
Combinatorial Mixtures of Multiparameter Distributions

BY VALERIA EDEFONTI
Istituto di Statistica Medica e Biometria ”Giulio A. Maccacaro”,
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Abstract

We introduce combinatorial mixtures —a flexible class of models for inference on mixture
distributions whose component have multidimensional parameters. The key idea is to allow each
element of the component-specific parameter vectors to be shared by a subset of other compo-
nents. This approach allows for mixtures that range from very flexible to very parsimonious, and
unifies inference on component-specific parameters with inference on the number of components.
We develop Bayesian inference and computation approaches for this class of distributions, and
illustrate them in an application. This work was originally motivated by the analysis of cancer
subtypes: in terms of biological measures of interest, subtypes may characterized by differences
in location, scale, correlations or any of the combinations. We illustrate our approach using
data on molecular subtypes of lung cancer.

Some key words: Bayesian inference, Markov chain Monte Carlo, Clustering.
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1 Introduction

Since the beginning of the last century, (Newcomb (1886) and Pearson (1894)) finite mixture
distributions have received attention both as tools for modeling population heterogeneity, and as
a practical way of building flexible finite-parameter distributions. Monographs on finite mixtures
include the classical Titterington et al. (1985), McLachlan and Basford (1988) and McLachlan
and Peel (2000). Böhning and Seidel (2003) is a recent review with emphasis on nonparametric
maximum likelihood, while Marin et al. (2005) is an introduction from a Bayesian perspective.

One of the important remaining challenges of mixture modeling is to develop approaches that
achieve a practical compromise between flexibility and parsimony, especially for mixtures whose
component distributions are themselves characterized by multiple parameters. In this setting, one
has the option of allowing each component to have its own parameter vector, or to share a subset
of the vector elements across components. For example, in the context of normal mixtures, it is
common to assume either component-specific locations and variances, or a common variance, or a
common mean. These three choices are extremes of a richer and useful set of patterns in which one
shares some of the parameters in some of the components. Here we develop this idea formally.

Our approach is to allow each element of component-specific parameter vectors to be either different
or equal to that of other components. A positive probability is put on every possible combination
of equalities, whence the name combinatorial mixtures. This partial sharing allows for greater
generality and flexibility in comparison with traditional approaches to mixture modeling, while
still allowing to assign mass to models that are more parsimonious than the general mixture case,
in which no sharing takes place. One of the implications of our setting is that, once a maximum
number of components is specified, inference on the parameters and the number of components
is subsumed by the inference on combinatorial patterns. If there is complete sharing among two
components, then the effective number of components is reduced by one. Therefore assigning a
prior on sharing patterns implies assigning a prior on the effective number of mixture components.

This development was originally motivated by applications in molecular biology, where one deals
with continuous measures, such as RNA levels, or protein levels, that vary across unknown biolog-
ical subtypes. In some cases, subtypes are characterized by an increase in the level of the marker
measured, while in others they are characterized by variability in otherwise tightly controlled pro-
cesses, or by the lack of otherwise strong correlations (Dettling et al. (2005); Shedden and Taylor
(2004)). Also, several mechanisms can coexist. In this context, the main goals of a mixture model
analysis are to a) estimate the number of subgroups in a sample; b) make inferences about the
assignment of samples to these subgroups; and c) generate hypotheses about which of the mecha-
nisms above is likely to characterize the subgroups. Our paper adds a new tool to Bayesian mixture
models that allows to answer all three of these questions.

The paper is structured as follows. In Section 2 we review relevant Bayesian methods. In Section 3
we propose a general formulation for combinatorial mixtures. In Section 4 combinatorial mixtures
are worked out in detail for univariate and bivariate normal mixtures. The performance of the
methodology is then illustrated in an application to gene expression in lung cancer.
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2 Bayesian Methods for Mixtures

2.1 Notation and Missing Data Formulation

In a finite mixture model, observations xn = (x1, . . . , xn) are assumed to be conditionally indepen-
dent from density

xi|K,θ,ω ∼ p(xi|K,θ,ω) =
K∑
k=1

ωkp(xi|θk), i = 1, . . . , n, (1)

where K is the number of components, ω = (w1, . . . , wK) are the mixture weights —constrained to
be non-negative and to sum to unity— and θ = (θ1, . . . , θK) is the component specific parameter
vector. A fully Bayesian analysis (Richardson and Green (1997)) is completed by a prior distribution
on the parameters (K,θ,ω). The number of components and the mixture components parameters
are modeled jointly and inference about these quantities is based on their posterior distributions.

The missing data formulation of mixture models has played an essential role in both Bayesian and
non-Bayesian approaches. In this formulation, each observation xi, i = 1, . . . , n, is assumed to arise
from a specific but unknown component, zi, of the mixture. Model (1) can be written in terms
of the missing data, with z1, . . . , zn assumed to be realizations of conditionally independent and
identically distributed discrete random variables, z1, . . . , zn, with probability mass function:

p(zi = k|θ,ω) = ωk, for i = 1, . . . , n, k = 1, . . . ,K.

Conditional on the zs, x1, . . . , xn are independent observations from densities:

p(xi|zi = k,θ,ω) = p(xi|θk), i = 1, . . . , n, k = 1, . . . ,K.

Integrating out z1, . . . , zn yields model (1). The identity of the group from which each observation
arises may also be known. The model will then be composed by K distinct subpopulations having
their own distributions. We will refer to that special case as supervised, as opposed to the unsuper-
vised case in which the class indicators are unknown. Both supervised and unsupervised settings
are compatible with the analysis that we propose.

2.2 Mixtures of Dirichlet Processes

Escobar and West (1995) and West and Turner (1994) used Dirichlet process mixture (DPM)
models (Antoniak (1974)) to build flexible mixtures of normal distributions. The basic normal
mixture model assumes that data xn = (x1, . . . , xn) are conditionally independent and normally
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distributed, xi|θi ∼ N(µi, σ2
i ) with means µi and variances σ2

i forming the parameters θi = (µi, σ2
i ),

i = 1, . . . , n. It supposes further that the variability among the θis is represented by the mixing
distribution G(·) on <×<+. If G(·) is uncertain and modeled as a Dirichlet process (DP), then the
data come from a Dirichlet mixture of normals. In particular, these papers assume G ∼ DP (αG0),
where α is a positive scalar and G0(·) a specified bivariate distribution function over < × <+.
Relevant to the development in this paper is the discreteness of G(·) under the Dirichlet process
assumption. In any sample θ = (θ1, . . . , θn) of size n from G(·) there is positive probability of
coincident values (Blackwell and MacQueen (1973)). However, a significant constraint in this
setting is that the event that two components have the same mean but different variances, or
vice-versa, is assigned probability zero.

2.3 Unknown number of components

Recent Bayesian work has further investigated inference on the number of components K. Carlin
and Chib (1995) and Raftery (1996) estimated the marginal likelihoods of K components and
suggested using Bayes factors to compare K versus K + 1 components. Mengersen and Robert
(1996) also took a testing perspective, but used the Kullback–Leibler divergence as a measure of
distance between mixtures with K and K + 1 components. Nobile (1994), Nobile (2005), Phillips
and Smith (1996), Richardson and Green (1997), Roeder and Wasserman (1997) and Stephens
(2000) all worked with a prior distribution on the number of components and obtained Markov
Chain Monte Carlo (MCMC) estimates of the posterior. Nobile (1994), Nobile (2005) and Roeder
and Wasserman (1997) estimated the marginal likelihoods of each model separately and then formed
an estimate of the posterior of K using Bayes’ theorem. Roeder and Wasserman (1997) proposed
to approximate the marginal likelihoods using the Schwarz criterion.

Although their methods differ considerably, Phillips and Smith (1996), Richardson and Green
(1997) and Stephens (2000) shared a common approach consisting of running an MCMC sampler
on a composite model, with jumps between submodels that allow the sampler to change the number
of components in the mixture. Then the posterior of K can be estimated by the relative amount
of simulation time spent by the sampler in each submodel. The approach proposed in the current
paper shares this idea as well.
Phillips and Smith (1996) considered the birth and death of mixture components using an iterative
jump-diffusion sampling algorithm. A Markov process in continuous time is generated from a
jump component which makes discrete transitions between models at random times and a diffusion
component which samples values for the model-specific parameters between the jumps.
Richardson and Green (1997) applied the reversible jump MCMC method of Green (1995). Moves
between models are achieved by periodically proposing combine/split moves that rely on moment
matching, and rejecting those with the appropriate probability to ensure that the chain possesses
the desired stationary distribution. A proposed model is generated by randomly choosing a combine
or a split move. The combine move selects two components randomly and proposes merging them
into one, whereas the split move suggests splitting a randomly chosen component into two new
ones.
Stephens (2000) presented an alternative method of constructing an ergodic Markov chain with
appropriate stationary distribution, based on a continuous time Markov birth-death process. The
relationship between relative rates of births and deaths and stationarity is used to construct an
easily simulated process in which births occur at a constant rate from the prior and deaths occur
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at a rate that is very low for components which are critical in explaining the data and very high
for components which do not help explain the data.

Finally, Nobile (1994), Nobile (2005), Casella et al. (2004), and Steele et al. (2003) have chosen
to work in terms of the allocation variables only, after integrating out the component-specific
parameters analytically.

2.4 Product partition models

Our proposal is also related to product partition models, introduced by Hartigan (1990) and
Barry and Hartigan (1992). These consider a random partition, ρ = {A1, . . . , AK}, of a set
A0 = {1, . . . , n} of objects, where a partition of A0 is defined as a set of nonempty, pairwise
disjoint subsets of A0 whose union is A0. They assume that observations in different components
of a partition of the data are independent. The likelihood of xn = (x1, . . . , xn) for a partition ρ is
the product over the components:

p(xn|ρ) ∝
K∏
k=1

p(xAk
),

where xAk
is the vector of observations corresponding to the elements of the component Ak. The

component likelihood p(xAk
) - that is the likelihood contribution from a component Ak- is defined

for any non-empty component Ak ⊂ A0 and can take any number of forms. The prior distribution
for a partition ρ is also taken to be a product over the partition components:

p(ρ) =
K∏
k=1

c(Ak),

where c(Ak) > 0 is termed cohesion and is defined for each non-empty Ak ⊂ A0. The resulting
posterior distribution is also a product partition model with posterior cohesions p(xAk

)c(Ak). In
the context of cluster analysis, a set partition defines a clustering for the observed data. The
partition components define groups of data referred to as clusters.

