29 research outputs found

    Transcranial Direct Corrent stimulation (tDCS) of the anterior prefrontal cortex (aPFC) modulates reinforcement learning and decision-making under uncertainty: A doubleblind crossover study

    Get PDF
    Reinforcement learning refers to the ability to acquire information from the outcomes of prior choices (i.e. positive and negative) in order to make predictions on the effect of future decision and adapt the behaviour basing on past experiences. The anterior prefrontal cortex (aPFC) is considered to play a key role in the representation of event value, reinforcement learning and decision-making. However, a causal evidence of the involvement of this area in these processes has not been provided yet. The aim of the study was to test the role of the orbitofrontal cortex in feedback processing, reinforcement learning and decision-making under uncertainly. Eighteen healthy individuals underwent three sessions of tDCS over the prefrontal pole (anodal, cathodal, sham) during a probabilistic learning (PL) task. In the PL task, participants were invited to learn the covert probabilistic stimulusoutcome association from positive and negative feedbacks in order to choose the best option. Afterwards, a probabilistic selection (PS) task was delivered to assess decisions based on the stimulus-reward associations acquired in the PL task. During cathodal tDCS, accuracy in the PL task was reduced and participants were less prone to maintain their choice after positive feedback or to change it after a negative one (i.e., winstay and lose-shift behavior). In addition, anodal tDCS affected the subsequent PS task by reducing the ability to choose the best alternative during hard probabilistic decisions. In conclusion, the present study suggests a causal role of aPFC in feedback trial-by-trial behavioral adaptation and decision-making under uncertainty

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Social Information Is Integrated into Value and Confidence Judgments According to Its Reliability

    Get PDF
    How much we like something, whether it be a bottle of wine or a new film, is affected by the opinions of others. However, the social information that we receive can be contradictory and vary in its reliability. Here, we tested whether the brain incorporates these statistics when judging value and confidence. Participants provided value judgments about consumer goods in the presence of online reviews. We found that participants updated their initial value and confidence judgments in a Bayesian fashion, taking into account both the uncertainty of their initial beliefs and the reliability of the social information. Activity in dorsomedial prefrontal cortex tracked the degree of belief update. Analogous to how lower-level perceptual information is integrated, we found that the human brain integrates social information according to its reliability when judging value and confidence. SIGNIFICANCE STATEMENT The field of perceptual decision making has shown that the sensory system integrates different sources of information according to their respective reliability, as predicted by a Bayesian inference scheme. In this work, we hypothesized that a similar coding scheme is implemented by the human brain to process social signals and guide complex, value-based decisions. We provide experimental evidence that the human prefrontal cortex's activity is consistent with a Bayesian computation that integrates social information that differs in reliability and that this integration affects the neural representation of value and confidence

    A dynamic code for economic object valuation in prefrontal cortex neurons.

    Get PDF
    Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein's matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices.Wellcome Trust, Behavioural and Clinical Neuroscience Institute (BCNI) Cambridg

    The texture and taste of food in the brain

    Get PDF
    Oral texture is represented in the brain areas that represent taste, including the primary taste cortex, the orbitofrontal cortex, and the amygdala. Some neurons represent viscosity, and their responses correlate with the subjective thickness of a food. Other neurons represent fat in the mouth, and represent it by its texture not by its chemical composition, in that they also respond to paraffin oil and silicone in the mouth. The discovery has been made that these fat-responsive neurons encode the coefficient of sliding friction and not viscosity, and this opens the way for the development of new foods with the pleasant mouth feel of fat and with health-promoting designed nutritional properties. A few other neurons respond to free fatty acids (such as linoleic acid), do not respond to fat in the mouth, and may contribute to some 'off' tastes in the mouth. Some other neurons code for astringency. Others neurons respond to other aspects of texture such as the crisp fresh texture of a slice of apple vs the same apple after blending. Different neurons respond to different combinations of these texture properties, oral temperature, taste, and in the orbitofrontal cortex to olfactory and visual properties of food. In the orbitofrontal cortex, the pleasantness and reward value of the food is represented, but the primary taste cortex represents taste and texture independently of value. These discoveries were made in macaques that have similar cortical brain areas for taste and texture processing as humans, and complementary human functional neuroimaging studies are described. This article is protected by copyright. All rights reserved. [Abstract copyright: This article is protected by copyright. All rights reserved.

