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Neuronal reward valuations provide the physiological basis for economic behavior. Yet, 

how such valuations relate to economic decisions remains unclear. Here we show that 

the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on 

object-specific valuations by single neurons. As monkeys perform a reward-based 

foraging task, individual DLPFC neurons signal the value of specific choice objects 

derived from recent experience. These neuronal object values satisfy principles of 

competitive choice mechanisms, track performance fluctuations, and follow predictions 

of a classical behavioral model (Herrnstein’s matching law). Individual neurons 

dynamically encode both, the updating of object values from recently experienced 

rewards, and their subsequent conversion to object choices during decision-making. 

Decoding from unselected populations enables a read-out of motivational and decision 

variables not emphasized by individual neurons. These findings suggest a dynamic 

single-neuron and population value code in DLPFC that advances from reward 

experiences to economic object values and future choices. 
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Rewards are essential goals for economic decisions and behavior. In natural environments, 

reward probabilities are often unknown and decision-making requires internal value 

estimation from recent experience
1-5

. Such value estimates constitute critical elements in 

reinforcement learning
6
 and computational decision theories

7-9
. Although neurophysiological 

studies uncovered experience-based value signals in different brain structures
1,3,5

, key 

questions about the neural value code remain unresolved. 

 First, it is unclear how individual neurons encode value estimates as input for decision 

mechanisms. Biologically realistic decision models use separate value inputs for different 

choice objects that compete through winner-take-all mechanisms
6-9

, rather than explicit 

relative (comparative) valuations. Although object-specific valuations seem computationally 

advantageous, relative valuations—which can be derived from object-specific values—are 

frequently observed in human imaging neural population signals
10-15

. Second, although 

neuronal values were typically referenced to actions in previous studies
1,3,5

, decisions are 

often made between objects. This distinction is significant, as objects constitute the 

fundamental choice unit in economic theory. Orbitofrontal cortex (OFC) neurons encode 

economic object valuations when value is explicitly signalled by external cues
16-18

. However, 

it is unclear whether object value neurons also encode recent reward experiences, as implied 

by the concept of value construction
2-4,7

, and whether they directly convert values to choices, 

as predicted by computational models
8,9

. 

Here we recorded the activity of single neurons in the dorsolateral prefrontal cortex 

(DLPFC) of monkeys performing an object-based foraging task. The DLPFC is implicated in 

diverse functions including decision-making
19-28

, behavioral control
29-34

 and reinforcement 

learning
35,36

. Previous neurophysiological studies showed that DLPFC neurons encode 

important economic decision variables including reward probability, reward magnitude, 

effort
19,26

, reward and choice history
20,35,36

. DLPFC is also connected to sensory, motor and 

reward systems
29,37

, including parietal cortex and striatum, where experience-based value 

signals are found
1,3,5

, and anterior cingulate cortex, where lesions impair performance based 

on reward experience
38

. 

We hypothesized that individual DLPFC neurons encode the construction of values 

from experience, their formatting into object-specific decision variables, and their conversion 

to object choices. We tested whether DLPFC neurons encode values of specific choice 

objects termed ‘object values’, in analogy to action values
6
 and in line with competitive 

choice mechanisms
6,39,40

. Although a negative finding would not necessarily contradict the 

role of DLPFC in decision-making, a positive result would lend credence to the neuronal 
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implementation of competitive decision models, similar to previous single-neuron 

representations of complex decision variables
41

. We elicited valuations in a foraging task that 

required internal value construction from reward history and encouraged proportional 

allocation of choices to rewards received from different objects, following Herrnstein’s 

matching law
42

. The task temporally separated valuation from choice and action, allowing us 

to identify separate neuronal signals for these distinct computational steps. In addition to 

single-neuron analysis, we used linear decoding to read out values and value-derived decision 

variables from DLPFC population activity without pre-selecting neurons for value coding. 