A component density for observations in each component can be introduced in the context of the
so called parametric product partition models. Crowley (1997) applied product partition models to
the normal means problem: xi|µi ∼ N(µi, 1), i = 1, . . . , n, though the case where variances are
unknown is not addressed. Given µ1, . . . , µn, the xis are independent. However, a prior distribution
is chosen for the µs that allows some set of them to be equal, the set of equal µ values defining the
partition ρ. Let µAk denote the common value of µi for i ∈ Ak, when all µ values in Ak are equal.
The component density pAk

(µAk) is the conditional density of µAk given that Ak is a component.
The prior distribution is defined in three steps:

• a prior distribution with cohesions c(Ak) is defined on the set of all the partitions ρ by
assuming: c(Ak) = (nAk

− 1)!/mnAk
−1, where nAk

is the number of objects in set Ak and m
is a parameter that must be estimated;
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• given ρ = {A1, . . . , AK}, the parameter values µA1 , . . . , µAK are independent with density
pAk

(µAk), specifically µAk ∼ N(µ0, nσ
2
0/nAk

), where µ0 and σ2
0 are parameters that have to

be estimated;

• given ρ, µi = µAk , whenever i ∈ Ak.

Dahl (2009) showed that univariate conjugate DPM models for a known parametric family of
distributions, that is xi | θi ∼ p(·|θi), θi | G ∼ G, G ∼ DP (αG0), may be expressed
as nonparametric product partition models, by using an alternative parameterization of θ and by
integrating out analytically the component model parameters. This is also true for the univariate
normal-normal DPM model, where p(·|θ) is the (univariate) normal distribution with mean θ and
known variance σ2 and G0 is the normal distribution with known mean m and known variance
τ2. In this case, the link with product partition models (and an additional technical condition)
allow to apply a deterministic algorithm to find the global maximum a posteriori clustering of the
posterior clustering distribution and the maximum likelihood clustering. However, in this setting
the variances are required to be constant and known for each component. By contrast, unknown
variances are an integral part of our model.

3 Combinatorial Mixtures

With the term combinatorial mixtures we refer to a general class of mixture models in which
elements of the parameter vector can be shared across any subset of the components, and positive
mass is put on every possible combination of sharing patterns. To define this class, consider the
mixture model:

xi|θ,ω ∼ p(xi|θ,ω) =
K∗∑
k=1

ωkp(xi|θk), i = 1, . . . , n, (2)

where each observation is potentially multivariate, that is xi is a (J × 1) column vector, J ≥
1. The component-specific parameter θk = (θ1

k, . . . , θ
D
k )T is a column vector listing all the D

parameters characterizing the component distribution. Here K∗ represents the maximum number
of components, and it is fixed, though as we will see, the actual number of components K is still
an unknown parameter.

For a given d, define θd = (θd1 , . . . , θ
d
K∗). The combinatorial class includes, for each d, the possibility

that any subset of the components shares the same value of the d-th component. It is useful to
define θ̃

d
= Unique(θd), a Ud-dimensional row vector similar to θd but with the duplicate elements

suppressed. Also, for any d and h = 1, . . . , Ud, let θ̃dh indicate the h-th element of θ̃d, and let
Edh be the set including component indices with the same value as the h-th element. In symbols
Edh = {k ∈ {1, . . . ,K∗} : θdk = θ̃dh}.

Our formulation encompasses three important special cases commonly encountered in mixture
modeling. Each can be identified by considering the values of Ud. The fully component-specific
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parameters case occurs when each component has its own parameter vector, that is, no sharing takes
place, and for every d, Ud = K∗. The common parameter, or completely degenerate, case occurs
when all components have the same parameters, that is for every d, n, Ud = 1, and effectively K = 1.
Finally, cases in which each component has both component-specific and common parameters occur
when Ud = K∗ for some ds and Ud = 1 for others.

However, more general scenarios are compatible with our formalization. First, for any θd, it is
possible to have proper subgroups of shared components, in which case 1 < Ud < K∗. For the
d-th element of the parameter vector, some components share the same value, while others do not.
Second, for different θds, subgroups of shared elements can be different.

A simple example can illustrate the generality of the approach. Let the maximum number of groups,
K∗, be equal to 5 and the dimensionality of the parameter space, D, be equal to 2. An element of
the combinatorial mixture class could be as follows: say parameter vectors θd and θd

′
, across the K∗

groups, be constrained to be, respectively: θd = (α1, α2, α1, α3, α1) and θd
′

= (α′1, α
′
2, α
′
3, α
′
2, α
′
4).

In this case:

θ̃d = Unique(θd) = (α1, α2, α3) and θ̃d′
= Unique(θd′

) = (α′1, α
′
2, α
′
3, α
′
4),

meaning that some elements are shared in each of the dimensions. Specifically, the collection of
sets with shared components indices are given by:

Ed1 = {1, 3, 5}, Ed2 = {2}, Ed3 = {4},

and:
Ed
′

1 = {1}, Ed
′

2 = {2, 4}, Ed
′

3 = {3}, Ed
′

4 = {5}
respectively. Dimensions d and d′ have a different number of shared elements, and the sharing
occurs in different mixture components.

Prior specifications can proceed by assigning a prior directly to the space of parameters, by allowing
for degeneracy along equality constraints. For any d, we can identify all the possible degeneracy
patterns in the following way. Consider the (K∗×K∗) matrix, Cd, showing all the possible pairwise
comparisons between elements in θd across the K∗ components. Each cell equals either 0 or 1,
where: ck,k′ = 0 iff θdk = θdk′ , ck,k′ = 1 iff θdk 6= θdk′ for k, k′ = 1, . . . ,K∗, and d fixed. The matrix
is symmetric and has 1s on the diagonal. From the corresponding upper triangular matrix one can
extract a (1× K∗(K∗−1)

2 ) vector obtained juxtaposing the rows of the upper diagnonal matrix, after
removal of the diagonal elements. For instance, for K∗ = 3, one can represent the matrix 1 1 0

1 1 1
0 1 1

 by the vector (1, 0, 1).

Each degeneracy pattern for a given d is uniquely identified by a different value of the vector.
The Bell number, B(K∗), represents the number of possible degeneracy patterns. B(n) is defined
as the number of partitions of a set A0 of size n and, therefore, it accounts for all the possible
comparisons involving the elements of θd across the K∗ groups. For example, for fixed d and K∗ = 3
we have B(K∗) = 5, with possible partitions given by: {{1, 2, 3}}, {{1}, {2, 3}}, {{1, 3}, {2}},
{{1, 2}, {3}}, {{1}, {2}, {3}}, and corresponding values of the vector given by:

(0, 0, 0) or (1, 1, 0) or (1, 0, 1) or (0, 1, 1) or (1, 1, 1).
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For simplicity, we can introduce a single categorical random variable γd that captures the values of
the vector in the following way:

γd = 000 or γd = 110 or γd = 101 or γd = 011 or γd = 111.

For any number of groups, the Bell number is finite, though it could be very large. In the easiest
independence set-up, a discrete prior distribution can be assigned to each γd, for a given d, for the a
priori representation of sharing patterns for the corresponding θd element of the parameter vector.
A more detailed illustration of the priors on the remaining parameters is given in the context of
normal mixtures in the next section.

4 Combinatorial Mixtures of Normal Distributions

4.1 Univariate Model Specification

The idea of combinatorial mixtures can be detailed considering the case of univariate normal mix-
tures. Data xn = (x1, . . . , xn) are assumed to be independent observations from a mixture density
with K∗ normal components:

p(xi|µ,σ2,ω) =
K∗∑
k=1

ωkN(xi|µk, σ2
k), (3)

where µ = (µ1, . . . , µK∗), σ2 = (σ2
1, . . . , σ

2
K∗) are vectors containing component specific parameters,

ω = (w1, . . . , wK∗) are constrained to be non-negative and to sum to unity and N(·|µ, σ2) indicates
a normal distribution with expectation µ and variance σ2, σ2 > 0. In this case D = 2 and
d ∈ {m, v}, meaning that we allow all patterns of sharing of means and variances, respectively,
among the K∗ components. If two components share both mean and variance they collapse into
one, so the effective number of components K is a function of the pattern.

The class of combinatorial normal mixture models above can be seen as a multi-partition general-
ization of the product partition model of Crowley (1997), where we have two sets of partitions, one
for the means and one for the variances. Our priors will be specified directly on equality events,
though this will induce priors on partition sets Edh.

Mixtures of Dirichlet Process priors, as typically implemented for normal models, allow for param-
eters to be clustered in subsets. However, the number of possible patterns is smaller than that of
combinatorial mixtures, as single bidimensional parameters, θi = (µi, σ2

i ) are shared.

Bayesian inference requires a joint prior distribution on the unknown parameters (w,µ,σ2). The
following shorthand notation is used. Assume y1, y2, y3 are generic univariate random variables,
with y3 assuming values in {0, 1}. Then:

y1, y2|y3 ∼
{

p(y1) if y3 = 0
p(y1)p(y2) if y3 = 1

,

8



stands for:
if y3 = 0 y1 = y2 |y3 ∼ p(y1);
if y3 = 1 y1, y2|y3 ∼ p(y1)p(y2).

It is straightforward to extend this to the case where one has three generic random variables,
y1, y2, y3, and a categorical one, y4. Each of the five cases corresponds to one of the possible
comparisons between y1, y2 and y3.

