9,542 research outputs found

    On the equivalence between graph isomorphism testing and function approximation with GNNs

    Full text link
    Graph neural networks (GNNs) have achieved lots of success on graph-structured data. In the light of this, there has been increasing interest in studying their representation power. One line of work focuses on the universal approximation of permutation-invariant functions by certain classes of GNNs, and another demonstrates the limitation of GNNs via graph isomorphism tests. Our work connects these two perspectives and proves their equivalence. We further develop a framework of the representation power of GNNs with the language of sigma-algebra, which incorporates both viewpoints. Using this framework, we compare the expressive power of different classes of GNNs as well as other methods on graphs. In particular, we prove that order-2 Graph G-invariant networks fail to distinguish non-isomorphic regular graphs with the same degree. We then extend them to a new architecture, Ring-GNNs, which succeeds on distinguishing these graphs and provides improvements on real-world social network datasets

    Interval Routing Schemes for Circular-Arc Graphs

    Full text link
    Interval routing is a space efficient method to realize a distributed routing function. In this paper we show that every circular-arc graph allows a shortest path strict 2-interval routing scheme, i.e., by introducing a global order on the vertices and assigning at most two (strict) intervals in this order to the ends of every edge allows to depict a routing function that implies exclusively shortest paths. Since circular-arc graphs do not allow shortest path 1-interval routing schemes in general, the result implies that the class of circular-arc graphs has strict compactness 2, which was a hitherto open question. Additionally, we show that the constructed 2-interval routing scheme is a 1-interval routing scheme with at most one additional interval assigned at each vertex and we an outline algorithm to calculate the routing scheme for circular-arc graphs in O(n^2) time, where n is the number of vertices.Comment: 17 pages, to appear in "International Journal of Foundations of Computer Science

    Boxicity and separation dimension

    Full text link
    A family F\mathcal{F} of permutations of the vertices of a hypergraph HH is called 'pairwise suitable' for HH if, for every pair of disjoint edges in HH, there exists a permutation in F\mathcal{F} in which all the vertices in one edge precede those in the other. The cardinality of a smallest such family of permutations for HH is called the 'separation dimension' of HH and is denoted by π(H)\pi(H). Equivalently, π(H)\pi(H) is the smallest natural number kk so that the vertices of HH can be embedded in Rk\mathbb{R}^k such that any two disjoint edges of HH can be separated by a hyperplane normal to one of the axes. We show that the separation dimension of a hypergraph HH is equal to the 'boxicity' of the line graph of HH. This connection helps us in borrowing results and techniques from the extensive literature on boxicity to study the concept of separation dimension.Comment: This is the full version of a paper by the same name submitted to WG-2014. Some results proved in this paper are also present in arXiv:1212.6756. arXiv admin note: substantial text overlap with arXiv:1212.675

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with ∣E(G)∣≡0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio
    • …
    corecore