We show that individual DLPFC neurons dynamically encode the value of specific 

choice objects as a decision variable. Individual neurons signal both the construction of 

object values from recently experienced rewards and their subsequent conversion to object 

choices. Population decoding demonstrates a dynamic readout of additional value-derived 

variables not encoded by individual neuron, which meet the motivational and decision 

requirements of different task stages. This dynamic object value code— characterized by 

single-neuron convergence of valuation, learning, and decision signals and flexible 

population readout—may support DLPFC’s signature role in adaptive behavior. 

  

RESULTS 

Object-based foraging task 

Two monkeys performed in a foraging choice task in which the probability of 

receiving a reward from each of two options varied dynamically and in an unsignaled manner 

across trials. In each testing session, two visual objects (A and B) served as choice targets 

(Fig. 1a). The animal made a saccade to its object of choice and received either a drop of 

liquid reward or no reward depending on the object’s reinforcement schedule. Left-right 

object positions varied randomly trial-by-trial. During blocks of typically 50 to 150 trials, 

each object was associated with a base reward probability according to which a reward was 

assigned on every trial. Rewards remained available until the animal chose the object. Thus, 

the instantaneous reward probability for a particular object increased with the number of 

trials the object was not chosen; it fell back to base probability after each choice of the object. 

Under such conditions, an effective strategy is to repeatedly choose the object with the higher 

base probability and only choose the alternative when its instantaneous reward probability 

has exceeded the base probability of the currently sampled object
2,43

. Global behavior in such 

tasks usually conforms to the matching law
42

, which states that the ratio of choices to two 

alternatives matches the ratio of the number of rewards received from each alternative
2-5

. 
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Thus, to maximize reward income, the animals had to track changes in block-wise 

reward probabilities and local fluctuations owing to the matching task design. This required 

keeping track of the history of recent rewards and object choices. As reward probabilities 

within blocks varied predictably in a trial- and choice-dependent manner, the animals could 

internally evaluate and choose between objects before cue appearance on each trial. This task 

design, in combination with randomized trial-by-trial cue positions, allowed us to test for 

neuronal encoding of object values and choices before action selection. 

 

Matching behavior and object value model 

Across sessions, both animals conformed to the matching law by allocating their 

object choices according to the number of rewards available from each object (Fig. 1b). In a 

representative session, the animal continuously matched its local choice ratio to the current 

reward ratio (i.e. the number of received rewards), and readily adapted to block-wise changes 

in base probabilities (Fig. 1c). Thus, the animals behaved meaningfully, according to 

predictions from Herrnstein’s matching law, which validated the foraging task as a model for 

neuronal object valuation and decision processes. 

Base reward probabilities and instantaneous probabilities were not externally cued but 

required learning and continual updating. Thus, internally constructed, subjective value 

estimates likely guided the animals’ choices. To examine neuronal value coding, we 

estimated these internal values using established approaches
2,4

. Logistic regression 

determined how the history of past rewards on each object influenced current choices. As 

matching also required occasional switching between objects, we incorporated a term for 

choice history
4
. Subjective values for specific choice objects estimated in this manner likely 

constituted the main decision variable for the animals, which we call ‘object value’. 

We derived value estimates by convolving object-specific reward and choice histories 

with filters, obtained from logistic regression, that assigned higher weight to more recent 

rewards and choices
2-4

. We summed weighted reward and choice histories for each object to 

obtain scalar, single-trial measures of object value. Filter weights were derived by fitting a 

logistic regression based on reward and choice history to the animals’ choices. The resulting 

filter shapes (Fig. 1d) resemble those found in previous studies
2-4

, with declining absolute 

weights as a function of past trials. 

Choices in a representative session were well described by the value model: model-

derived choice probability closely tracked local and block-wise fluctuations in the animal’s 

behavior and value estimates followed block-wise and local reward income fluctuations (Fig. 
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1e). For model validation, we performed an out-of-sample prediction with filter weights 

derived from separate data. This confirmed that object values predicted trial-by-trial choices 

(Fig. 1f) and that object value difference fitted the animals’ choice probabilities (Fig. 1g). 

While the value difference between objects likely directed choices, the sum of object 

values may have been an important motivational influence irrespective of choice direction. 

