4,940 research outputs found

    COMBINATIONAL MIXTURES OF MULTIPARAMETER DISTRIBUTIONS

    Get PDF
    We introduce combinatorial mixtures - a flexible class of models for inference on mixture distributions whose component have multidimensional parameters. The key idea is to allow each element of the component-specific parameter vectors to be shared by a subset of other components. This approach allows for mixtures that range from very flexible to very parsimonious, and unifies inference on component-specific parameters with inference on the number of components. We develop Bayesian inference and computation approaches for this class of distributions, and illustrate them in an application. This work was originally motivated by the analysis of cancer subtypes: in terms of biological measures of interest, subtypes may be characterized by differences in location, scale, correlations or any of the combinations. We illustrate our approach using data on molecular subtypes of lung cancer

    A Unifying review of linear gaussian models

    Get PDF
    Factor analysis, principal component analysis, mixtures of gaussian clusters, vector quantization, Kalman filter models, and hidden Markov models can all be unified as variations of unsupervised learning under a single basic generative model. This is achieved by collecting together disparate observations and derivations made by many previous authors and introducing a new way of linking discrete and continuous state models using a simple nonlinearity. Through the use of other nonlinearities, we show how independent component analysis is also a variation of the same basic generative model.We show that factor analysis and mixtures of gaussians can be implemented in autoencoder neural networks and learned using squared error plus the same regularization term. We introduce a new model for static data, known as sensible principal component analysis, as well as a novel concept of spatially adaptive observation noise. We also review some of the literature involving global and local mixtures of the basic models and provide pseudocode for inference and learning for all the basic models

    Bayesian emulation for optimization in multi-step portfolio decisions

    Full text link
    We discuss the Bayesian emulation approach to computational solution of multi-step portfolio studies in financial time series. "Bayesian emulation for decisions" involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic "emulating" statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portfolio analysis using classes of economically and psychologically relevant multi-step ahead portfolio utility functions. Studies with multivariate currency, commodity and stock index time series illustrate the approach and show some of the practical utility and benefits of the Bayesian emulation methodology.Comment: 24 pages, 7 figures, 2 table

    Semiparametric topographical mixture models with symmetric errors

    Full text link
    Motivated by the analysis of a Positron Emission Tomography (PET) imaging data considered in Bowen et al. (2012), we introduce a semiparametric topographical mixture model able to capture the characteristics of dichotomous shifted response-type experiments. We propose a local estimation procedure, based on the symmetry of the local noise, for the proportion and locations functions involved in the proposed model. We establish under mild conditions the minimax properties and asymptotic normality of our estimators when Monte Carlo simulations are conducted to examine their finite sample performance. Finally a statistical analysis of the PET imaging data in Bowen et al. (2012) is illustrated for the proposed method.Comment: 19 figure

    In All Likelihood, Deep Belief Is Not Enough

    Full text link
    Statistical models of natural stimuli provide an important tool for researchers in the fields of machine learning and computational neuroscience. A canonical way to quantitatively assess and compare the performance of statistical models is given by the likelihood. One class of statistical models which has recently gained increasing popularity and has been applied to a variety of complex data are deep belief networks. Analyses of these models, however, have been typically limited to qualitative analyses based on samples due to the computationally intractable nature of the model likelihood. Motivated by these circumstances, the present article provides a consistent estimator for the likelihood that is both computationally tractable and simple to apply in practice. Using this estimator, a deep belief network which has been suggested for the modeling of natural image patches is quantitatively investigated and compared to other models of natural image patches. Contrary to earlier claims based on qualitative results, the results presented in this article provide evidence that the model under investigation is not a particularly good model for natural image

    Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral image

    Get PDF
    Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm
    corecore