Assume K∗ = 3. A factorization of the model comes from the following assumptions on (w,µ,σ2):

w ⊥ (µ,σ2), w = (w1, w2, w3), wk ≥ 0,
3∑

k=1

wk = 1,

w ∼ Dir(a0), a0 = (a1,0, . . . , a3,0),

µ ⊥ σ2, µ = (µ1, µ2, µ3), σ2 = (σ2
1, σ

2
2, σ

2
3),

µ1, µ2, µ3|γm, η2 ∼


N(µ1| 0, η2) if γm = 000

N(µ1| 0, η2)N(µ2| 0, η2) if γm = 110
N(µ1| 0, η2)N(µ2| 0, η2) if γm = 101
N(µ1| 0, η2)N(µ3| 0, η2) if γm = 011

N(µ1| 0, η2)N(µ2| 0, η2)N(µ3| 0, η2) if γm = 111

,

γm|πm ∼ Multi(1,πm),

where γm is the random variable that represents the sharing patterns for the mean vector (see
Section 3), Dir(α) indicates a Dirichlet distribution with parameter vector α, and Multi(·|N,p)
indicates a Multinomial distribution with parameters N and p. Similarly, for the variances:

σ2
1, σ

2
2, σ

2
3|γv, c, d ∼


IG(σ2

1| c, d), if γv = 000
IG(σ2

1| c, d)IG(σ2
2| c, d) if γv = 110

IG(σ2
1| c, d)IG(σ2

2| c, d) if γv = 101
IG(σ2

1| c, d)IG(σ2
3| c, d) if γv = 011

IG(σ2
1| c, d)IG(σ2

2| c, d)IG(σ2
3| c, d) if γv = 111

,

γv|πv ∼ Multi(1,πv),

and:

µ ⊥ γv, σ2 ⊥ γm,
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where a0, η2, πm, c, d and πv are known, and IG(·|α, β) indicates an inverse-gamma distribution
with parameters α and β, α, β > 0 (using the parameterization in which the mean is β/(α − 1),
α > 1). For the distribution of (µ1, µ2, µ3), we assume prior means of 0 and vague variances.
However, the approach applies equally to nonzero means.

The following factorization of the joint distribution of all the variables summarizes conditional
independence assumptions:

p(ω, zn,θ,xn) = p(ω)p(θ)p(zn|ω)p(xn|θ, zn),

where: θ = (µ, γm,σ2, γv), and:

p(θ) = p(µ|γm)p(γm)p(σ2|γv)p(γv).

These will be used in deriving the full conditional distributions, discussed in the Appendix.

Parameters γm and γv are connected with the unknown number of mixture components K. From
the joint prior distribution of (γm, γv) it is possible to derive the corresponding prior distribution
on K by listing the (γm, γv) combinations associated with any number of components and summing
their probabilities. In the case of this section, this leads to:

Pr{K = 1} = πm000π
v
000,

P r{K = 2} = πm000π
v
110+πm000π

v
101+πm000π

v
011+πm110π

v
000+πm110π

v
110+πm101π

v
000+πm101π

v
101+πm011π

v
000+πm011π

v
011,

P r{K = 3} = πm000π
v
111 + πm110π

v
101 + πm110π

v
011 + πm110π

v
111 + πm101π

v
110 + πm101π

v
011 + πm101π

v
111 + πm011π

v
110 +

+πm011π
v
101 + πm011π

v
111 + πm111π

v
000 + πm111π

v
110 + πm111π

v
101 + πm111π

v
011 + πm111π

v
111.

Meaningful parametric inference in mixture models requires to tackle the label switching problem
(Kadane (1975), Stephens (2000b), Frühwirth-Schnatter (2001)), that is the invariance of the like-
lihood under relabeling of the mixture components. In a Bayesian context this invariance can lead
to symmetric and highly multimodal posterior distributions. The usual practices of summarizing
joint posterior distributions by marginal distributions, and estimating quantities of interest by their
posterior means, are often inappropriate. However, our main goals here are closer to clustering than
to pure parameter estimation. We are mainly interested in a) estimating the number of subgroups
in a sample; b) making inferences about the assignment of samples to these subgroups; and c)
generating hypotheses about which mechanisms are likely to characterize the subgroups. For this
reason, we follow O’Hagan (1997) which proposed to summarize inferences by looking at pairs of
observations and counting how often they are assigned to the same mixture component. In this way,
one obtains a nearness measure that can be used descriptively or provide the basis for clustering.
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We implement a graphical representation of the corresponding relative frequencies matrix, named
the ”O’Hagan” matrix from now on, to visualize clusters in the data.

Our solution does not impose constraints on either single parameters or combinations of them.
If no constraints are put on the parameters, and combinatorial mixtures are assumed, interesting
challenges arise when making inferences on γm and γv. Apparently different combinations of
(γm, γv) may actually correspond to the same mixture model for the data. Figure 1(a) depicts
in a stylized fashion all the possible (γm, γv) combinations, highlighting equivalent ones with the
same color. The original twenty-five possible cases for (γm, γv) are mapped into ten different ones
sharing the same color. Corresponding density estimation plots are superimposed to depict a generic
template for how the fitted model should look like, and the correponding number of components
is added to each combination. Corresponding prior (posterior) probabilities are summed when
reporting results.

Combinatorial mixtures allow for greater generality and flexibility in comparison with traditional
approaches to mixture modeling, while still allowing to assign mass to models that are more parsi-
monious than the general mixture case in which no sharing takes place. Figure 1(b) shows in white
the 13 cells available to traditional approaches, and highlights in grey the 12 extra models that
combinatorial mixtures allow. The 13 white cells correspond to the following scenarios:

• complete sharing: (γm, γv) = (000, 000);

• partial sharing: means:

– K = 2: (γm, γv) = (000, 110), (γm, γv) = (000, 101), (γm, γv) = (000, 011);

– K = 3: (γm, γv) = (000, 111);

• partial sharing: variances:

– K = 2: (γm, γv) = (110, 000), (γm, γv) = (101, 000), (γm, γv) = (011, 000);

– K = 3: (γm, γv) = (111, 000);

• no sharing:

– K = 2: (γm, γv) = (110, 110), (γm, γv) = (101, 101), (γm, γv) = (011, 011);

– K = 3: (γm, γv) = (111, 111).

The 12 grey cells correspond to the following scenarios:

• three-component mixture, with two components sharing the means and two others sharing
the variances (light-blue cells in Figure 1(a));

• three-component mixture, with two different means and three different variances (red cells in
Figure 1(a));

• three-component mixture, with three different means and two different variances (violet cells
in Figure 1(a)).
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(a) Same colored cells identify the 10 models with the
same shape.
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(b) The grey cells identify the 12 extra models that combi-
natorial mixtures allow to fit, in comparison with traditional
approaches to mixture models.

Figure 1: Mixture model templates corresponding to each (γm, γv) pair for combinatorial mixtures
priors in a normal mixture model. The number of components and a typical shape are also noted.

In genomics applications, for example, the additional options can be critical in interpreting cancer
clusters, as those may arise from changes in location, scale or correlations, or any of the combi-
nations. In nutritional epidemiology applications, the identification of clusters of subjects having
an increased risk of cancer might be more effective if differences in the correlation structure of the
nutrients are accounted for directly in the clustering procedure. The usual practice of performing
a principal component analysis before a cluster analysis to account for known high correlations
between nutrients may be suboptimal (Chang (1983)) and cancer risk/protection associated with
the identified clusters may be low due to this problem.

Combinatorial mixtures apply, as a special case, in the supervised context as well. However, the
label switching problem does not apply in this case.

Prior independence between parameters is not essential to combinatorial mixtures.

4.2 Bivariate Model Specification

In the following, the idea of combinatorial mixtures is detailed considering the case of bivariate
normal mixtures. However, the methodology is generic and applies much more widely. Data
xn = (x1, . . . ,xn) are assumed to be independent observations from a mixture density with K∗

bivariate normal components:

xi|µ,Σ,ω ∼
K∗∑
k=1

ωkN2(xi|µk,Σk), xi =
[
x1
i

x2
i

]
, i = 1, . . . , n,

12



where:

µ = (µ1, . . . ,µK∗), Σ = (Σ1, . . . ,ΣK∗), µk =
[
µk1
µk2

]
, Σk =

[
σ2

11k
σ12k

σ21k
σ2

22k

]
, k = 1, . . . ,K∗,

w = (w1, . . . , wK∗), wk ≥ 0,
K∗∑
k=1

wk = 1,

and N2(·|µ,Σ) indicates a bivariate normal distribution with expectation vector µ and variance-
covariance matrix Σ, Σ positive definite matrix. In this case J = 2, D = 5 and d ∈ {m1,m2, v1, v2, c},
meaning that we allow all patterns of sharing of means, variances and covariances, respectively,
among the K∗ components.

For the modeling of the variance-covariance structure an attractive approach is proposed by Barnard
et al. (2000). They introduced a direct decomposition which separates the standard deviations and
correlations and proposed choices for the priors in terms of standard deviations and correlations.
This separation has a relevant practical motivation as most practitioners are trained to think in
terms of standard deviations and correlations; the standard deviations are on the original scale,
and the correlations are scale free. We adopt this approach in the following:

Σk = diag(Sk)Rkdiag(Sk), Sk =
[
Sk1

Sk2

]
, Rk =

[
1 rk
rk 1

]
, k = 1, . . . ,K∗,

where each Sk is a vector of standard deviations, diag(Sk) is a diagonal matrix with diagonal
elements Sk, each Rk is a correlation matrix, and accordingly:

S = (S1, . . . ,SK∗), R = (R1, . . . ,RK∗).

AssumeK∗ = 3. A factorization of the model comes from the following assumptions on (w,µ,S,R):

w ⊥ (µ,S,R), µ ⊥ (S,R), S ⊥ R,

w ∼ Dir(a0), a0 = (a1,0, a2,0, a3,0),

µ1,µ2,µ3 : µj = (µ1j , µ2j , µ3j)|γmj , η2 i.i.d. ∼

N(µ1j | 0, η2) if γmj = 000
N(µ1j | 0, η2)N(µ2j | 0, η2) if γmj = 110
N(µ1j | 0, η2)N(µ2j | 0, η2) if γmj = 101
N(µ1j | 0, η2)N(µ3j | 0, η2) if γmj = 011

N(µ1j | 0, η2)N(µ2j | 0, η2)N(µ3j ; 0, η2) if γmj = 111

, j = 1, 2,

13



γm : γmj |πm i.i.d. ∼ Multi(1,πm), πm =


P (µ1j = µ2j = µ3j)
P (µ1j 6= µ2j = µ3j)
P (µ1j = µ3j 6= µ2j)
P (µ1j = µ2j 6= µ3j)
P (µ1j 6= µ2j 6= µ3j)

 , j = 1, 2,

where γm is the random vector that contains the sharing patterns for µ1 and µ2 (see Section 3) and
we have posed: γmj = γmj , j = 1, 2. Similarly, for the standard deviations we choose independent
log normal priors having the following structure:

logS1, logS2, logS3 : logSj = (logS1j , logS2j , logS3j)|γvj , e2 i.i.d. ∼

N(logS1j | 0, e2), if γvj = 000
N(logS1j | 0, e2)N(logS2j | 0, e2) if γvj = 110
N(logS1j | 0, e2)N(logS2j | 0, e2) if γvj = 101
N(logS1j | 0, e2)N(logS3j | 0, e2) if γvj = 011

N(logS1j | 0, e2)N(logS2j | 0, e2)N(logS3j | 0, e2) if γvj = 111

, j = 1, 2,

γv : γvj |πv i.i.d. ∼ Multi(1,πv), πv =


P (S1j = S2j = S3j)
P (S1j 6= S2j = S3j)
P (S1j = S3j 6= S2j)
P (S1j = S2j 6= S3j)
P (S1j 6= S2j 6= S3j)

 , j = 1, 2,

whereas, for each correlation coefficient rk in Rk, we have:

R1, R2, R3 : r = (r1, r2, r3)|γc ∼


UN(−1,1)(r1), if γc = 000

UN(−1,1)(r1) UN(−1,1)(r2), if γc = 110
UN(−1,1)(r1) UN(−1,1)(r2), if γc = 101
UN(−1,1)(r1) UN(−1,1)(r3), if γc = 011

UN(−1,1)(r1) UN(−1,1)(r2) UN(−1,1)(r3), if γc = 111

,

γc|πc ∼ Multi(1,πc), πc =


P (r1 = r2 = r3)
P (r1 6= r2 = r3)
P (r1 = r3 6= r2)
P (r1 = r2 6= r3)
P (r1 6= r2 6= r3)

 ,

and we assume independence between each component-specific parameter, µ, S and r, and the γs
corresponding to the other ones.

