users Labeled Posts

1,012 101,351 10,151

Posts Links

2,015,802 20,046,715

algorithm will be publicly available upon being published.

7.4 Experiments

In the experiments, we are applying our TTP approach on the real-world data

obtained from Twitter. To collect for the dataset, we randomly collect 1,012 trending

topics from Twitter, from June 6th, 2016 to June 8th, 2016 in the area of United

States. In order to find potentially interested users, we randomly collect users who

post during that period from Twitter’s Streaming API6. For each user, we obtain

their followers and friends to build up the adjacency matrix and collect up to 20 most

recent posts. Statistics on the dataset are shown in Table 7.2. In order to train the

model, we use the posts that are generated within the first hour when the topic starts

trending as training data. In order to test the model, we use users who post on the

trending topic after the first hour.

There are three positive parameters involved in the experiments, including λ, γ,

and µ in Eq.(7.7). λ is to control overfitting and makes the learned model more robust.

γ is to control the sparsity of the learned model. µ is to control the contribution of

network information. As a common practice, all the parameters can be tuned through

cross-validation. We set λ = 0.1, γ = 0.1, and µ = 0.1, though in our experience the

parameters do not significantly impact performance.

We follow standard personalization settings to evaluate the performance. In par-

6https://dev.twitter.com/streaming/reference/post/statuses/filter
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ticular, since the softmax output is a real number, we use the metric of “root-mean-

square-root” (RMSE) on different methods with the Twitter dataset. RMSE can be

calculated as follows:

RMSE =

√∑m
i=1

∑t
j=1(yij − fj(ui))2

m× t
, (7.11)

where m is the number of users and t is the number of trending topics. yij is the

ground truth of user i on topic j. fj(·) is the prediction function for topic j. The

difference denotes the distance between the prediction and the ground truth. m × t

is the total number of predictions and it normalizes the results. In our settings,

the RMSE indicates the difference between the prediction and users’ true interests

towards the trending topics. The smaller RMSE represents a better performance.

7.4.1 Performance Comparisons

In order to answer the first question about the personalization effectiveness, in ad-

dition to TTP, we compare with the following state-of-the-art personalization meth-

ods:

• PMF : Collaborative filtering has been regarded as a state-of-the-art recom-

mendation method in various areas such as movies. In this section, we adopt

BPMF (Salakhutdinov and Mnih, 2008), which adopts fully Bayesian treatment

of the Probabilistic Matrix Factorization. It is considered to be one of the most

effective methods when the training data is sparse.

• CBF and CBF+: As discussed in the survey (Veltkamp et al., 2013), the most

effective content-based approach for personalization is to calculate the similarity

based on both the attribute vector of keywords. In this section, we collect

posts containing the trending topic hashtag in the training set to represent a
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trending topic, and user posts to represent a user. We adopt the commonly-used

TF-IDF to weight word features, and the corresponding similarity is used for

personalization. In CBF, we use posts hashtagged with the trending topic to

represent a user. While in CBF+, all posts of an interested user are used. CBF

and CBF+ are adopted to compare TTP with effective content-based filtering

methods.

• LMGR and LMGR+: The proposed TTP jointly exploits content and social net-

work information. In order to investigate the effectiveness of TTP, we compare

with state-of-the-art methods that utilize both content and network informa-

tion. LMGR accurately predicts labels of web documents (Zhang et al., 2006)

by simultaneously modeling content and hyperlinks. Similarly, LMGR exploits

only the posts hashtagged by the trending topic while LMGR+ uses all posts.

• SocDim: Social interactions have been regarded as an effective data source

for determining user interests. In this section, we adopt SocDim (Tang and

Liu, 2009), which learns user interests by projecting social relations into a low

dimensional space. SocDim has commonly been used for categorizing users

according to interests, and can be considered as a state-of-the-art method for

relational learning on social networks.

