31,408 research outputs found

    Differentiation Between Ripening Stages of Iberian Dry-Cured Ham According to the Free Amino Acids Content

    Get PDF
    In this paper, the differentiation of three ripening stages, postsalting, drying, and cellar, of Iberian dry-cured ham has been carried out according to their free amino acids contents. Eighteen L-amino acids, alanine, 2-aminobutanoic acid, aspartic acid, cysteine, glutamine, glycine, histidine, hydroxyproline, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine have been determined by gas chromatography with derivatization with N,O-bis(trimethylsilyl)-trifluoroacetamide. Gas chromatography-mass spectrometry was used to confirm the presence of the eighteen amino acids in the ham samples, and gas chromatography using a DB-17HT column and flame ionization detector was used for quantitative determination. Extraction with a mixture methanol-acetonitrile has been carried out, achieving recoveries in the range 52-164%. Methimazole was used as internal standard. Limits of detection ranged between 7.0 and 611.7 mg·kg-1. Free amino acids have been used as chemical descriptors to differentiate between the ripening stages. Principal component analysis and linear discriminant analysis have been used as chemometric techniques, achieving complete differentiation between the ripening stages. Alanine, tyrosine, glutamine, proline, 2-aminobutanoic acid, cysteine, and valine were the most differentiating amino acids.Junta de Andalucía the project P09-AGR-0478

    Assessment of Virgin Olive Oil Adulteration by a Rapid Luminescent Method

    Get PDF
    The adulteration of virgin olive oil with hazelnut oil is a common fraud in the food industry, which makes mandatory the development of accurate methods to guarantee the authenticity and traceability of virgin olive oil. In this work, we demonstrate the potential of a rapid luminescent method to characterize edible oils and to detect adulterations among them. A regression model based on five luminescent frequencies related to minor oil components was designed and validated, providing excellent performance for the detection of virgin olive oil adulteration

    Peak Alignment of Gas Chromatography-Mass Spectrometry Data with Deep Learning

    Full text link
    We present ChromAlignNet, a deep learning model for alignment of peaks in Gas Chromatography-Mass Spectrometry (GC-MS) data. In GC-MS data, a compound's retention time (RT) may not stay fixed across multiple chromatograms. To use GC-MS data for biomarker discovery requires alignment of identical analyte's RT from different samples. Current methods of alignment are all based on a set of formal, mathematical rules. We present a solution to GC-MS alignment using deep learning neural networks, which are more adept at complex, fuzzy data sets. We tested our model on several GC-MS data sets of various complexities and analysed the alignment results quantitatively. We show the model has very good performance (AUC 1\sim 1 for simple data sets and AUC 0.85\sim 0.85 for very complex data sets). Further, our model easily outperforms existing algorithms on complex data sets. Compared with existing methods, ChromAlignNet is very easy to use as it requires no user input of reference chromatograms and parameters. This method can easily be adapted to other similar data such as those from liquid chromatography. The source code is written in Python and available online

    Novel convolution-based signal processing techniques for an artificial olfactory mucosa

    Get PDF
    As our understanding of the human olfactory system has grown, so has our ability to design artificial devices that mimic its functionality, so called electronic noses (e-noses). This has led to the development of a more sophisticated biomimetic system known as an artificial olfactory mucosa (e-mucosa) that comprises a large distributed sensor array and artificial mucous layer. In order to exploit fully this new architecture, new approaches are required to analyzing the rich data sets that it generates. In this paper, we propose a novel convolution based approach to processing signals from the e-mucosa. Computer simulations are performed to investigate the robustness of this approach when subjected to different real-world problems, such as sensor drift and noise. Our results demonstrate a promising ability to classify odors from poor sensor signals

    Use of Micellar Liquid Chromatography to Determine Mebendazole in Dairy Products and Breeding Waste from Bovine Animals

    Get PDF
    Mebendazole is an anthelmintic drug used in cattle production. However, residues may occur in produced food and in excretions, jeopardizing population health. A method based on micellar liquid chromatography (MLC) was developed to determine mebendazole in dairy products (milk, cheese, butter, and curd) and nitrogenous waste (urine and dung) from bovine animals. Sample treatment was expedited to simple dilution or solid-to-liquid extraction, followed by filtration and direct injection of the obtained solution. The analyte was resolved from matrix compounds in less than 8 min, using a C18 column and a mobile phase made up of 0.15 M sodium dodecyl sulfate (SDS)–6% 1-pentanol phosphate buffered at pH 7, and running at 1 mL/min under isocratic mode. Detection was performed by absorbance at 292 nm. The procedure was validated according to the guidelines of the EU Commission Decision 2002/657/EC in terms of: specificity, method calibration range (from the limit of quantification to 25–50 ppm), sensitivity (limit of detection 0.1–0.2 ppm; limit of quantification, 0.3–0.6 ppm), trueness (92.5–102.3%), precision (<7.5%, expressed at RSD), robustness, and stability. The method is reliable, sensitive, easy-to-handle, eco-friendly, safe, inexpensive, and provides a high sample-throughput. Therefore, it is useful for routine analysis as a screening or quantification method in a laboratory for drug-residue control