Finally, a0, η2, πm, e2, πv, πc are known, log(Y |µ, σ2) ∼ N(y|µ, σ2) indicates that Y is distributed
according to a lognormal distribution with parameters µ and σ2, and UN(a,b)(·) indicates a uniform
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distribution on (a,b). Note that for Rk be positive definite, rk 6= ±1. Prior means of 0 are assumed
for the normal and lognormal distributions of (µ1,µ2,µ3) and (S1,S2,S3), respectively, as the
corresponding variances are chosen to express a vague prior information. However, the approach
applies equally to nonzero means.

The following factorization of the joint distribution of all the variables summarizes conditional
independence assumptions:

p(ω, zn,θ,xn) = p(ω)p(θ)p(zn|ω)p(xn|θ, zn),

where: θ = (µ1, γm1 ,µ
2, γm2 ,S

1, γv1 ,S
2, γv2 , r, γ

c), and:

p(θ) = p(µ1|γm1 )p(γm1 )p(µ2|γm2 )p(γm2 )p(S1|γv1 )p(γv1 )p(S2|γv2 )p(γv2 )p(r|γc)p(γc),

and will be used in deriving the full conditional distributions, discussed in the Appendix.

Traditional bivariate mixture models do not generally assume any decomposition of the variance-
covariance matrix. The available traditional options are either sharing the variance-covariance
matrix across components or no sharing of this matrix across components. The first option implies
sharing of both variances and covariances, and then γc = 000 is always automatically selected when
both γv1 = 000 and γv2 = 000 occur. The second option includes all the possible remaining cases,
and is very general. The adoption of a decomposition allows to share one or both the standard
deviations, without necessarily sharing the correlations (or viceversa), and represents an easy way
to guarantee a freerer modeling of the variance-covariance structure in traditional mixture models
too. When a decomposition is assumed for the variance-covariance matrix, available traditional
options are still the following ones: complete sharing of the variances/no sharing of the variances
and complete sharing of the covariances/no sharing of the covariances across components. In any
of these cases, all the variances (covariances) should be either equal or different across components.
Combinatorial mixtures allow to go further in the direction of modeling each variance or correlation
in a freerer way, at the expense of dealing with extra complexity in model specification. In detail, the
bivariate normal extension might allow to model an interesting phenomenon observed in microarray
analysis when two variables have the same mean and variance but opposite correlations in diseased
and normal samples (Dettling et al. (2005)).

4.3 Computation

Bayesian inference for mixture models may be performed using MCMC methods, generating iter-
atively the parameters and the missing data. Diebolt and Robert (1994) described it for the case
where the number of mixtures components is known. We gave an overview of methods for our case,
where the number of components is unknown, in Subsection 2.3.
As we assume priors that are mixtures of mutually singular distributions, we also refer to Got-
tardo and Raftery (2008), which deals specifically with MCMC methods for cases where the target
distribution is a mixture of mutually singular distributions. The authors introduced a framework
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for such measures to which the general theory of MCMC applies, as it does to general dominating
measures. The idea is to find a common dominating measure that allows the use of traditional
Metropolis-Hastings algorithms, and then Gibbs sampler, if the full conditionals are available. We
will apply this to mixture models where priors are mixtures of singular distributions.

The Markov chain
{

Φ(t)
}

with posterior distribution p(φ|xn) as its stationary distribution is con-
structed in the following way. A sampled realization of the Markov chain is produced generat-
ing iteratively the parameters, φ(t), and the missing data, zn(t) = (z(t)

1 , . . . , z
(t)
n ) according to

p(φ|xn, zn(t)) and p(zn|xn,φ(t+1)) respectively.

For the univariate normal mixture model, we have: p(φ|xn) = p(µ, γm,σ2, γv,ω|xn) and φ(t) =
(µ(t), γm(t),σ2(t)

, γv(t),ω(t)), and we make use of four move types:

1. updating the vector (µ, γm);

2. updating the vector (σ2, γv);

3. updating the weights ω;

4. updating the allocation variables vector zn.

Full conditional distributions of the variables given all the others exist in a closed form and are
introduced in the Appendix. Move types 1. and 2. follow from combinatorial mixtures assumptions.
They involve a change in dimension. In detail, (µ, γm) (σ2, γv) are drawn according to the described
strategy. At the t-th iteration, t 6= 1:

1. sample the parameter regulating the dimension of the parameter space, γm(t), γv(t);

2. conditioning on γm(t), γv(t) (and on all the remaining parameters), sample the corresponding
location parameter, µ(t), σ2(t).

Updating µ and σ2 for fixed values of γm, γv, and the remaining parameters, makes use of conjugacy
and follows Diebolt and Robert (1994). Updating γm, γv requires integrating out the corresponding
location parameters in the vector, to get the posterior probability associated with each possible
value of the γs. Move types 3. and 4. are now standard, largely following Diebolt and Robert (1994)
as well.

For the bivariate normal mixture model, we have:
p(φ|xn) = p(µ1, γm1 ,µ

2, γm2 ,S
1, γv1 ,S

2, γv2 , r, γ
c,ω|xn) and:

φ(t) = (µ1(t)
, γm1

(t),µ2(t)
, γm2

(t),S1(t)
, γv1

(t),S2(t)
, γv2

(t), r(t), γc(t),ω(t)), and we make use of seven
move types:

1. updating the vectors (µj , γmj ), j = 1, 2;

2. updating the vectors (Sj , γvj ), j = 1, 2;
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3. updating the vector (r, γc);

4. updating the weights ω;

5. updating the allocation variables vector zn.

Full conditional distributions of the variables given all the others exist in a closed form for (µj , γmj ),
j = 1, 2, ω and zn. They are introduced in the Appendix.

Move types 1. 2. and 3. follow from combinatorial mixtures assumptions and involve a change in
dimension. We applied the Gibbs sampler for drawing (µj , γmj ), j = 1, 2, according to the same
strategy described in the univariate case. We applied three Metropolis-Hastings steps for drawing
(Sj , γmj ), j = 1, 2, and (r, γc). We referr to the Appendix for details. Move types 4. and 5. still
follow Diebolt and Robert (1994).

4.4 Gene Expression in Lung Cancer

Next, the normal mixture models of Subsections 4.1 and 4.2 are applied to data on the molecular
classification of lung cancer. DNA microarrays are part of a class of biotechnologies that allows the
monitoring of thousands of genes simultaneously under different biological or experimental condi-
tions. They may be used to characterize the molecular variation among tumors. This may lead to
a more reliable classification of lung cancers and to the identification of potentially promising genes
for that classification. Using gene array measurements of expression profiles, several groups have
reported findings suggesting that distinctive molecular profiles could lead to refinement of classifi-
cation and prognostication of lung cancer (Garber et al. (2001), Beer et al. (2002), Bhattacharjee
et al. (2001), Miura et al. (2002) and Wigle et al. (2002)).
Here we consider a dataset from the web-based information supporting the published manuscript
Garber et al. (2001). The study is performed by scientists at the Dana-Farber Cancer Institute
and the Massachusetts Institute of Technology and used Affymetrix oligonucleotide arrays Hu95A
representing 12,600 transcripts to profile 203 samples, including 186 lung tumor samples of various
histologic patterns and 17 normal samples. For our purposes, the normal samples were removed
from the study. A selection is made on the total number of genes and four biologically promising
candidates are identified for further analyses. They were selected as genes involved in the distinc-
tion between BRCA-1 and sporadic (with no detected mutation in BRCA-1 gene) breast cancers.
Their HUGO names are: ”ITGB5”, ”MSN”, ”TRIM29” and ”CSTB”.

TRIM29 (tripartite motif-containing 29) may act as a transcriptional regulatory factor involved
in carcinogenesis and/or differentiation. Its basic function is mediating estrogen action in various
target organs. It is reported to be involved in prostate carcinoma, where is low expressed. It
may also function in the suppression of radiosensitivity. MSN or Moesin (for membrane-organizing
extension spike protein) is important in cell-cell recognition and signaling and for cell movement.
It is found to be involved in a case of ALK+ anaplasic large cell lymphoma. It is reported to
have a role in discriminating between patients susceptible to locoregional lymph node metastasis
and other patients, in oral squamous cell carcinoma. ITGB5 (integrin beta 5) codes for a protein
involved in cell-extracellular adhesion and cell-cell-adhesion. It is implicated in cellular processes
like cell communication and motility. Less is known about involvement of ITGB5 in cancer, except
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Figure 2: Histograms of the expression levels for the genes under study.

for squamous cell carcinoma of the toungue, though it is involved in vascular development, a pro-
cess critical for cancer growth. CSTB (cystatin B) and other cystatins regulate tumour-associated
cysteine proteases are reported to be upregulated in non-small cell lung tumours, and thus able to
counteract harmful tumour-associated proteolytic activity. CSTB is, specifically, overexpressed in
most hepatocellular carcinomas and is also elevated in the serum of a large proportion of hepato-
cellular carcinoma patients.

