1,040 research outputs found

    Public-Key Encryption Schemes with Auxiliary Inputs

    Get PDF
    7th Theory of Cryptography Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. ProceedingsWe construct public-key cryptosystems that remain secure even when the adversary is given any computationally uninvertible function of the secret key as auxiliary input (even one that may reveal the secret key information-theoretically). Our schemes are based on the decisional Diffie-Hellman (DDH) and the Learning with Errors (LWE) problems. As an independent technical contribution, we extend the Goldreich-Levin theorem to provide a hard-core (pseudorandom) value over large fields.National Science Foundation (U.S.) (Grant CCF-0514167)National Science Foundation (U.S.) (Grant CCF-0635297)National Science Foundation (U.S.) (Grant NSF-0729011)Israel Science Foundation (700/08)Chais Family Fellows Progra

    Naor-Yung paradigm with shared randomness and applications

    Get PDF
    The Naor-Yung paradigm (Naor and Yung, STOC’90) allows to generically boost security under chosen-plaintext attacks (CPA) to security against chosen-ciphertext attacks (CCA) for public-key encryption (PKE) schemes. The main idea is to encrypt the plaintext twice (under independent public keys), and to append a non-interactive zero-knowledge (NIZK) proof that the two ciphertexts indeed encrypt the same message. Later work by Camenisch, Chandran, and Shoup (Eurocrypt’09) and Naor and Segev (Crypto’09 and SIAM J. Comput.’12) established that the very same techniques can also be used in the settings of key-dependent message (KDM) and key-leakage attacks (respectively). In this paper we study the conditions under which the two ciphertexts in the Naor-Yung construction can share the same random coins. We find that this is possible, provided that the underlying PKE scheme meets an additional simple property. The motivation for re-using the same random coins is that this allows to design much more efficient NIZK proofs. We showcase such an improvement in the random oracle model, under standard complexity assumptions including Decisional Diffie-Hellman, Quadratic Residuosity, and Subset Sum. The length of the resulting ciphertexts is reduced by 50%, yielding truly efficient PKE schemes achieving CCA security under KDM and key-leakage attacks. As an additional contribution, we design the first PKE scheme whose CPA security under KDM attacks can be directly reduced to (low-density instances of) the Subset Sum assumption. The scheme supports keydependent messages computed via any affine function of the secret ke

    Efficient public-key cryptography with bounded leakage and tamper resilience

    Get PDF
    We revisit the question of constructing public-key encryption and signature schemes with security in the presence of bounded leakage and tampering memory attacks. For signatures we obtain the first construction in the standard model; for public-key encryption we obtain the first construction free of pairing (avoiding non-interactive zero-knowledge proofs). Our constructions are based on generic building blocks, and, as we show, also admit efficient instantiations under fairly standard number-theoretic assumptions. The model of bounded tamper resistance was recently put forward by DamgÄrd et al. (Asiacrypt 2013) as an attractive path to achieve security against arbitrary memory tampering attacks without making hardware assumptions (such as the existence of a protected self-destruct or key-update mechanism), the only restriction being on the number of allowed tampering attempts (which is a parameter of the scheme). This allows to circumvent known impossibility results for unrestricted tampering (Gennaro et al., TCC 2010), while still being able to capture realistic tampering attack

    A Practical Set-Membership Proof for Privacy-Preserving NFC Mobile Ticketing

    Get PDF
    To ensure the privacy of users in transport systems, researchers are working on new protocols providing the best security guarantees while respecting functional requirements of transport operators. In this paper, we design a secure NFC m-ticketing protocol for public transport that preserves users' anonymity and prevents transport operators from tracing their customers' trips. To this end, we introduce a new practical set-membership proof that does not require provers nor verifiers (but in a specific scenario for verifiers) to perform pairing computations. It is therefore particularly suitable for our (ticketing) setting where provers hold SIM/UICC cards that do not support such costly computations. We also propose several optimizations of Boneh-Boyen type signature schemes, which are of independent interest, increasing their performance and efficiency during NFC transactions. Our m-ticketing protocol offers greater flexibility compared to previous solutions as it enables the post-payment and the off-line validation of m-tickets. By implementing a prototype using a standard NFC SIM card, we show that it fulfils the stringent functional requirement imposed by transport operators whilst using strong security parameters. In particular, a validation can be completed in 184.25 ms when the mobile is switched on, and in 266.52 ms when the mobile is switched off or its battery is flat

    An instantiation of the Cramer-Shoup encryption paradigm using bilinear map groups

    Get PDF
    Item does not contain fulltex

    On the joint security of signature and encryption schemes under randomness reuse: efficiency and security amplification

    Get PDF
    Lecture Notes in Computer Science, 7341We extend the work of Bellare, Boldyreva and Staddon on the systematic analysis of randomness reuse to construct multi-recipient encryption schemes to the case where randomness is reused across different cryptographic primitives. We find that through the additional binding introduced through randomness reuse, one can actually obtain a security amplification with respect to the standard black-box compositions, and achieve a stronger level of security. We introduce stronger notions of security for encryption and signatures, where challenge messages can depend in a restricted way on the random coins used in encryption, and show that two variants of the KEM/DEM paradigm give rise to encryption schemes that meet this enhanced notion of security. We obtain the most efficient signcryption scheme to date that is secure against insider attackers without random oracles.(undefined

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes
    • 

    corecore