10 research outputs found

    JAG: Reliable and Predictable Wireless Agreement under External Radio Interference

    Get PDF
    Wireless low-power transceivers used in sensor networks typically operate in unlicensed frequency bands that are subject to external radio interference caused by devices transmitting at much higher power.communication protocols should therefore be designed to be robust against such interference. A critical building block of many protocols at all layers is agreement on a piece of information among a set of nodes. At the MAC layer, nodes may need to agree on a new time slot or frequency channel, at the application layer nodes may need to agree on handing over a leader role from one node to another. Message loss caused by interference may break agreement in two different ways: none of the nodes uses the new information (time slot, channel, leader) and sticks with the previous assignment, or-even worse-some nodes use the new information and some do not. This may lead to reduced performance or failures. In this paper, we investigate the problem of agreement under external radio interference and point out the limitations of traditional message-based approaches. We propose JAG, a novel protocol that uses jamming instead of message transmissions to make sure that two neighbouring nodes agree, and show that it outperforms message-based approaches in terms of agreement probability, energy consumption, and time-to-completion. We further show that JAG can be used to obtain performance guarantees and meet the requirements of applications with real-time constraints.CONETReSens

    Multichannel Cross-Layer Routing for Sensor Networks

    Get PDF
    Wireless Sensor Networks are ad-hoc networks that consist of sensor nodes that typically use low-power radios to connect to the Internet. The channels used by the low-power radio often suffer from interference from the other devices sharing the same frequency. By using multichannel communication in wireless networks, the effects of interference can be mitigated to enable the network to operate reliably. This thesis investigates an energy efficient multichannel protocol in Wireless Sensor Networks. It presents a new decentralised multichannel tree-building protocol with a centralised controller for ad-hoc sensor networks. The proposed protocol alleviates the effect of interference, which results in improved network efficiency, stability, and link reliability. The protocol detects the channels that suffer interference in real-time and switches the sensor nodes from those channels. It takes into account all available channels and aims to use the spectrum efficiently by transmitting on several channels. In addition to the use of multiple channels, the protocol reconstructs the topology based on the sensor nodes’ residual energy, which can prolong the network lifetime. The sensor nodes’ energy consumption is reduced because of the multichannel protocol. By using the lifetime energy spanning tree algorithm proposed in this thesis, energy consumption can be further improved by balancing the energy load in the network. This solution enables sensor nodes with less residual energy to remain functional in the network. The benefits of the proposed protocol are described in an extensive performance evaluation of different scenarios in this thesis

    IEEE 802.15.4 TSCH in Sub-GHz: Design Considerations and Multi-band Support

    Get PDF
    This paper has been presented at : The 44th IEEE Conference on Local Computer Networks (LCN) October 14-17, 2019.In Press / En PrensaIn this paper, we address the support of Time-Slotted Channel Hopping (TSCH) on multiple frequency bands within a single TSCH network. This allows to simultaneously run applications with different requirements on link characteristics and to increase resilience against interference. To this end, we first enable sub-GHz communication in TSCH, which has been primarily defined for the 2.4 GHz band. Thereafter, we propose two designs to support multiple physical layers in TSCH on the same nodes. Our experimental evaluation shows that TSCH is applicable in a wide range of data rates between 1.2 kbps and 1000 kbps. We find that data rates of 50 kbps and below have a long communication range and a nearly perfect link symmetry, but also have a 20x higher channel utilization compared to higher data rates, increasing the risk of collisions. Using these findings, we show the advantages of the multi-band support on the example of synchronization accuracy when exchanging TSCH beacons with a low data rate and application data at a high data rate.This work was financed by the H2020 collaborative Europe/Taiwan research project 5G-CORAL (grant num. 761586), the ERCIM Alain Bensoussan postdoc fellowship program, and the distributed environment E-care@home, funded by the Swedish Knowledge Foundation