We next fit two combinatorial mixture models using these four variables. We present separate
univariate models for TRIM29, MSN and ITGB5. Results for CSTB are similar to the ones for
ITGB5. We then present an application of the bivariate model to the MSN and CSTB genes.
Calculations are performed using the open-source statistical computing environment R (R Devel-
opment Core Team (2006), R Development Core Team (2008), Ihaka and Gentleman (1996)), its
library MCMCpack (Martin and Quinn (2005)) and a specialized code reflecting the procedure
described in Subsection 4.3 and the results summarized in the Appendix.
We consider Bayesian estimation in the case where we do not have strong prior information on the
parameters. There are cases where subjective priors are preferable, and our prior setting could be
modified accordingly. However, it seems that for most purposes of the model there is a case for
keeping to the simplest independence prior structure for the means, variances/standard deviations
and correlations, and defining weakly informative priors.

Because of the label switching problem, we do not report posterior estimates of individual pa-
rameters. We present the estimated joint distributions (%) of (γm, γv) for each gene, and the
marginal distribution of γc in the bivariate case, as those parameters are not involved in the label
switching problem. We marked in boldface the frequencies of those combinations that are only
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available with combinatorial mixtures, in comparison with traditional approaches. Moreover, we
report the ”O’Hagan” matrices to check directly on clusters in the data. Relative frequencies of
the co-occurrence of two samples in the same group are plotted in a black-to-white color scale and
sorted according to a non-decreasing ordering of the raw data (non-decreasing ordering of the first
variable, in the case of bivariate data). Dark and light blocks, with proportions similar to the
estimated weights of the mixture, identify different groups of observations.

4.4.1 Application of the Univariate Model

Figure 2 shows the univariate distribution of the expression levels for the three genes considered
in this application. TRIM29 and MSN seem to be promising for lung cancer classification as well.
TRIM29 has a long right tail suggesting the presence of more than one group of patients. MSN has
an interesting left tail too. On the other hand, ITGB5 distribution seems to be similar to a single
univariate Normal.

The following choice of hyperparameters results in weakly informative priors on the means µ1, µ2, µ3

and variances σ2
1, σ

2
2, σ

2
3: η2 = 5000, c = 0.75, d = 0.15. The Dirichlet prior on the weights, ω,

is symmetric with a0 = (1, 1, 1). Finally, there are different ways of being vague in assigning
prior distributions on the γs. The Multinomial priors are vague in such a way that they give
the same a priori probability to all the possible values of πm and πv respectively: πm = πv =
(0.2, 0.2, 0.2, 0.2, 0.2). Different hyperparameters scenarios will be considered in the sensitivity
analysis presented in Subsection 4.4.3.

For each gene, we run one chain at a time, doing several simulations. We report results from one of
these chains, corresponding to a total of 20,000 iterations with a burn-in of 2,000 iterations. From
visual inspection of the chains, we conclude that these numbers are adequate for reliable results.
All our runs start with γm = 000 and γv = 000.

The estimated joint posterior probabilities of (γm, γv) for each gene are shown in Figure 3. The
TRIM29 chain spends 40.12% of the iterations on either (111, 110) or (111, 101) or (111, 001) (vi-
olet cells). The corresponding mixture model has three components, with three different means
and two variances. The second most probable pair is (111, 111) (grey cell), which represents a
three-component mixture with different means and different variances. The third most probable
combination, (110, 110) or (101, 101) or (011, 011) (green cells), implies a mixture model with two
components, one of which comes from sharing both means and variances between two compo-
nents. A posteriori a mixture model with either two or three components with different means and
variances seems suitable for TRIM29. The chain spends about 48% of the iterations on the 12 com-
binations of (γm, γv) that would not be possible to select using traditional approaches to mixture
models. The majority of the 48% is due to the most probable combination (violet cells). As tradi-
tional approaches may place a larger portion of mass on the (111, 111) combination, combinatorial
mixtures allow for a gain in parsimony in this case.

The MSN chain spends 44.25% of the iterations on a mixture model with two effective components,
one of which comes from complete sharing between two components (green cells). The second most
probable combination is given by either (110, 111) or (101, 111) or (001, 111) (red cells), which
represent a three-component mixture model with two different means and three different variances.
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000 110 101 011 111

000 0.00 0.00 0.00 0.00 0.00

110 0.00 5.93 0.18 0.00 1.73

101 0.00 0.21 7.29 0.21 2.40

011 0.00 0.27 0.28 5.53 2.10

111 0.00 20.37 15.67 4.07 33.62

γv

γm

(a) TRIM29

000 110 101 011 111

000 0.00 0.00 0.00 0.00 0.00

110 1.90 12.35 2.98 3.01 7.95

101 1.15 2.42 13.95 2.80 8.43

011 1.69 4.31 3.85 17.95 11.57

111 0.20 0.83 0.75 0.89 0.92

γv

γm

(b) MSN

000 110 101 011 111

000 26.05 17.55 18.70 18.00 13.12

110 0.63 0.35 0.39 0.37 0.32

101 0.59 0.40 0.44 0.37 0.23

011 0.63 0.41 0.50 0.44 0.39

111 0.03 0.00 0.02 0.02 0.00

γv

γm

(c) ITGB5

Figure 3: Joint posterior probabilities (%) of (γm, γv) for the three genes as obtained by one run
of the simulation. For correct interpretation, one needs to sum frequencies in cells with the same
color. The frequencies of those cases that are gained using combinatorial mixtures, in comparison
with traditional approaches, are emphasized using boldface.

The third most probable combination happens on the six light-blue cases: (γm, γv) = (110, 101), or
(γm, γv) = (110, 011), or (γm, γv) = (101, 110), or (γm, γv) = (101, 011), or (γm, γv) = (011, 110),
or (γm, γv) = (011, 101). The corresponding mixture has three components, two of them sharing
means while two others share the variances. A two- or three-component mixture model seems suit-
able for MSN. The chain spends about 50% of the iterations on the 12 combinations of (γm, γv) that
would not be possible to select using traditional approaches. The majority of this 50% is due to the
second and the third most probable combinations (red and light-blue cells). Compared to tradi-
tional two-component mixtures, combinatorial mixtures allow to fit the extra case of three different
variances for two components with different means, thus achieving extra flexibility in modeling the
variances. Compared to traditional three-component mixtures, combinatorial mixtures allow for a
more parsimonious solution.

The ITGB5 chain spends 54.25% of the iterations on (000, 110) or (000, 101) or (000, 011), which
imply a mixture model with two components having the same mean but two different variances
(orange cells). The second most probable case is (000, 000) (white cell), corresponding to a single
univariate normal distribution, while the third one is (000, 111) (brown cell), corresponding to a
three-component mixture model with one shared mean and three different variances. The chain
spends almost all the iterations on γm = 000 and groups are eventually created only by differences
in variances. The chain spends about 4% of the iterations on the 12 combinations of (γm, γv) that
would not be possible to select using traditional approaches. Each cell contributes almost equally
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(c) ω1, ω2, ω3: adaptation of the stacked area plot

Figure 4: Marginal chains of the parameters for TRIM29 as obtained by the simulation. Component
means and corresponding variances and weights for each iteration are color-coded in the same way
across plots.

to this 4%. Traditional approaches are not restrictive in this case.

Additional results for TRIM29 are in Figure 4. The estimated marginal posterior distributions of
the parameters µ1, µ2, µ3 and σ2

1, σ
2
2, σ

2
3, respectively, are plotted along with the corresponding γs.

One iteration every ten is reported and points smaller than the 0.2th percentile and bigger than the
99.8th percentile are not shown. Component means and corresponding variances and weights for
each iteration are represented using the same color across plots. The weights are shown adapting
the usual stacked area plot, where each line represents the cumulative sum of the corresponding
weights. The estimated posterior distributions are highly compatible with the explorative plots in
Subsection 4.4.1. Suppose (γm, γv) at iteration t implies a three-component mixture, with three
different means and two different variances ((111, 110) or (111, 101) or (111, 001)). According to the
plots, the three means are estimated at 5.4, 6 and 8, while the corresponding variances are 0.09 for
the first component and 0.4 for the remaining ones. If (γm, γv) = (111, 111) at the next iteration, a
third higher variance is estimated, as the corresponding mixture model has three components with
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different variances. The component with mean 5.4 and variance approximately 0.09 has a weight
close to 0.7. The remaining ones have weights equal to 0.15 respectively. If γm and γv assume
the same intermediate value ((γm, γv) equal to (110, 110), or (101, 101), or (011, 011)), estimated
means are approximately at 5.4 and 7 and corresponding variances between 1 and 1.5. Similar
considerations hold for the marginal chains of the parameters in the case of MSN and ITGB5
genes.

O’Hagan for TRIM29

scale

0.0 0.2 0.4 0.6 0.8 1.0

(a) TRIM29

O’Hagan for MSN

scale

0.0 0.2 0.4 0.6 0.8 1.0

(b) MSN

O’Hagan for ITGB5

scale

0.0 0.2 0.4 0.6 0.8 1.0

(c) ITGB5

Figure 5: ”O’Hagan” matrices for the three genes. Relative frequencies of occurrence of two being in
the same group are plotted in a black-to-white color scale and sorted according to a non-decreasing
ordering of the raw data. Dark and light blocks, with proportions similar to the estimated weights
of the mixture, identify different groups of observations.

Figure 5 depicts the ”O’Hagan” matrices for each of the three genes. In the case of TRIM29,
we identify three groups of patients. The first on the left is the one with the smallest mean and
variance and the highest weight. The intermediate block represents the component with a mean of
approximately 6. The transition from the first to the second component is very smooth indicating
uncertainty in the classification of intermediate points. The component on the right of the picture
is the one with mean around 8. The transition from the second to the third component is less
smooth than the previous one. Both the second and the third group have a weight of 0.15. In the
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case of MSN, we identify two groups of patients. From the left, the first is well defined and has
mean approximately at 8.5, variance equal to 0.8 and the smallest weight (data not shown). The
transition from the first to the second component is very smooth. The component on the right of
the picture has a mean at about 10 and weight at about 0.85 (data not shown). The group is not
so well defined. No groups are evident for ITGB5.

4.4.2 Application of the Bivariate Model

7 8 9 10 11

7
8

9
10

11

MSN

CS
TB

Figure 6: Image of a two-dimensional kernel density estimation plot for the bivariate distribution
of the MSN and CSTB genes. Contour lines are added to the existing image.

In the following, we propose the results of the application of the bivariate combinatorial mixture
model to the MSN and CSTB genes. Figure 6 shows the image of a two-dimensional kernel density
estimation plot representing the bivariate distribution of these genes. The kernel density estimation
is obtained with an axis-aligned bivariate normal kernel and evaluated on a square grid. Contour
lines are added to the existing image. The plot suggests the existence of two or more groups.

