93 research outputs found

    Colouring quadrangulations of projective spaces

    Full text link
    A graph embedded in a surface with all faces of size 4 is known as a quadrangulation. We extend the definition of quadrangulation to higher dimensions, and prove that any graph G which embeds as a quadrangulation in the real projective space P^n has chromatic number n+2 or higher, unless G is bipartite. For n=2 this was proved by Youngs [J. Graph Theory 21 (1996), 219-227]. The family of quadrangulations of projective spaces includes all complete graphs, all Mycielski graphs, and certain graphs homomorphic to Schrijver graphs. As a corollary, we obtain a new proof of the Lovasz-Kneser theorem

    On topological relaxations of chromatic conjectures

    Get PDF
    There are several famous unsolved conjectures about the chromatic number that were relaxed and already proven to hold for the fractional chromatic number. We discuss similar relaxations for the topological lower bound(s) of the chromatic number. In particular, we prove that such a relaxed version is true for the Behzad-Vizing conjecture and also discuss the conjectures of Hedetniemi and of Hadwiger from this point of view. For the latter, a similar statement was already proven in an earlier paper of the first author with G. Tardos, our main concern here is that the so-called odd Hadwiger conjecture looks much more difficult in this respect. We prove that the statement of the odd Hadwiger conjecture holds for large enough Kneser graphs and Schrijver graphs of any fixed chromatic number
    • …
    corecore