Such ‘net value’ effects are critical in goal-directed behavior and have previously been shown 

to influence performance
44

. We tested whether value sum was related to the animals’ 

motivation, measured by trial initiation times (key touch latency). Multiple regression 

confirmed value sum as main determinant of trial initiation time: the animals’ initiated trials 

faster when value sum was high, (Fig. 1h,i) consistent with a motivational effect due to 

overall reward expectation. By contrast, saccadic reaction times during choice were 

influenced by the absolute (unsigned) value difference (Supplementary Fig. 1), consistent 

with previous studies and theoretical models that relate absolute value difference to decision 

difficulty and confidence
28,45,46

. 

Taken together, the animals’ choices were well described by object value estimates 

that were internally constructed and continually updated from reward and choice histories. 

While value difference was suited to direct choices towards specific objects, value sum 

reflected the animals’ overall motivation. 

 

Encoding of object value in single DLPFC neurons 

We conceptualize object value analogous to action value
6
 as a decision variable that 

signals the value of specific choice alternatives as suitable input to competitive choice 

mechanisms. A neuronal response encoding object value should (i) signal value in time to 

inform the animal’s choice, (ii) signal the value of one choice object but not of alternative 

objects, and (iii) signal value on each trial, irrespective of whether the object is chosen or not. 

Multiple linear regression analysis determined whether neuronal responses encoded object 

values according to these criteria while factoring out other task-related variables and testing 

for alternative (relative) decision variables. Our main conclusions are based on statistical tests 

within this regression framework; in addition, we plot activity time-courses and single linear 

regressions to illustrate effects. 

The activity of the DLPFC neuron in Fig. 2 fulfilled our criteria for object value 

coding, as determined by multiple regression analysis. Before appearance of the choice cues, 

a phasic response leading up to the cue period reflected the current value of object A, with 

higher activity signalling lower value (Fig. 2a). True to the object value definition, pre-cue 
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activity reflected the value of object A but not of object B (Fig. 2b); no trial period showed a 

significant relationship to object B value. Activity was better explained by object value than 

by object choice (Fig. 2c, d, non-significant choice coefficient). Our experimental design 

precluded relationships to object position or left-right action in pre-cue periods, as confirmed 

by non-significant regression coefficients (Fig. 2d). As a further test of object-specificity, we 

adopted a classification approach based on the angle of regression coefficients in value space 

(see Methods)
44

. This resulted in a classification scheme of responses into absolute (object) 

value or relative (sum/difference) value coding depending on the polar angle (θ) of 

coefficients in value space (colored areas). This approach confirmed that the neuronal 

response coded the absolute value of object A (Fig. 2e). Thus, the neuron’s pre-cue activity 

signalled the value of a specific choice object, irrespective of whether the object was chosen. 

Among 205 DLPFC neurons with 1222 task-related responses in different task 

periods (P < 0.005, Wilcoxon test) 119 neurons (58%) had value-related activity as indexed 

by a significant value regression coefficient (P < 0.05, multiple regression, Supplementary 

Table 1). Analysis of different fixed time windows throughout the trial showed that value 

activity occurred in all task-phases, including pre-cue periods before the animals indicated 

their choice (Fig. 3a,b). Crucially, visual stimulation and eye position in pre-cue periods 

were restricted by constant fixation requirement; therefore, these activities did not reflect 

external sensory information but an internal valuation process. Fixation was also required 

following the animal’s saccade choice until the reward period. In addition, cue position and 

saccade choice direction were included as covariates in all regression analyses. Sliding 

window regressions confirmed a substantial number of DLPFC neurons with value-related 

activity (Supplementary Fig. 2, Supplementary Table 2) and showed that many value 

signals occurred early in trials around fixation spot onset. Thus, value signals in the DLPFC 

neuronal population occurred in time to influence object-based decision processes. 

Additional tests substantiated the statistical significance of value coding: the observed 

distribution of value coefficients was significantly different from a distribution based on 

randomly shuffled data, and shifted towards lower negative and higher positive values 

(Supplementary Fig. 3). The proportion of significant value coefficients was higher than 

expected by chance (P < 0.0001 binomial test); false positive rate in shuffled data was lower 

than five per cent. Of 273 significant value coefficients (239 individual responses), 131 had a 

positive sign, implying higher activity with higher value, and 142 had a negative sign (P = 

0.273, binomial test, Supplementary Fig. 3). Equal numbers of neurons and responses were 

found related to object A value and object B value (136/137 responses significant for object 
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A/B, 81 neurons significant for both objects). The neurons were recorded from the upper and 

lower banks of the principal sulcus, confirmed by histology (Fig. 3c, Supplementary Fig. 4). 

