76,576 research outputs found

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester

    Get PDF
    Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity B(f)B(f). We investigate its relationship with the usual quantum query complexity Q(f)Q(f), and show that B(f)=Θ(Q(f)2)B(f)=\Theta(Q(f)^2). This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on Q(f)=Θ(B(f))Q(f)=\Theta(\sqrt{B(f)}). We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with O(n1.5)O(n^{1.5}) quantum query complexity, improving the best known algorithm of O(n1.5logn)O(n^{1.5}\sqrt{\log n}) [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an O(n1.75)O(n^{1.75}) algorithm, improving the best known trivial O(n2)O(n^2) upper bound.Comment: 32 pages. Minor revisions and corrections. Regev and Schiff's proof that P(OR) = \Omega(N) remove

    Polar Varieties, Real Equation Solving and Data-Structures: The hypersurface case

    Get PDF
    In this paper we apply for the first time a new method for multivariate equation solving which was developed in \cite{gh1}, \cite{gh2}, \cite{gh3} for complex root determination to the {\em real} case. Our main result concerns the problem of finding at least one representative point for each connected component of a real compact and smooth hypersurface. The basic algorithm of \cite{gh1}, \cite{gh2}, \cite{gh3} yields a new method for symbolically solving zero-dimensional polynomial equation systems over the complex numbers. One feature of central importance of this algorithm is the use of a problem--adapted data type represented by the data structures arithmetic network and straight-line program (arithmetic circuit). The algorithm finds the complex solutions of any affine zero-dimensional equation system in non-uniform sequential time that is {\em polynomial} in the length of the input (given in straight--line program representation) and an adequately defined {\em geometric degree of the equation system}. Replacing the notion of geometric degree of the given polynomial equation system by a suitably defined {\em real (or complex) degree} of certain polar varieties associated to the input equation of the real hypersurface under consideration, we are able to find for each connected component of the hypersurface a representative point (this point will be given in a suitable encoding). The input equation is supposed to be given by a straight-line program and the (sequential time) complexity of the algorithm is polynomial in the input length and the degree of the polar varieties mentioned above.Comment: Late

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DETNC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure
    corecore