• Random: Because there are much more negative training examples than the

positive examples in the dataset, the absolute value of RMSE is not very mean-

ingful. For comparison purposes, we also use a Random baseline that uniformly

selects trending topics for each user.

The comparison is shown in Figure 7.2. Since there are much more negative train-

ing data instances than the positive ones in the Twitter dataset, the absolute value
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Figure 7.2: Performance Comparisons for Different Personalization Methods with
95% Confidence Interval.

of RMSE is not very meaningful. The RMSE of Random baseline is 0.2621. We

are expecting the relative decreasing of RMSE for a more effective approach. Based

on results shown in Figure 7.2, we draw following observations. Traditional recom-

mendation approaches, i.e., content-based (CBF, CBF+) and collaborative filtering

(PMF) cannot effectively personalize trending topics. SocDim outperforms PMF and

Random, showing that knowledge that is useful for identifying user interests exists

in the network structures. The proposed TTP outperforms existing methods that

directly integrate social network structures with user contents (LMGR, LMGR+) by

selecting the related content from the massive amount of historical information, in-

stead of ignoring or adopting all. The result demonstrates that TTP is effective in

inspecting user interests and personalizing trending topics.

7.4.2 Earliness of Personalization

A key objective of our study is to find interesting trending topics at an early stage

before they become obsolete. More user posts and other data are available for training

at a later stage with the topic being trending. However, late recommendations are

much less practically useful, since a topic trended yesterday may get outdated and

less interesting to read. Therefore, we investigate how effective TTP is when less
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Figure 7.3: Performance of Different Models with Chronologically Additional Train-
ing Data, While Socdim Uses the Social Network Structures.

training data is available during the early period.

The results are shown in Figure 7.3. In order to evaluate earliness, we train

models by additionally using training data by its chronological order. In particular, we

additionally add training data based on the time order they were generated after the

trending topic started trending. Since SocDim only uses the network information, the

performance is constant. The RMSE of other methods decreases with more training

data being added. According to the results, the best baseline, LMGR, achieves RMSE

of TTP with training data of first ten minutes by a lag of 90 minutes. Therefore, the

empirical results show that the use of TTP not only yields low error rate, but also finds

interesting trending topics hours faster than traditional personalization approaches.

7.5 Summary

Trending topics, which are immediately popular topics on social media sites, have

been popular among social media users as an information source. With the fast

increase of trending topics, it becomes a crucial task for microblogging sites to help

social media users find the topic they are interested in. Therefore, in this section, we

propose the Trending Topic Personalization approach (TTP) to personalize trending

topics at an early stage. TTP tackles the cold-start problem through jointly exploiting

social media posts and social interactions between users. Through experiments on
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real-world data, we have demonstrated the gains of performance and earliness of the

proposed TTP over other state-of-the-art approaches.

107



Chapter 8

CONCLUSION AND FUTURE WORK

In this chapter, we conclude the dissertation by summarizing the contributions and

highlighting the potential research directions in the future.

8.1 Conclusion

As witnessed in recent incidents of misinformation, social media platforms have

allowed for rumors and fake news to spread to a large group of people rapidly. Misin-

formation could cause catastrophic effects in the real world within a short period, such

as driving a wedge between people, and arousing astonishment and anxiety among

people. Detecting misinformation in social media is of considerable significance to

maintain the quality of user experiences, and to improve the conversational health

of digital communities. Detecting misinformation can be very challenging because of

the adversarial attacks, manipulated content, and rapid growth at the early stage.

Through tackling the challenges of misinformation in social media, the contributions

of the dissertation can be summarized from two perspectives. First, I formalize the

novel problem of misinformation detection in social media and the computational

challenges. Second, I am able to propose effective algorithms to tackle the challenges

and mitigate the negative effect of misinformation. In conclusion, I investigate differ-

ent aspects of the problem to characterize and detect misinformation in social media.