Thus, a substantial number of DLPFC neurons showed value-related responses. We next 

show that many of these responses satisfied our criteria for object value coding. 

 

Object specificity and choice independence of value signals 

An object value response should reflect the value of one specific object without 

reflecting the value of other objects. True to this criterion, the majority of value-related 

activities (205/239, 85.8%) were object-specific without coding value for the other object, as 

assessed by population activity and significance of value coefficients (Fig. 3d, 

Supplementary Fig. 3, Supplementary Table 3). Significantly fewer activities coded value 

for both objects (34/239, 14.2%, P < 0.001, z-test), which indicated that relative value 

coding—that is, a relationship to the value sum or difference—occurred in a minority of 

neurons. An alternative test of object-specificity used a classification approach based on the 

angle of regression coefficients in value space
44

. Fitting a simpler model that contained only 

regressors for object A value and object B value (Eq. 4) resulted in 168 responses with 

significant overall model fit (P < 0.05, F-test; Fig. 3e). Classification into object value and 

relative value was based on the polar angle (θ) of coefficients in value space. The 

classification was invariant to the axis choice of value coefficients (see Methods). This axis-

invariant method has been suggested to provide a fairer classification into absolute and 

relative value signals, and can yield different results compared to conventional regressions
44

. 

However, in our dataset of DLPFC neurons, this alternative analysis confirmed our original 

result: value-related responses were predominantly object-specific; 124 responses were 

classified as coding object value (74%); 44 responses as coding relative value (P < 0.001, z-

test). Among relative value-coding responses, 35 responses coded value sum (21%) and 9 

responses coded value difference (5%). Thus, different analysis approaches confirmed object-

specificity of value coding in DLPFC neurons (Fig. 3 e,f). 

True to the concept of a decision variable, object value signals should occur on trials 

when the object is chosen and on trials when the object is not chosen. The majority of value-

related responses satisfied this criterion by not showing a significant choice coefficient 

(206/239, 86%, Supplementary Table 3). Distributions of value and choice coefficients in 

value-coding responses differed significantly, with minor overlap (Fig. 3g). Although both 

value and choice coding occurred in pre-cue periods, the proportion of pre-cue value 

responses was significantly higher than that of choice responses (P = 10
-7

, z-test). Thus, value 
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coding preceded choice coding in our task. Our regression model could often not be 

improved by adding value × choice interaction terms (P < 0.05, partial F-test): many value-

related responses (158 of 1222 task-related responses, 13%) had non-significant value × 

choice interaction coefficients (compared to 206 choice-independent value responses in our 

main regression, 17%). Object value responses were also not explained by chosen value 

coding (Supplementary Fig. 5, Supplementary Table 4).  

Randomized cue positions precluded coding of left-right cue position or action before 

the cue period as confirmed by less than five per cent significant coefficients. Following cue 

onset, a large proportion of DLPFC neurons encoded spatial cue position and left-right action 

(Supplementary Table 1, Supplementary Fig. 2), reproducing known effects in 

DLPFC
34,47

. Some of these post-cue responses coded spatial cue position and action jointly 

with value (Supplementary Table 3). Thus, in addition to pure object value coding, some 

hybrid responses coded value in conjunction with other task-relevant variables. 

Overall, 98 of 611 task-related pre-cue responses (16%) met our strictest criteria for 

object value coding: value coding for one specific object with insignificant coefficients for 

the alternative object and insignificant choice coefficient. Taken together, these results show 

that a substantial proportion of DLPFC neurons coded object value in time to inform the 

animal’s choice and in compliance with formal criteria for a decision variable. 