    Mitigating interference coexistence issues in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) comprise a collection of portable, wireless, interconnected sensors deployed over an area to monitor and report a variable of interest; example applications include wildlife monitoring and home automation systems. In order to cater for long network lifetimes without the need for regular maintenance, energy efficiency is paramount, alongside link reliability. To minimise energy consumption, WSN MAC protocols employ Clear Channel Assessment (CCA), to transmit and receive packets. For transmitting, CCA is used beforehand to determine if the channel is clear. For receiving, CCA is used to decide if the radio should wake up to receive an incoming transmission, or be left in a power efficient sleep state. Current CCA implementations cannot determine the device type occupying the media, leaving nodes unable to differentiate between WSN traffic and arbitrary interference from other devices, such as WiFi. This affects link performance as packet loss increases, and energy efficiency as the radio is idly kept in receive mode. To permit WSN deployments in these environments, it is necessary to be able to gauge the effect of interference. While tools exist to model and predict packet loss in these conditions, it is currently not possible to do the same for energy consumption. This would be beneficial, as parameters of the network could be tuned to meet lifetime and energy requirements. In this thesis, methods to predict energy consumption of WSN MAC protocols are presented. These are shown to accurately estimate the idle listening from environmental interference measurements. Further, in order to mitigate the effects of interference, it would be beneficial for a CCA check to determine the device type occupying the media. For example, transmitters may select back-off strategies depending on the observed channel occupier. Receivers could be made more efficient by ignoring all non-WSN traffic, staying awake only after detecting an incoming WSN transmission. P-DCCA is a novel method presented in this thesis to achieve this. Transmitters vary the output power of the radio while the packet is being sent. Receivers are able to identify signals with this characteristic power variation, enabling a P-DCCA check to reveal if the medium is currently occupied by WSN traffic or other interference. P-DCCA is implemented in a common WSN MAC protocol, and is shown to achieve high detection accuracy, and to improve energy efficiency and packet delivery in interference environments

    간섭 환경에서 저전력 무선 센서 네트워킹에 관한 연구

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 이용환.The demand for commercial deployment of large-scale wireless sensor networks (WSNs) has rapidly been increasing over the past decade. However, conventional WSN technologies may not be feasible for commercial deployment of large-scale WSNs because of their technical flaws, including limited network scalability, susceptibility to co-channel interference and large signaling overhead. In practice, low-power WSNs seriously suffer from interference generated by coexisting radio systems such as IEEE 802.11 wireless local area networks (WLANs). This interference problem seriously hampers commercial deployment of low-power WSNs. Few commercial WSN chips can provide secure and reliable networking performance in practical operation environments. In this dissertation, we consider performance improvement of low-power WSNs in the presence of co-channel interference. We first investigate the effect of co-channel interference on the transmission of low-power WSN signal, and then design a low-power WSN transceiver that can provide stable performance even in the presence of severe co-channel interference, while providing the backward compatibility with IEEE 802.15.4. We also consider the network connectivity in the presence of co-channel interference. The connectivity of low-power WSNs can be improved by transmitting synchronization signal and making channel hand-off in a channel-aware manner. A beacon signal for the network synchronization is repeatedly transmitted in consideration of channel condition and signaling overhead. Moreover, when the channel is severely interfered, all devices in a cluster network make communications by means of temporary channel hopping and then seamlessly make channel hand-off to the best one among the temporary hopping channels. The performance improvement is verified by computer simulation and experiment using IEEE 802.15.4 motes in real operation environments. Finally, we consider the signal transmission in the presence of co-channel interference. The throughput performance of low-power WSN transceivers can be improved by adjusting the transmission rate and the payload size according to the interference condition. We estimate the probability of transmission failure and the data throughput, and then determine the payload size to maximize the throughput performance. It is shown that the transmission time maximizing the normalized throughput is little affected by the transmission rate, but rather by the interference condition. The transmission rate and the transmission time can independently be adjusted in response to the change of channel and interference condition, respectively. The performance improvement is verified by computer simulation.Chapter 1 1 Chapter 2 11 2.1. ZigBee/IEEE 802.15.4-based cluster-tree networks 11 2.2. Performance of IEEE 802.15.4 transceiver 14 Chapter 3 17 3.1. System model 18 3.2. Previous works 21 3.3. Proposed interference management scheme 28 3.4. Performance evaluation 37 Chapter 4 51 4.1. System model 52 4.2. Transmission in the presence of interference 56 4.3. Proposed transmission scheme 60 4.4. Performance evaluation 65 Chapter 5 82 Appendix 85 A. Average synchronization time during frequency hopping 85 B. Derivation of (4.2) 86 References 88 Korean Abstract 97Docto

    Efficient Data Dissemination and Collection Protocols for Wireless Sensor Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Chrysso — A multi-channel approach to mitigate external interference

    No full text
    corecore