2,243 research outputs found

    An Algorithmic Argument for Nonadaptive Query Complexity Lower Bounds on Advised Quantum Computation

    Full text link
    This paper employs a powerful argument, called an algorithmic argument, to prove lower bounds of the quantum query complexity of a multiple-block ordered search problem in which, given a block number i, we are to find a location of a target keyword in an ordered list of the i-th block. Apart from much studied polynomial and adversary methods for quantum query complexity lower bounds, our argument shows that the multiple-block ordered search needs a large number of nonadaptive oracle queries on a black-box model of quantum computation that is also supplemented with advice. Our argument is also applied to the notions of computational complexity theory: quantum truth-table reducibility and quantum truth-table autoreducibility.Comment: 16 pages. An extended abstract will appear in the Proceedings of the 29th International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Springer-Verlag, Prague, August 22-27, 200

    Entropy and Quantum Kolmogorov Complexity: A Quantum Brudno's Theorem

    Full text link
    In classical information theory, entropy rate and Kolmogorov complexity per symbol are related by a theorem of Brudno. In this paper, we prove a quantum version of this theorem, connecting the von Neumann entropy rate and two notions of quantum Kolmogorov complexity, both based on the shortest qubit descriptions of qubit strings that, run by a universal quantum Turing machine, reproduce them as outputs.Comment: 26 pages, no figures. Reference to publication added: published in the Communications in Mathematical Physics (http://www.springerlink.com/content/1432-0916/

    Demonstration of Universal Parametric Entangling Gates on a Multi-Qubit Lattice

    Get PDF
    We show that parametric coupling techniques can be used to generate selective entangling interactions for multi-qubit processors. By inducing coherent population exchange between adjacent qubits under frequency modulation, we implement a universal gateset for a linear array of four superconducting qubits. An average process fidelity of F=93%\mathcal{F}=93\% is estimated for three two-qubit gates via quantum process tomography. We establish the suitability of these techniques for computation by preparing a four-qubit maximally entangled state and comparing the estimated state fidelity against the expected performance of the individual entangling gates. In addition, we prepare an eight-qubit register in all possible bitstring permutations and monitor the fidelity of a two-qubit gate across one pair of these qubits. Across all such permutations, an average fidelity of F=91.6±2.6%\mathcal{F}=91.6\pm2.6\% is observed. These results thus offer a path to a scalable architecture with high selectivity and low crosstalk

    On two-way communication in cellular automata with a fixed number of cells

    Get PDF
    The effect of adding two-way communication to k cells one-way cellular automata (kC-OCAs) on their size of description is studied. kC-OCAs are a parallel model for the regular languages that consists of an array of k identical deterministic finite automata (DFAs), called cells, operating in parallel. Each cell gets information from its right neighbor only. In this paper, two models with different amounts of two-way communication are investigated. Both models always achieve quadratic savings when compared to DFAs. When compared to a one-way cellular model, the result is that minimum two-way communication can achieve at most quadratic savings whereas maximum two-way communication may provide savings bounded by a polynomial of degree k

    Stability of attitude control systems acted upon by random perturbations

    Get PDF
    Mathematical models on stability of attitude control systems acted upon by random perturbation processe
    corecore