 

Action value control 

Optimal behavior in the foraging task required tracking the value of visual objects 

rather than of left-right actions. Nevertheless, we also examined whether DLPFC responses 

reflected action value, as found previously
22,23

. We recalculated our behavioral model by 

fitting a logistic regression to the animals’ left-right choices, based on action and action-

reward history
4,5

. Despite providing an inferior fit compared to the object value model, the 

action value model showed significant filter weights for recent action and action-reward 

history, typically extending up to two trials into the past. We used the resulting action values 

as regressors for neuronal activity in supplementary analyses.  

Including action values alongside object values in the same model resulted in 165 

responses (of 1222 task-related responses, 13%) related to object value but not action value, 

and 97 responses (8%) related to action value but not object value. The total number of 

responses related to object value was significantly higher than that for action values (257 vs. 

192, P < 0.01, z-test). In a stepwise regression, 171 responses were uniquely explained by 

object value compared to 126 responses uniquely explained by action value (P = 0.0053, χ
2
-
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test). Thus, object value was the more important variable in direct comparisons, even when it 

competed with action value in the same regression model. 

 

Behavioral relevance of neuronal object values 

If neuronal object values in DLPFC provided a basis for local choices and global 

matching behavior, they should be related to the animals’ behavior. We tested this prediction 

as follows. 

First, to test behavioral relevance at the level of local choice probabilities, we 

compared the average activity of object value responses for a given value level with the 

corresponding local behavioral choice probability. As the value of a given object increased, 

the probability of choosing that object also increased, consistent with our behavioral model 

(Fig. 4a). Average object value activity for given value levels closely followed local choice 

probabilities, with opposing trends for value responses related to different objects (left panel). 

These local choice probabilities were in turn suitable to generate global matching behavior, as 

their aggregate over a given session reflected the animals’ experienced reward ratio in that 

session (right panel). Thus, neuronal object values, observed at a local timescale of individual 

trials, provided a suitable basis for global matching behavior. 

Second, we tested whether the strength of neuronal object value coding was related to 

the animals’ matching performance. We measured the animal’s ‘valuation accuracy’ as the 

session-specific correlation between object values and the true, trial-by-trial object reward 

probabilities given by the base probabilities and reinforcement schedule. We then regressed 

this behavioral valuation accuracy on the neuronal value coding strength (the session-specific 

slope of the relationship between neuronal activity and value). The strength of neuronal value 

coding explained variation in valuation accuracy: stronger neuronal value coding was 

associated with more accurate reward probability estimates (Fig. 4b). In turn, more accurate 

probability estimates led to a higher proportion of optimal choices, i.e. choosing the option 

with higher momentary reward probability (R = 0.197, P = 0.0011, linear regression, N = 205 

sessions from both animals). Thus, stronger neuronal value coding correlated with accurate 

valuation and better performance. 

 Finally, if neuronal object values are behaviorally relevant, they should fluctuate with 

local, trial-by-trial performance, including errors. In a population analysis, we identified trials 

on which the animal committed an error (e.g. failed to release the touch key or broke fixation) 

and regressed neuronal activity on object value across value-coding neurons. Immediately 

before error trials, population activity was significantly related to object value (Fig. 4c,d, 
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‘Pre-error). The strength of this relationship dropped on subsequent trials when the animals 

would commit an error (‘Error’), and reappeared on the trial following the error (‘Post-

error’). By contrast, raw impulse rates were not significantly different between error and non-

error trials (all P > 0.1, Wilcoxon test). Thus, neuronal object value coding transiently 

declined on error trials, suggesting a relationship with performance fluctuations. 

  

Single-neuron conversion from experience to object value 

Our behavioral analysis showed that the animals’ choices were based on object values 

that were internally constructed from recent reward history and choice history, which 

constitute precursors for object values. Consistent with previous findings in DLPFC 

neurons
20,23,35

, direct regression of activity on these history terms showed significant numbers 

of responses related to last object choice (87/1222, 7%), last action (78/1222, 6%), last 

outcome (111/1222, 9%) and last object choice × last outcome (78/1222, 6%, 

Supplementary Fig. 6). The percentage of responses related to the interaction between last 

action and last outcome (a control variable in our study) did not exceed chance level. 

