13,615 research outputs found

    The Intersection Graph Conjecture for Loop Diagrams

    Get PDF
    Vassiliev invariants can be studied by studying the spaces of chord diagrams associated with singular knots. To these chord diagrams are associated the intersection graphs of the chords. We extend results of Chmutov, Duzhin and Lando to show that these graphs determine the chord diagram if the graph has at most one loop. We also compute the size of the subalgebra generated by these "loop diagrams."Comment: 23 pages, many figures. arXiv admin note: Figures 1, 2, 5 and 11 included in sources but in format not supported by arXi

    Forbidden induced subgraph characterization of circle graphs within split graphs

    Full text link
    A graph is circle if its vertices are in correspondence with a family of chords in a circle in such a way that every two distinct vertices are adjacent if and only if the corresponding chords have nonempty intersection. Even though there are diverse characterizations of circle graphs, a structural characterization by minimal forbidden induced subgraphs for the entire class of circle graphs is not known, not even restricted to split graphs (which are the graphs whose vertex set can be partitioned into a clique and a stable set). In this work, we give a characterization by minimal forbidden induced subgraphs of circle graphs, restricted to split graphs.Comment: 59 pages, 15 figure

    Automorphism Groups of Geometrically Represented Graphs

    Get PDF
    Interval graphs are intersection graphs of closed intervals and circle graphs are intersection graphs of chords of a circle. We study automorphism groups of these graphs. We show that interval graphs have the same automorphism groups as trees, and circle graphs have the same as pseudoforests, which are graphs with at most one cycle in every connected component. Our technique determines automorphism groups for classes with a strong structure of all geometric representations, and it can be applied to other graph classes. Our results imply polynomial-time algorithms for computing automorphism groups in term of group products

    Chord Diagrams and Gauss Codes for Graphs

    Get PDF
    Chord diagrams on circles and their intersection graphs (also known as circle graphs) have been intensively studied, and have many applications to the study of knots and knot invariants, among others. However, chord diagrams on more general graphs have not been studied, and are potentially equally valuable in the study of spatial graphs. We will define chord diagrams for planar embeddings of planar graphs and their intersection graphs, and prove some basic results. Then, as an application, we will introduce Gauss codes for immersions of graphs in the plane and give algorithms to determine whether a particular crossing sequence is realizable as the Gauss code of an immersed graph.Comment: 20 pages, many figures. This version has been substantially rewritten, and the results are stronge

    On the Kontsevich integral for knotted trivalent graphs

    Full text link
    We construct an extension of the Kontsevich integral of knots to knotted trivalent graphs, which commutes with orientation switches, edge deletions, edge unzips, and connected sums. In 1997 Murakami and Ohtsuki [MO] first constructed such an extension, building on Drinfel'd's theory of associators. We construct a step by step definition, using elementary Kontsevich integral methods, to get a one-parameter family of corrections that all yield invariants well behaved under the graph operations above.Comment: Journal version, 47 page

    Ribbon graphs and bialgebra of Lagrangian subspaces

    Full text link
    To each ribbon graph we assign a so-called L-space, which is a Lagrangian subspace in an even-dimensional vector space with the standard symplectic form. This invariant generalizes the notion of the intersection matrix of a chord diagram. Moreover, the actions of Morse perestroikas (or taking a partial dual) and Vassiliev moves on ribbon graphs are reinterpreted nicely in the language of L-spaces, becoming changes of bases in this vector space. Finally, we define a bialgebra structure on the span of L-spaces, which is analogous to the 4-bialgebra structure on chord diagrams.Comment: 21 pages, 13 figures. v2: major revision, Sec 2 and 3 completely rewritten; v3: minor corrections. Final version, to appear in Journal of Knot Theory and its Ramification
    • …
    corecore