    Human VMPFC encodes early signatures of confidence in perceptual decisions

    Get PDF
    Choice confidence, an individual’s internal estimate of judgment accuracy, plays a critical role in adaptive behaviour, yet its neural representations during decision formation remain underexplored. Here, we recorded simultaneous EEG-fMRI while participants performed a direction discrimination task and rated their confidence on each trial. Using multivariate single-trial discriminant analysis of the EEG, we identified a stimulus-independent component encoding confidence, which appeared prior to subjects’ explicit choice and confidence report, and was consistent with a confidence measure predicted by an accumulation-to-bound model of decisionmaking. Importantly, trial-to-trial variability in this electrophysiologically-derived confidence signal was uniquely associated with fMRI responses in the ventromedial prefrontal cortex (VMPFC), a region not typically associated with confidence for perceptual decisions. Furthermore, activity in the VMPFC was functionally coupled with regions of the frontal cortex linked to perceptual decision-making and metacognition. Our results suggest that the VMPFC holds an early confidence representation arising from decision dynamics, preceding and potentially informing metacognitive evaluation

    Categorical evidence, confidence and urgency during the integration of multi-feature information

    Get PDF
    Includes bibliographical references.2015 Summer.The present experiment utilized a temporally-extended categorization task to investigate the neural substrates underlying our ability to integrate information over time and across multiple stimulus features. Importantly, the design allowed differentiation of three important decision functions: 1) categorical evidence, 2) decisional confidence (the choice-independent probability that a decision will lead to a desirable state), and 3) urgency (a hypothetical signal representing a growing pressure to produce a behavioral response within each trial). In conjunction with model-based fMRI, the temporal evolution of these variables were tracked as participants deliberated about impending choices. The approach allowed investigation of the independent effects of urgency across the brain, and also the investigation of how urgency might modulate representations of categorical evidence and confidence. Representations associated with prediction errors during feedback were also investigated. Many cortical and striatal somatomotor regions tracked the dynamical evolution of categorical evidence, while many regions of the dorsal and ventral attention networks (Corbetta and Shulman, 2002) tracked decisional confidence and uncertainty. Urgency influenced activity in regions known to be associated with flexible control of the speed-accuracy trade-off (particularly the pre- SMA and striatum), and additionally modulated representations of categorical evidence and confidence. The results, therefore, link the urgency signal to two hypothetical mechanisms underling flexible control of decision thresholding (Bogacz et al., 2010): gain modulation of the striatal thresholding circuitry, and gain modulation of the integrated categorical evidence

    Dietary self-control is related to the speed with which attributes of healthfulness and tastiness are processed

    Get PDF
    We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes, such as tastiness, versus more abstract attributes, such as healthfulness. We tested these hypotheses by combining a dietary-choice task with a novel form of mouse tracking that allowed us to pinpoint when different attributes were being integrated into the choice process with temporal resolution at the millisecond level. We found that, on average, tastiness was processed about 195 ms earlier than healthfulness during the choice process. We also found that 13% to 39% of observed individual differences in self-control ability could be explained by differences in the relative speed with which tastiness and healthfulness were processed

    Confidence in value-based choice

    Get PDF
    Decisions are never perfect, with confidence in one's choices fluctuating over time. How subjective confidence and valuation of choice options interact at the level of brain and behavior is unknown. Using a dynamic model of the decision process, we show that confidence reflects the evolution of a decision variable over time, explaining the observed relation between confidence, value, accuracy and reaction time. As predicted by our dynamic model, we show that a functional magnetic resonance imaging signal in human ventromedial prefrontal cortex (vmPFC) reflects both value comparison and confidence in the value comparison process. Crucially, individuals varied in how they related confidence to accuracy, allowing us to show that this introspective ability is predicted by a measure of functional connectivity between vmPFC and rostrolateral prefrontal cortex. Our findings provide a mechanistic link between noise in value comparison and metacognitive awareness of choice, enabling us both to want and to express knowledge of what we want
    corecore