Supplementary regression with value and history terms as covariates (Supplementary Table 

5) showed that history variables did not account for object value responses (292 significant 

value coefficients compared to 273 in our main model; 105 value responses (36%) showed 

non-significant history terms). However, the coding of reward and choice history alongside 

object value could suggest that individual DLPFC neurons reflect the trial-by-trial 

construction and updating of object value from recent experience. Such value construction is 

predicted by our behavioral model, which constructs value from weighted reward and choice 

history. 

A significant number of DLPFC neurons showed dynamic coding transitions 

consistent with the hypothesized value construction. Across DLPFC neurons, a substantial 

number were sensitive to both value and last-trial information (113/205, 55%, sliding 

regression). Early in trials, these neurons encoded past rewards and past choices before 

encoding a scalar, current-trial value signal (Fig. 5a, Supplementary Fig. 6). We identified 

77 neurons (37%) that encoded both last-trial information and value in pre-cue periods. 

Among them, 47 neurons (61%; 23% of all recorded neurons) encoded last-trial information 

before encoding current-trial value. The occurrence of such neurons was significantly higher 

than expected by chance (P = 1.8 × 10
-7

, binomial test). 

 If neuronal object values are updated based on last-trial information, individual 

neurons should have matching selectivity for last-trial information and current-trial value. 



12 
 

That is, a neuron encoding current-trial value for one specific object should encode whether 

that object was chosen on the last trial. We confirmed this prediction by relating the (signed) 

coefficients for last-trial object choice to those for current-trial value: coefficients for the last-

trial choice of object A correlated positively with current-trial value coefficients for object A 

(R = 0.938, P = 2.7 × 10
-23

, linear correlation, Fig. 5b) and negatively with coefficients for 

object B (R = ˗0.969, P = 5.1 × 10
-39

). Such matched neuronal selectivity seems consistent 

with updating object values from last-trial experience.  

 These results indicate that DLPFC neurons frequently encoded transitions from last-

trial information to current-trial object value. Thus, activity in individual DLPFC neurons 

appeared to reflect the construction and updating of object values. 

 

Single-neuron conversion from object value to object choice 

We showed above that a significant number of neurons had responses in specific task 

epochs that signalled formal object value, without signalling object choice. Across task 

epochs, however, many neurons exhibited dynamic value-to-choice transitions in the sense 

that object choice signals followed earlier value signals. The existence of such coding 

transitions in DLPFC neurons matches the presumed flow of information during decision-

making
8,9

. 

The neuron in Fig. 5c exhibited a value-to-choice conversion: value coding in the 

fixation period preceded later choice coding in the pre-cue period. This conversion is 

consistent with a process that transforms an object value input to an object choice output 

during decision-making. As the neuron’s activity did not subsequently reflect cue position or 

action, it could not by itself instruct action selection but resembled an abstract, action-

independent decision process. Other neurons showed dynamic coding transitions that directly 

converted value to action (Supplementary Fig. 7). We also found neurons exhibiting 

conversions from object choice to cue position and action (Supplementary Fig. 7), similar to 

recently reported DLPFC neurons
21

. Critically, although cue position and action signals were 

related to externally observable events, object value and object choice signals reflected an 

internal decision process.  

Among 95 neurons with pre-choice value coding, the majority (77 neurons, 81%) 

subsequently coded additional variables. Specifically, substantial numbers of neurons 

converted object value to object choice (58/124 responses, 46%, fixed window-analysis), left-

right action (74/124 responses, 60%), or spatial object position (38/124 responses, 31%), with 

some neurons coding more than one additional variable. By contrast, fewer value neurons 
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(19%, P < 10
-13

, binomial test) either coded no additional variable or coded additional 

variables prior to value. Given the percentages of significant value and choice coefficients in 

pre-choice periods, value-to-choice transitions occurred significantly more frequently than 

chance (P < 10
-11

, binomial test). Across neurons with value or choice coding, value signals 

appeared significantly earlier compared to choice coding (Fig. 5d, P < 0.005, Wilcoxon rank-

sum test). 

