119,296 research outputs found

    Computational power of one- and two-dimensional dual-unitary quantum circuits

    Get PDF
    Quantum circuits that are classically simulatable tell us when quantum computation becomes less powerful than or equivalent to classical computation. Such classically simulatable circuits are of importance because they illustrate what makes universal quantum computation different from classical computers. In this work, we propose a novel family of classically simulatable circuits by making use of dual-unitary quantum circuits (DUQCs), which have been recently investigated as exactly solvable models of non-equilibrium physics, and we characterize their computational power. Specifically, we investigate the computational complexity of the problem of calculating local expectation values and the sampling problem of one-dimensional DUQCs, and we generalize them to two spatial dimensions. We reveal that a local expectation value of a DUQC is classically simulatable at an early time, which is linear in a system length. In contrast, in a late time, they can perform universal quantum computation, and the problem becomes a BQP-complete problem. Moreover, classical simulation of sampling from a DUQC turns out to be hard

    Direct certification of a class of quantum simulations

    Get PDF
    One of the main challenges in the field of quantum simulation and computation is to identify ways to certify the correct functioning of a device when a classical efficient simulation is not available. Important cases are situations in which one cannot classically calculate local expectation values of state preparations efficiently. In this work, we develop weak-membership formulations of the certification of ground state preparations. We provide a non-interactive protocol for certifying ground states of frustration-free Hamiltonians based on simple energy measurements of local Hamiltonian terms. This certification protocol can be applied to classically intractable analog quantum simulations: For example, using Feynman-Kitaev Hamiltonians, one can encode universal quantum computation in such ground states. Moreover, our certification protocol is applicable to ground states encodings of IQP circuits demonstration of quantum supremacy. These can be certified efficiently when the error is polynomially bounded.Comment: 10 pages, corrected a small error in Eqs. (2) and (5

    Exponential Quantum Speed-ups are Generic

    Get PDF
    A central problem in quantum computation is to understand which quantum circuits are useful for exponential speed-ups over classical computation. We address this question in the setting of query complexity and show that for almost any sufficiently long quantum circuit one can construct a black-box problem which is solved by the circuit with a constant number of quantum queries, but which requires exponentially many classical queries, even if the classical machine has the ability to postselect. We prove the result in two steps. In the first, we show that almost any element of an approximate unitary 3-design is useful to solve a certain black-box problem efficiently. The problem is based on a recent oracle construction of Aaronson and gives an exponential separation between quantum and classical bounded-error with postselection query complexities. In the second step, which may be of independent interest, we prove that linear-sized random quantum circuits give an approximate unitary 3-design. The key ingredient in the proof is a technique from quantum many-body theory to lower bound the spectral gap of local quantum Hamiltonians.Comment: 24 pages. v2 minor correction

    Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    Get PDF
    Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient constructions are known for very specific cases only. We partially close this gap by presenting new schemes for efficient instantaneous non-local computation of several classes of quantum circuits, using the Clifford+T gate set. Our main result is a protocol which uses entanglement exponential in the T-depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication complexity which was recently introduced as a tool for studying certain schemes for quantum position verification. As an application of our results, we also present an efficient attack on a recently-proposed scheme for position verification by Chakraborty and Leverrier

    Commuting quantum circuits: efficient classical simulations versus hardness results

    Full text link
    The study of quantum circuits composed of commuting gates is particularly useful to understand the delicate boundary between quantum and classical computation. Indeed, while being a restricted class, commuting circuits exhibit genuine quantum effects such as entanglement. In this paper we show that the computational power of commuting circuits exhibits a surprisingly rich structure. First we show that every 2-local commuting circuit acting on d-level systems and followed by single-qudit measurements can be efficiently simulated classically with high accuracy. In contrast, we prove that such strong simulations are hard for 3-local circuits. Using sampling methods we further show that all commuting circuits composed of exponentiated Pauli operators e^{i\theta P} can be simulated efficiently classically when followed by single-qubit measurements. Finally, we show that commuting circuits can efficiently simulate certain non-commutative processes, related in particular to constant-depth quantum circuits. This gives evidence that the power of commuting circuits goes beyond classical computation.Comment: 19 page
    • …
    corecore