    Speciation in the baboon and its relation to gamma-chain heterogeneity and to the response to induction of HbF by 5-azacytidine

    Get PDF
    In the baboon (Papio species), the two nonallelic gamma-genes produce gamma-chains that differ at a minimum at residue 75, where isoleucine (I gamma-chain) or valine (V gamma) may be present. This situation obtains in baboons that are sometimes designated as Papio anubis, Papio hamadryas, and Papio papio. However, in Papio cynocephalus, although the I gamma-chains are identical with those in the above mentioned types, the V gamma-chains have the substitutions ala----gly at residue 9 and ala----val at residue 23. The V gamma-chains of P. cynocephalus are called V gamma C to distinguish them from the V gamma A-chains of P. anubis, etc. A single cynocephalus animal has been found to have only normal I gamma-chains and I gamma C-chains (that is, glycine in residue 9, valine in 23, and isoleucine in 75). When HbF is produced in response to stress with 5-azacytidine, P. anubis baboons respond with greater production than do P. cynocephalus, and hybrids fall between. Minimal data on P. hamadryas and P. papio suggest an even lower response than P. cynocephalus. As HbF increases under stress, the ratio of I gamma to V gamma-chains changes from the value in the adult or juvenile baboon toward the ratio in the newborn baboon. However, it does not attain the newborn value. The V gamma A and V gamma C-genes respond differently to stress. In hybrids, the production of V gamma A- chains exceeds that of V gamma C-chains. A controlling factor in cis apparently is present and may be responsible for the species-related extent of total HbF production. It may be concluded that the more primitive the cell in the erythroid maturation series that has been subjected to 5-azacytidine, the more active is the I gamma-gene

    Secondary metabolites with ecologic and medicinal implications in Anthemis cretica subsp. petraea from Majella National Park

    Get PDF
    Anthemis cretica subsp. petraea (Ten.) Greuter is a plant belonging to the Asteraceae family and endemic of central Italy. In this paper, the first analysisof the ethanolic fraction of samples collected in the Majella National Park is reported. Seven compounds were isolated and identified namely parthenolide (1), 9α-acetoxyparthenolide (2), tamarixetin (3), 7-hydroxycoumarin (4), 4'-hydroxyacetophenone (5), leucanthemitol (conduritol F) (6),and proto-quercitol (7). Isolation of the compounds was achieved by means ofcolumn chromatography (CC), while their identification was achieved through spectroscopic and spectrometric techniques. The presence of these compounds is of great relevance. Compounds 1 and 2 are chemosystematic markers of the family, thus confirming the correct botanical classification of the species. Conversely, compounds 3, 5,and 7 were identified for the first time in the species and, instead, confirm the tendency of endemic entities to develop characteristic metabolite patterns in respect to cosmopolite species. Moreover, the presence of compounds 6 and 7 has ecologic implications and may be linked to this taxon’s adaption to dry environments. The production of these osmolytes may, in fact, represent the reason why this species is able to survive in extreme conditions of aridity. Lastly, from a medicinal standpoint, the isolated compounds are endowed with interesting biological activities and may justify, on a molecular base, the widespread traditional uses of the Anthemis species, as well as a basis for the use ofthe subspecies petraea

    Geographical Origin Traceability of Red Wines Based on Chemometric Classification via Organic Acid Profiles

    Get PDF
    A preliminary study on the chemometric classification of red wines produced from different grape varieties and geographical origins was performed based on their chromatographic profiles of organic acids. Tartaric, malic, citric, lactic, acetic, and succinic acids in wines were detected via high performance liquid chromatography (HPLC). Employing multivariate statistical methods including principal component analysis (PCA) and linear discriminant analysis (LDA), pattern recognition models were built for the classification of the investigated wines regarding the grape varieties and geographical origins. The PCA clearly grouped the wines according to variety, and the LDA further offered 100% classification ability toward geographical identification of the wines and the leave-one-out cross-validated assignments were 100%, 86.7%, and 100% correct for Cabernet Sauvignon, Merlot, and Pinot Noir wines, respectively. The results reveal the potential of using chromatographic profiles of organic acid as the characteristic indices for chemometric classification of red wines
    corecore