In summary, the critical parameters for decision-making in the foraging task—reward 

and choice history, object value, and object choice—were dynamically encoded in DLPFC, 

often converging in single neurons (Fig. 5e,f). A large fraction of DLPFC neurons encoded 

object value and value precursor variables without encoding choice (90/205, 44%), consistent 

with the formal object value concept. However, a significant proportion of neurons (29/205, 

14%) also combined all three variables. These coding transitions appear consistent with the 

presumed information flow of value construction, object valuation, and decision-making. 

 

Decoding object value from DLPFC population activity 

Individual DLPFC neurons likely operate in a population, and their collective value 

signals could potentially be read out by different downstream neurons for different functions. 

We used a decoding approach to explore the information about value contained in patterns of 

population activity that were not pre-selected for task-relatedness or value coding (see 

Methods). We aggregated trial-specific impulse rates across neurons and used linear support 

vector machines (SVM) and nearest-neighbour (NN) classifiers to decode object values and 

related decision variables. In our main results, we focus on the SVM as it typically performed 

more accurately. For validation, we found that linear SVMs could decode the basic task 

variables object choice, cue position and action. For example, action (saccade direction) 

could be decoded from post-cue activity with near-perfect accuracy (98.90 ± 0.17 %, P < 1.2 

× 10
-91

, rank-sum test comparison to randomly shuffled data). Time courses of decoding 

accuracy closely matched those from single-neuron regressions (Fig. 6a; Supplementary 

Figs. 2,8 ; R = 0.96, P < 3.4 × 10
-20

, correlation across task periods of decoding accuracy 

with percentages of significant single-neuron regression coefficients). Notably, the choice for 

a specific object could be decoded with modest but above-chance accuracy in pre-cue periods 

(53.27 ± 0.98 %, P < 3.6 × 10
-11

, rank-sum test), whereas cue position and action decoding 

were non-significant before cue onset, confirming the single-neuron findings. These results 

provided a useful validation of our population decoding approach. 
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We tested whether the value of specific objects could be decoded also from 

population activity (all recorded DLPFC neurons, without pre-selection for task-relatedness o 

value coding), as suggested by the presence of individual object value-coding neurons. Even 

without pre-selecting neurons, we decoded object value with good accuracy from the whole 

population (Fig. 6a; Supplementary Fig. 8). As in single neurons, unselected population 

activity encoded object value in all task periods, most strongly in the pre-cue period (79.1 ± 

0.35 %, P < 6.4 × 10
-83

, rank-sum test). As the pre-cue period was a likely time point of 

decision-making, we explored how population decoding in this period depended on various 

parameters. 

We quantified value decoding capacity in relation to population size. Decoding 

performance for object value increased systematically with the number of neurons entered 

into the decoder (Fig. 6b, Supplementary Fig. 8): while decoding for single neurons was 

close to chance, accuracy increased approximately linearly over the first 100 neurons as more 

neurons were added up to a maximum. Such steady increase suggested a distributed 

representation with different neurons carrying partly independent information about value.  

We next analysed how coding in an unselected population depended on the value 

sensitivity of individual neurons. We found a linear relationship between single-neuron value 

regression slopes and single-neuron decoding accuracy (Fig. 6c): neurons that maximized 

value differences (higher value slope) enabled better decoding. Indeed, small subsets of 

individually significant value neurons provided as good a decoding of object value as the 

whole population (Fig. 6d) and decoding accuracy was significantly related to single-neuron 

value sensitivity (Fig. 6e; P < 1.0 × 10
-16

, partial correlation controlling for number of 

significant neurons, mean activity range, slope variance). Thus, neurons with high value 

sensitivity contributed the most to population decoding, with smaller contributions by non-

significant neurons. 

These results suggested accurate object value decoding from the DLPFC population. 

Although decoding generally increased with higher neuron numbers, individually significant 

value neurons contributed most strongly. 

 

Population decoding of value-derived decision variables 

In addition to object value, we could decode from the unselected population other 

value variables not represented in single neuron responses, including value sum and signed 

and unsigned value difference (Fig. 7a). Value sum is an important motivational variable 

related to performance vigour
44

 and predicted trial initiation times (Fig. 1h, i). By contrast, 
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signed value difference is the critical quantity for value comparison in decision models (Fig. 