The following choice of hyperparameters results in weakly informative priors on the means, standard
deviations and correlations, respectively: η2 = 5000, e2 = 4, a = −1, b = 1. The Dirichlet prior
on the weights, ω, is still symmetric with a0 = (1, 1, 1). The Multinomial priors are such that:
πm = πv = πc = (0.2, 0.2, 0.2, 0.2, 0.2).

We run one chain for our data, doing several simulations. We report results from one of the
these chains, corresponding to a total of 40,000 iterations with a burn-in of 2,000 iterations. We
choose the starting values for each run according to a preliminary k-means clustering algorithm.
The number of groups for the k-means is specified looking at some exploratory plots. If there is
no evidence of more than one group in the data according to all the possible criteria (differences
in means, standard deviations, correlations), the starting points are chosen in the following way:
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γmj = γvj = γc = 000, j = 1, 2, and means, standard deviations and correlations, respectively, are
assumed to be equal to the corresponding sample values.

000 110 101 011 111

000 0.00 0.00 0.00 0.00 0.00

110 0.01 3.77 1.82 0.61 37.57

101 0.02 1.02 5.87 0.20 38.69

011 0.00 0.11 0.04 1.00 5.10

111 0.00 0.18 0.16 0.01 3.82

γm
1

γv
1

(a) MSN (j = 1)

000 110 101 011 111

000 0.00 0.00 0.13 0.09 3.97

110 0.02 0.10 0.26 0.91 4.79

101 1.03 5.32 6.77 7.02 51.90

011 0.13 0.81 1.15 1.02 10.84

111 0.02 0.11 0.16 0.58 2.85

γv
2

γm
2

(b) CSTB (j = 2)

000 110 101 011 111

6.64 15.96 6.10 31.09 40.20γc

(c) correlation between MSN and CSTB

Figure 7: Joint posterior probabilities (%) of (γmj , γ
v
j ), j = 1, 2, and posterior probability (%) of γc,

as obtained by one run of the simulation. For correct interpretation, one needs to sum frequencies
in cells with the same color. The frequencies of those cases that are gained using combinatorial
mixtures, in comparison with traditional approaches, are emphasized using boldface.

The estimated joint posterior probabilities (%) of (γmj , γ
v
j ), j = 1, 2, and the estimated posterior

probability (%) of γc are shown in Figure 7. The MSN marginal chain spends more than 80% of
the iterations on either (110, 111) or (101, 111) or (001, 111) (red cells). The second most probable
combination is: (110, 110) or (101, 101) or (011, 011) (green cells). A posteriori a mixture model
with either two or three components with different means and standard deviations seems suitable
for MSN. The CSTB marginal chain spends more than 65% of the iterations on either (110, 111)
or (101, 111) or (001, 111) (red cells) too. The second most probable combination happens on the
six light-blue cases: (γm, γv) = (110, 101), or (γm, γv) = (110, 011), or (γm, γv) = (101, 110), or
(γm, γv) = (101, 011) or (γm, γv) = (011, 110), or (γm, γv) = (011, 101). A posteriori a mixture
model with three components with different means and standard deviations seems suitable for
CSTB.
In both cases, there is not so much evidence in favor of those cases allowed by traditional mixture
models. The chain spends more than 80% of the iterations on the 12 combinations of (γm1 , γ

v
1 )

and (γm2 , γ
v
2 ) that would not be possible to select using traditional approaches to mixture models.

The majority of this 80% is due to the most probable combinations (red and light-blue cells).
Combinatorial mixtures might end up either in extra flexibility in modeling standard deviations or
in a more parsimonious solution, depending if one assumes the traditional two-component or the
three-component mixture for comparison.
Finally, the chain spends almost all of the iterations either on the intermediate cases of two different
correlations (pink cells) or on the case of three different correlations across components (dark-
green cells). Traditional mixture models where a decomposition of the variance-covariance matrix
is assumed allow to fit all the five cases listed in Table 7(c), depending on how many different
components are assumed; so, no cases are emphasized using boldface.
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Figure 8 shows the estimated marginal posterior distributions of the parameters µ1, µ2, S1, S2

and r, along with the corresponding γs, and the weights ω. One iteration every ten is reported,
and points smaller than the 5th percentile and bigger than the 95th percentile are not shown.
Corresponding estimates for each iteration are represented using the same color across plots. The
MSN gene shows two means that are around 8.3 and 10. Either sharing of the 8.3 mean (γm1 = 110)
or sharing of the 10 mean (γm1 = 101) are allowed. If γm1 = 110, the 8.3 means are associated
with the two bigger standard deviations (0.6 and 0.8) and the 10 mean with the smaller one of 0.4.
If γm1 = 101, the corresponding standard deviations are around 0.8 for the 8.3 mean and 0.4, 0.6
for the 10 means. In any case, the collapsed means admit two standard deviations, one of which
is able to cover the arm that connects the two components with different means (see Figure 6).
The CSTB gene shows two means that are around 8.6 and 9.9. The 8.6 mean is generally not
shared across components. The corresponding standard deviations are around 0.3-0.5, and 0.6
and 0.8, respectively. The component with mean around 10 accounts for the connecting cluster in
Figure 6. If γc = 111, the component correlations are 0.1, -0.4 and 0.8. If γc = 011, the component
correlations are 0.2 and 0.8, with 0.2 coming from sharing of correlations between the red and the
black components. The weights are shown in terms of cumulative sums. The component with mean
vector around (10,10) and the smallest standard deviations has a correlation of 0.1 and a weight
close to 0.65. The component with mean vector around (8.3,8.6), the smallest standard deviations
and correlation equal to -0.4 has a weight close to 0.20. The remaning weight of around 0.15
belongs to the the connecting cluster. This cluster is fitted using the biggest standard deviation
corresponding to the shared means for MSN, the component with mean equal to 10 and standard
deviation equal to 0.8 for CSTB, and the remaining correlation of 0.8.

The ”O’Hagan” matrix is reported in Figure 9. The plot identifies two distinct groups with different
mean vectors. The first group on the left has the smallest mean vector and its weight is equal to 0.20.
The transition from the first to the second group reveals a great uncertainty in the classification of
intermediate points. These points are likely to belong to the connecting cluster in Figure 6, which
has a weight of 0.15. The group on the right of the picture is the one with mean vector around
(10,10) and the biggest weight.

4.4.3 Sensitivity to Model Specification and Other Issues

Reporting substantive results requires exploring sensitivity to model specification, especially re-
garding the prior, and verifying the proper convergence of the MCMC. Sensitivity of the posterior
distribution of both the γs and the remaining parameters needs to be investigated. For an exten-
sive treatment on sensitivity analysis in the context of normal mixture models with an unknown
number of components, see Richardson and Green (1997). For further development of sensitivity
analysis issues for those models, one can refer to Stephens (2000). Our main concern here is to
show how the inference on the number of components is affected by different values for πm and
πv. We do so in terms of the equivalent prior on the number of components, K, introduced in
Subsection 4.1. Elicitation of potentially interesting priors is easier, as the induced prior on K
allows to define a different way of being vague. Interpretation of the sensitivity analyses may
be easier as well. The default vague set-up proposed in the analysis, πm = (0.2, 0.2, 0.2, 0.2, 0.2)
and πv = (0.2, 0.2, 0.2, 0.2, 0.2), can be interpreted in terms of its implications on the number of
chosen subgroups, and it corresponds to: P{1 subgroup}=0.04, P{2 subgroups}=0.36 and P{3
subgroups}=0.60 (say, case 3 hereafter). Three groups are a priori favored by our default set-up.
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For this reason, we consider for the sensitivity analysis two other scenarios, which a priori favor
either the case of one group or all three possibilities in almost the same way. They are respectively
such that:

• πm = πv = (0.8, 0.05, 0.05, 0.05, 0.05) ↔ P{1 subgroup}=0.64, P{2 subgroups} ≈ 0.25 and
P{3 subgroups} ≈ 0.11 (say, case 1 hereafter);

• πm = πv = (0.6, 0.1, 0.1, 0.1, 0.1) ↔ P{1 subgroup}=0.36, P{2 subgroups}=0.39 and P{3
subgroups}=0.25 (say, case 2 hereafter).

Results of sensitivity analysis to different values of πm and πv are summarized in Figure 10 for each
gene. Each table presents posterior probabilities of observing one, two or three groups, respectively,
given the three different a priori set-ups. The prior probabilities corresponding to each scenario
are added in the left column for comparison. The sensitivity of the inference on the number of
components to the prior specification of πm and πv is low.

An essential element of the performance of the MCMC is its ability to move between different values
of γm and γv, that is to mix over the number of components. A plot of the changes in γm and γv

against the number of sweeps for TRIM29 is presented in Figure 4(c) and Figure 4(b) respectively.
It shows that the MCMC mixes well over the γs. Similar plots were obtained for MSN and ITGB5.
We detected no influence of starting values. Within the range of weak priors that we have been
using, we have observed good mixing patterns in all our runs.

5 Discussion

We introduce a class of mixture models that we call combinatorial mixtures for mixture distribu-
tions whose components have multidimensional parameters. The approach allows each element of
the component-specific parameter vector to be shared by any subset of other components. For any
dimension, it is thus possible that some components share the same value of the element, while
others do not. Moreover, for different dimensions, subgroups of shared elements can be different,
either because of a different cardinality or different shared components. From a Bayesian perspec-
tive, prior specification has a key role in building combinatorial mixtures: inference can proceed
by assigning a prior directly to the space of parameters, allowing for degeneracy along equality
constraints for each element. Although our focus is on Bayesian analysis, combinatorial mixtures
can also be useful for non-Bayesian modeling.

Free and partial sharing of components allows for greater generality and flexibility in comparison
with traditional approaches to mixture modeling, while still allowing to eventually prefer models
that are more parsimonious than the general no sharing case. This allows for potentially relevant
efficiency gains in the overall estimate procedure. One of the implications of our setting is that,
once a maximum number of components is specified, inference on the parameters and the number
of components is subsumed by the inference on combinatorial patterns.