I study adversarial attacks of misinformation spreaders that present novel chal-

lenges. In particular, I investigate how the camouflage of misinformation spreaders

can be identified with label information only for accounts. The proposed method

utilizes discriminant analysis to discover the key post that distinguishes misinforma-
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tion spreaders from legitimate users. Also, I present an efficient algorithm to solve

the proposed non-smooth convex optimization problem. Experimental results on

real-world Twitter datasets demonstrate that the proposed framework can effectively

utilize available information to outperform the state-of-the-art approaches.

Content information provides limited information for the problem of misinfor-

mation detection. Motivated by the fact that informative patterns exist behind the

diffusion of misinformation and contextual information is pervasively available, I focus

on extracting descriptive from contextual information to facilitate the task. In par-

ticular, I propose a novel method that classifies social media messages with diffusion

traces in social networks. To deal with the trace data, we introduce an end-to-end

classification model based on LSTM-RNNs. In order to alleviate the data sparsity, I

propose an embedding method that captures both social proximity and community

structures. Experimental results with real-world datasets show that the proposed

method effectively classifies social media messages and is especially useful when con-

tent information is insufficient.

Misinformation in social media grows and evolves rapidly. After it goes viral, it is

extremely difficult to eliminate their existence. Therefore, I propose to directly train

a classifier based on readily available labeled data from prior incidents in order to

detect misinformation at an early stage. Motivated by traditional studies on misin-

formation, I introduce a novel framework that jointly clusters data, selects features,

and trains classifiers. An optimization approach is also presented to solve the prob-

lem efficiently. The proposed framework largely breaks the bottleneck of the time

lag from annotating datasets. Experimental results illustrate the effectiveness and

earliness of the proposed method on real-world data.

Many studies nowadays rely on social media as their data source. Therefore, I

propose to mitigate the negative effect of misinformation for two common machine
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learning tasks, relational learning, and social personalization. Relational learning fo-

cuses on classifying and tagging social media users, and social personalization aims

to find interesting content for a user in an unsupervised manner. For the first task,

I propose a unified framework that simultaneously selects data instances and learn

a relational learning model. In order to allow for efficient optimization, we utilize

the social community structure to effectively find groups of instances. I also trans-

form the combinatorial problem into a convex optimization problem with relaxations.

Experimental results on real-world datasets show the superiority of the proposed ap-

proach over competitive baseline methods. For the second task, I propose a novel

approach to personalize content in social media at an early stage. The proposed

method solves the cold-start problem through jointly exploiting social media posts

and social interactions between users. Through experiments on real-world data, I

have demonstrated the gains of performance and earliness of the proposed method

over other state-of-the-art approaches.

8.2 Future Work

(1) How to predict the potential influence of misinformation in social

media?

As an instance of classification, existing misinformation detection methods focus

on optimizing classification accuracy. In real-world applications, however, detecting

an influential spreader is may be more useful than ten unimportant ones that can

hardly spread misinformation to regular users. It will be interesting to define influence

of misinformation spreaders and formulate a computational problem to cope with it.

(2) How are misinformation spreaders spreading misinformation and

attracting attention? Existing research mostly focuses on the spreaders - or the

accounts that post misinformation in social media. In the real world, a spreader
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would more than that to “spread” misinformation, such as commenting under cer-

tain topics, making friends with similar communities, and even privately messaging

interested accounts. In addition to detecting them, it would be interesting to discover

and understand such spreading behaviors, which may ultimately facilitate building a

robust detection system.

(3) How to make detection methods robust to adversarial attacks, or

how to exploit adversarial learning to enhance a detection method? Adver-

sarial machine learning aims to enable machine learning methods to be robust and

effective in the presence of adversarial attacks. Current research focuses on adver-

sarial attacks of misinformation spreaders, however, if there is a malicious adversary

that has partial or full knowledge of the misinformation detection algorithm, existing

methods can be vulnerable. It will be interesting to discover robust methods in the

presence of adversarial attacks.
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