Bayesian inference and computation approaches were illustrated in a setting based on the normal
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model, and applied to data on molecular subtypes of lung cancer. Because cancer subtypes may
be characterized by differences in location, scale, correlations or any of the combinations, effective
procedures for addressing simultaneously variable selection and clustering (see, for instance, Kim
et al. (2006)) may rely on a flexible set of different criteria. Combinatorial mixtures allow to
cover all the possible comparisons between relevant parameters across groups, and are potentially
useful for applications in a range of application areas. For more extensive exhaustive application of
combinatorial mixtures to both supervised and unsupervised contexts one can refer to Edefonti’s
Ph.D. Thesis (Edefonti (2006)), which is available upon request.

Combinatorial mixtures generalize both product partition and DPM models. Both parametric
and nonparametric product partition models are probability models for the estimation of a set of
parameters, a subset of which are allowed to be equal. However, they are usually proposed and
implemented focusing on one dimension only. Our class of combinatorial normal mixture models
can be seen as a multi-partition generalization of the product partition model of Crowley (1997),
where we have two sets of partitions, one for the means and one for the variances. Our priors were
specified directly on equality events, though this will induce priors on partition sets Edh. A similar
comment applies to nonparametric product partition models as proposed by Dahl (2009), which
requires for the univariate normal-normal DPM model that the variance is constant and known for
each component. However, the requirement is imposed to satisfy a technical condition (Condition 1)
concerning the partition likelihood and related to the mode-finding algorithm applicable to those
models. The paper does not investigate the general case where variances are not constant and
unknown.
Dirichlet Process priors, as typically implemented for normal models, allow for parameters to be
clustered in subsets. However, the number of possible patterns is smaller than that of combinatorial
mixtures, as only bidimensional parameters, θi = (µi, σ2

i ) are potentially shared.

A challenge to the implementation of combinatorial mixtures is that the number of K∗-way com-
parisons between the elements of component-specific parameter vectors increases rapidly with the
maximum number of groups. For K∗ = 3 the Bell number is B(K∗) = 5, for K∗ = 7, it is
B(K∗) = 877.

With regard to the priors, we suggested independence across parameters because there is a case
for it for most purposes. However, dependence across priors might be desiderable in some cases.
For example, mean, variance and correlation vectors may be dependent. Conditional to the corre-
sponding γs, means, variances and correlations may be assumed as dependent across components.
The first scenario might be relevant in biological applications too. For example, if the mean in one
group is bigger than that of another, one might expect their variances to be different as well. Ac-
counting for this kind of dependence poses challenges that are not fully explored in the paper. We
explored the scenario of dependence of component parameters conditional to (γm, γv) 6= (000, 000)
in a univariate supervised set-up with two known groups. For both component means and vari-
ances, we proposed a reparametrization of the dependent parameters in terms of two independent
parameters, a general parameter and a difference/ratio between the original dependent parame-
ters. We assumed a mixture of singular distributions for the prior on the independent parameters
and derived the corresponding posterior distribution via MCMC. For further details we refer to
Edefonti’s Ph.D. Thesis (Edefonti (2006)). Finally, in choosing a prior for the hyperparameters
of the component-specific parameter prior distributions, one may consider the dependence of the
component-specific parameters on the hyperparameters.
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6 Appendix

6.1 Univariate Model

Full conditional distributions for the univariate normal mixture model are proposed in the following.
The shorthand notations:

−(µ, γm) = {σ2, γv,ω}, −(σ2, γv) = {µ, γm,ω},

−(µ) = {γm,σ2, γv,ω}, −(σ2) = {γv,µ, γm,ω},

−(ω) = {θ} = {µ, γm,σ2, γv},

nk = #{i : zi = k}, x̄k =
1
nk

∑
i:zi=k

xi, k = 1, 2, 3,

0 = 000, 1 = 110, 2 = 101, 3 = 011, 4 = 111,

πd0 = πd000, π
d
1 = πd110, π

d
2 = πd101, π

d
3 = πd011, π

d
4 = πd111, d = m, v,

πd0
∗

= πd
∗

000, π
d
1
∗

= πd
∗

110, π
d
2
∗

= πd
∗

101, π
d
3
∗

= πd
∗

011, π
d
4
∗

= πd
∗

111, d = m, v,

are used hereafter. From the joint distribution derived in Subsection 4.1, we get:

p(µ, γm| − (µ, γm),xn, zn) = p(µ| − (µ),xn, zn)p(γm| − (µ, γm),xn, zn),

with:

p(µ| − (µ),xn, zn) =


N(µ1| µ∗123, η

2∗
123) if γm = 0

N(µ1| µ∗1, η2∗
1)N(µ2| µ∗23, η

2∗
23) if γm = 1

N(µ1| µ∗13, η
2∗
13)N(µ2| µ∗2, η2∗

2) if γm = 2
N(µ1| µ∗12, η

2∗
12)N(µ3| µ∗3, η2∗

3) if γm = 3
N(µ1| µ∗1, η2∗

1)N(µ2| µ∗2, η2∗
2)N(µ3| µ∗3, η2∗

3) if γm = 4

,

where:

µ∗123 = η2∗
123

(
3∑

k=1

nk
σ2
k

x̄k

)
, η2∗

123 =

(
1
η2

+
3∑

k=1

nk
σ2
k

)−1

,

µ∗k = η2∗
k

nk
σ2
k

x̄k, η2∗
k =

(
1
η2

+
nk
σ2
k

)−1

, k = 1, 2, 3,

µ∗
k′k′′

= η2∗
k′k′′

(
nk′

σ2
k′
x̄k′ +

nk′′

σ2
k′′
x̄k′′

)
, η2∗

k′k′′ =

(
1
η2

+
nk′

σ2
k′

+
nk′′

σ2
k′′

)−1

,
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k
′
, k
′′

= 1, 2, 3, k
′ 6= k

′′
, k
′
, k
′′ 6= k,

and:

p(γm| − (µ, γm),xn, zn) = Multi(1,πm
∗
),

where πm
∗

is such that:

πm0
∗ =

πm0
D
η∗123 exp

{
1
2

(
µ∗123

η∗123

)2
}
,

πmk
∗ =

πmk
D

1
η
η∗k exp

{
1
2

(
µ∗k
η∗k

)2
}
η∗
k′k′′

exp

1
2

(
µ∗
k′k′′

η∗
k′k′′

)2
 , k, k

′
, k
′′
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′′
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′
, k
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πm4
∗ =

πm4
D

1
η2

3∏
k=1

(
η∗k exp

{
1
2

(
µ∗k
η∗k

)2
})

, k = 1, 2, 3,

where:

D = πm0 η
∗
123 exp

{
1
2

(
µ∗123

η∗123

)2
}

+ πm1
1
η
η∗1 exp

{
1
2

(
µ∗1
η∗1

)2
}
η∗23 exp

{
1
2

(
µ∗23

η∗23

)2
}

+

+πm2
1
η
η∗2 exp

{
1
2

(
µ∗2
η∗2

)2
}
η∗13 exp

{
1
2

(
µ∗13

η∗13

)2
}

+

+πm3
1
η
η∗3 exp

{
1
2

(
µ∗3
η∗3

)2
}
η∗12 exp

{
1
2

(
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)2
}

+ πm4
1
η2

3∏
k=1

(
η∗k exp

{
1
2

(
µ∗k
η∗k

)2
})

.

Moreover, from the joint distribution it follows for the variances:

p(σ2, γv| − (σ2, γv),xn, zn) = p(σ2| − (σ2),xn, zn)p(γv| − (σ2, γv),xn, zn),
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with:

p(σ2| − (σ2),xn, zn) =


IG(σ2

1| c∗123, d
∗
123), if γv = 0

IG(σ2
1| c∗1, d∗1)IG(σ2

2| c∗23, d
∗
23) if γv = 1

IG(σ2
1| c∗13, d

∗
13)IG(σ2

2| c∗2, d∗2) if γv = 2
IG(σ2

1| c∗12, d
∗
12)IG(σ2

3| c∗3, d∗3) if γv = 3
IG(σ2

1| c∗1, d∗1)IG(σ2
2| c∗2, d∗2)IG(σ2

3| c∗3, d∗3) if γv = 4

,

where:

c∗123 = c+
n

2
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1
2
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k
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, k
′
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′′ 6= k,

and:

p(γv| − (σ2, γv),xn, zn) = Multi(1,πv
∗
),

where πv
∗

is such that:

πv0
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F
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,
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dc
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)2 3∏
k=1

(
Γ(c∗k)(
d∗k
)c∗k
)
, k = 1, 2, 3,

and:
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F = πv0
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Finally, for the weights one has:

p(ω| − (ω),xn, zn) = Dir(a0,1 + n1, a0,2 + n2, a0,2 + n3),

and for the generic group label, zi, i = 1, . . . , n:

p(zi = k| ωk,−(ω), xi) =
ωk

1
σk

√
2π

exp
{
− 1

2σ2
k
(xi − µk)2

}
∑3

k=1 ωk
1

σk

√
2π

exp
{
− 1

2σ2
k
(xi − µk)2

} , k = 1, 2, 3.

6.2 Bivariate Model

Available full conditional distributions for the bivariate normal mixture model are proposed in the
following. The shorthand notations:

−(µj , γmj ) = {µj
′
, γm
j
′ ,Sj , γvj ,S

j
′
, γv
j′
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′
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1 = πd110, π

d
2 = πd101, π

d
3 = πd011, π

d
4 = πd111, d = m, v, c,

πd0
∗

= πd
∗

000, π
d
1
∗

= πd
∗

110, π
d
2
∗

= πd
∗

101, π
d
3
∗

= πd
∗

011, π
d
4
∗

= πd
∗

111, d = m, v, c,

are used hereafter. From the joint distribution derived at the end of Subsection 4.2, we get:
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p(µj , γmj | − (µj , γmj ),xn, zn) = p(µj | − (µj),xn, zn)p(γmj | − (µj , γmj ),xn, zn), j = 1, 2,

with:

p(µj | − (µj),xn, zn) =



N(µ1j | µ∗123j , η
2∗
123j) if γmj = 0

N(µ1j | µ∗1j , η2∗
1j)N(µ2j | µ∗23j , η

2∗
23j) if γmj = 1

N(µ1j | µ∗13j , η
2∗
13j)N(µ2j | µ∗2j , η2∗

2j) if γmj = 2
N(µ1j | µ∗12j , η

2∗
12j)N(µ3j | µ∗3j , η2∗

3j) if γmj = 3
N(µ1j | µ∗1j , η2∗

1j)N(µ2j | µ∗2j , η2∗
2j)N(µ3j | µ∗3j , η2∗

3j) if γmj = 4

,

where:

qk =
Skj′ x̄kj + Skjrk(µkj′ − x̄kj′ )

Skj′
, pkj =

nk

(1− r2k)Skj
2 , k = 1, 2, 3, j, j

′
= 1, 2, j 6= j

′
,

µ∗123j = η2∗
123j

(
3∑

k=1

pkjqk

)
, η2∗

123j =

(
1
η2

+
3∑

k=1

pkj

)−1

, j = 1, 2,

µ∗kj = η2∗
kjpkjqk, η2∗

kj =
(

1
η2

+ pkj

)−1

, k = 1, 2, 3, j = 1, 2,

µ∗
k′k′′ j

= η2∗
k′k′′ j

(
pk′jqk′ + pk′′jqk′′

)
, η2∗

k′k′′ j =
(

1
η2

+ pk′j + pk′′j

)−1

,

k
′
, k
′′

= 1, 2, 3, k
′ 6= k

′′
, k
′
, k
′′ 6= k, j = 1, 2,

and:

p(γmj | − (µj , γmj ),xn, zn) = Multi(1,πm
∗
), j = 1, 2,

where πm
∗

j is such that:

πm0j
∗ =

Ljπ
m
0

H
η∗123j exp

1
2

(
µ∗123j

η∗123j

)2
 ,

πmkj
∗ =

Ljπ
m
k

H

1
η
η∗kj exp

1
2

(
µ∗kj
η∗kj

)2
 η∗

k′k′′ j
exp

1
2

(
µ∗
k′k′′ j

η∗
k′k′′ j

)2
 ,
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k, k
′
, k
′′

= 1, 2, 3, k
′ 6= k

′′
, k
′
, k
′′ 6= k,

πm4j
∗ =

Ljπ
m
4

H

1
η2

3∏
k=1

η∗kj exp

1
2

(
µ∗kj
η∗kj

)2

 , k = 1, 2, 3,

where:

H = Lj

πm0 η∗123j exp

1
2

(
µ∗123j

η∗123j

)2
+ πm1

1
η
η∗1j exp

1
2

(
µ∗1j
η∗1j

)2
 η∗23j exp

1
2

(
µ∗23j

η∗23j

)2
+

+πm2
1
η
η∗2j exp

1
2

(
µ∗2j
η∗2j

)2
 η∗13j exp

1
2

(
µ∗13j

η∗13j

)2
+

+πm3
1
η
η∗3j exp

1
2

(
µ∗3j
η∗3j

)2
 η∗12j exp

1
2

(
µ∗12j

η∗12j

)2
+ πm4

1
η2

3∏
k=1

η∗kj exp

1
2

(
µ∗kj
η∗kj

)2

 ,

and:

Lj =
(

1
η

)(
1

2π

)n 3∏
k=1

 1

Sk1Sk2

√
1− r2k

nk

∗

∗ exp

− 1
2(1− r2k)

 3∑
k=1

∑
i:zi=k

(xj
′

i − µkj′ )
2

Skj′
2 +

Skj′ (x
j
i )

2 − 2Skjrk(x
j
ix
j
′

i − x
j
iµkj′ )

Skj
2Skj′

 ,

j=1,2.

For the weights one has:

p(ω| − (ω),xn, zn) = Dir(a0,1 + n1, a0,2 + n2, a0,2 + n3),

and for the generic group label, zi, i = 1, . . . , n:

p(zi = k| ωk, {θ},xi) =
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=
ωk

1

2πSk1Sk2

√
1−r2k

exp
{
− 1

2(1−r2k)

(
(x1

i−µk1)2

Sk1
2 + (x2

i−µk2)2

Sk2
2 − 2rk

(x1
i−µk1)(x2

i−µk2)
Sk1Sk2

)}
∑3

k=1 ωk
1

2πSk1Sk2

√
1−r2k

exp
{
− 1

2(1−r2k)

(
(x1

i−µk1)2

Sk1
2 + (x2

i−µk2)2

Sk2
2 − 2rk

(x1
i−µk1)(x2

i−µk2)
Sk1Sk2

)} ,
k = 1, 2, 3.

We refer to the Metropolis-Hastings algorithm for the update of (Sj , γvj ), j = 1, 2, and (r, γc).

For (Sj , γvj ), j = 1, 2, the target distributions π(Sj(t), γvj
(t)), where (Sj(t), γvj

(t)) indicates the
current position of the chain at the t-th iteration, t > 1, are represented by the marginal posterior
distributions of (Sj , γvj ):

p(Sj , γvj | − (Sj , γvj ),xn, zn) = p(Sj |γvj )p(γvj )p(xn|{θ}, ω, zn) ∝ p(Sj |γvj )p(xn|{θ}, ω, zn),

j = 1, 2,

which assume five different expressions for each j depending on the value of γvj . The proposal
distribution is built accordingly. If (yj , yj4) indicates the proposed candidate for the (t+1)-th itera-
tion, with yj = (y1j , y2j , y3j), one may sample yj4 from a Multinomial distribution with parameters
N = 1, p = (0.2, 0.2, 0.2, 0.2, 0.2). Conditioning on yj4, one may sample the corresponding vector yj

using the usual structure of degeneracy along equality constraints proposed with the prior distribu-
tions. The building block distribution within this structure is assumed to be a Normal distribution
centered at the current position of the chain, Sj(t), and having a standard deviation of ε = 0.05. A
constraint is added to guarantee that the proposed standard deviations, yj , are non-negative. This
gives the following expression:

q((Sj(t), γvj
(t)), (yj , yj4)) = p(yj4)p(yj |yj4) ∝ p(yj |yj4),

with:

p(yj |yj4) ∝



N(y1j | S1j
(t), ε2), if yj4 = 0

N(y1j | S1j
(t), ε2)N(y2j | S2j

(t), ε2) if yj4 = 1
N(y1j | S1j

(t), ε2)N(y2j | S2j
(t), ε2) if yj4 = 2

N(y1j | S1j
(t), ε2)N(y3j | S3j

(t), ε2) if yj4 = 3
N(y1j | S1j

(t), ε2)N(y2j | S2j
(t), ε2)N(y3j | S3j

(t), ε2) if yj4 = 4

, j = 1, 2.

For the updating of (r, γc), the target distribution π(r(t), γc(t)), where (r(t), γc(t)) indicates the
current position of the chain at the t-th iteration, t > 1, is represented by the marginal posterior
distribution of (r, γc):

p(r, γc| − (r, γc),xn, zn) = p(r|γc)p(γc)p(xn|{θ}, ω,zn) ∝ p(r|γc)p(xn|{θ}, ω, zn),
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which assumes five different expressions depending on the value of γc. The proposal distribution
is built as before. If (y, y4) indicates the proposed candidate for the (t+1)-th iteration, with
y = (y1, y2, y3), y4 is sampled from a Multinomial distribution with parameters N = 1 and p =
(0.2, 0.2, 0.2, 0.2, 0.2). Conditioning on y4, y is sampled as p(yj |yj4) before. We assume a translated
Beta distribution as our building block distribution. A constraint is added to guarantee that the
proposed correlations, y, lie in (−1, 1). This gives the following expression:

q((r(t), γc(t)), (y, y4)) = p(y4)p(y|y4) ∝ p(y|y4),

with:

p(y|y4) ∝


Be(−1,1)(y1| α, β), if y4 = 0

Be(−1,1)(y1| α, β)Be(−1,1)(y2| α, β) if y4 = 1
Be(−1,1)(y1| α, β)Be(−1,1)(y2| α, β) if y4 = 2
Be(−1,1)(y1| α, β)Be(−1,1)(y3| α, β) if y4 = 3

Be(−1,1)(y1| α, β)Be(−1,1)(y2| α, β)Be(−1,1)(y3| α, β) if y4 = 4

,

where Be(−1,1)(·| α, β) indicates a Beta distribution on the support (−1, 1) with parameters α, β,
α, β > 0. We choose α and β in such a way that the proposal distribution is centered at the current
position of the chain, r(t), and α+ β = 5.
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(a) µ1 = (µ11, µ21, µ31) plotted along with γm
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(d) S2 = (S12, S22, S32) plotted along with γv
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(e) r = (r1, r2, r3) plotted along with γc
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Figure 8: Marginal chains of the parameters for the bivariate mixture model as obtained by the
simulation. Component means and corresponding standard deviations, correlations and weights for
each iteration are color-coded in the same way across plots.
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O’Hagan for MSN&CSTB

scale

0.0 0.2 0.4 0.6 0.8 1.0

Figure 9: ”O’Hagan” matrix for the bivariate normal mixture model. Relative frequencies of oc-
currence of two being in the same group are plotted in a black-to-white color scale and sorted
according to a non-decreasing ordering of the first variable, the MSN gene. Dark and light blocks,
with proportions similar to the estimated weights of the mixture, identify different groups of ob-
servations.
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TRIM29

case 1 case 2 case 3

prior posterior prior posterior prior posterior

1 subgroup 0.64 0.001449928 0.36 0.002349883 0.04 0.001049948

2 subgroups 0.25 0.3113844 0.39 0.4865257 0.36 0.2018399

3 subgroups 0.11 0.6871656 0.25 0.5111244 0.6 0.7971101

MSN

case 1 case 2 case 3

prior posterior prior posterior prior posterior

1 subgroup 0.64 0.1093945 0.36 0.1131943 0.04 0.07564622

2 subgroups 0.25 0.6259187 0.39 0.5084246 0.36 0.4711264

3 subgroups 0.11 0.2646868 0.25 0.3783811 0.6 0.4532273

ITGB5

case 1 case 2 case 3

prior posterior prior posterior prior posterior

1 subgroup 0.64 0.8486576 0.36 0.6842658 0.04 0.2633368

2 subgroups 0.25 0.1234438 0.39 0.2532373 0.36 0.5750712

3 subgroups 0.11 0.02789861 0.25 0.06249688 0.6 0.1615919

Figure 10: Results of sensitivity analysis to different values of πm and πv: prior and posterior
probabilities of observing one, two or three groups for each gene under cases 1,2,3. Case 1 is such
that: P{1 subgroup}=0.64, P{2 subgroups} ≈ 0.25 and P{3 subgroups} ≈ 0.11; case 2 is such that:
P{1 subgroup}=0.36, P{2 subgroups}=0.39 and P{3 subgroups}=0.25; case 3 is such that: P{1
subgroup}=0.04, P{2 subgroups}=0.36 and P{3 subgroups}=0.60.
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