1f,g)
6-9

, and unsigned value difference relates to decision difficulty (Supplementary Fig. 1) 

and decision confidence
28,45,46

. Average decoding accuracy for value sum and unsigned value 

difference was most pronounced in early task periods and, compared to object value, was 

lower and less consistent in later task periods (Fig. 7a). Thus, the unselected neuronal 

population encoded variables that combined values of different objects, including value sum, 

signed and unsigned value difference. 

Among the different task epochs, the fixation period showed significantly higher 

decoding accuracy for summed rather than individual object value (Fig. 7b, red). In this early 

period, value sum decoding reflected single-neuron value sensitivities for both objects A and 

B (Fig. 7c, lower panels), and more neurons in the decoder increased accuracy significantly 

more for value sum compared to object value (Fig. 7d, Supplementary Fig. 8c). By contrast, 

the subsequent pre-cue period showed significantly better population decoding for individual 

rather than summed object value (Fig. 7b, blue). Here, object value decoding for one specific 

object reflected single-neuron sensitivities only for that particular object (Fig. 7c, upper 

panels), which was also evident with the benefit derived from more neurons in the decoder 

(Fig. 7d). Thus, the key decision variables of object value and value sum were best encoded 

in particular task periods, which matched the different behavioral functions of value sum 

(initial motivation, Fig. 1h,i) and object value (subsequent decision-making, Fig. 1f,g). 

These findings suggested different levels of value coding in the DLPFC that evolved 

over trial periods and matched the behavioral requirements in different tasks stages. Single 

DLPFC neurons encoded object value (Fig. 8a). By contrast, activity in an unselected 

population encoded additional specific and well conceptualized decision variables not 

represented in single neurons that may make important contributions to distinct behavioral 

functions (Fig. 8b).  

 

DISCUSSION 

We found that individual DLPFC neurons encoded internal value estimates derived 

from the fluctuating reward probabilities of specific choice objects. These value signals 

fulfilled criteria for a decision variable: they were object-specific, distinct from sensory and 

motor responses, timed to inform decision-making, and independent of current-trial choice. 

Further, they tracked behavioral performance and followed Herrnstein’s matching law and 

were thus suited to guide the animals’ behavior. Individual DLPFC neurons encoded both the 

construction of object values from recent reward experience and their subsequent conversion 
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to choice signals. Thus, signals related to these computationally distinct processes converged 

onto single DLPFC neurons. Object value signals also enabled flexible population readout of 

decision variables not emphasized by single neurons. Together, our findings suggest that 

DLPFC realizes a dynamic single-neuron and population value code that reflects the 

translation of recent reward experiences into economic object values and future choices. 

Individual DLPFC neurons mostly encoded value for specific choice objects, rather 

than relative valuations. We do not argue that explicit object value signals are strictly 

required for neural decision-making, which likely emerges as a population phenomenon. 

However, object-specific value coding by single neurons is advantageous computationally 

because it ensures that value is updated for one specific object but not for others—the key 

issue of credit assignment in reinforcement learning
6
. It also enables single-neuron 

conversion from object value to object choice, which ensures unambiguous identification of 

chosen objects. We found that single DLPFC neurons realized these computational 

advantages by encoding conversions from experienced rewards to object values and 

subsequent choices. We suggest that explicit object value signals, rather than relative 

valuations, would also be observed in situations involving more than two choice objects, 

although this prediction remains to be tested in future studies. 

In addition to explicit single-neuron representations, distributed population codes 

confer greater flexibility to a neural system for they allow high-accuracy, flexible readout of 

multiple task variables
48-50

. Consistent with this notion, the population of DLPFC neurons 

allowed precise decoding of object values (Fig. 8a). The approximately linear increase in 

decoding accuracy as more neurons were added suggests that neurons carried partly 

independent value information. Indeed, value sensitivity varied considerably across neurons 

and population decoding depended on individual neurons’ value sensitivities. Such neuronal 

tuning variation may be advantageous for information processing in associative networks as it 

can increase storage capacity
50

. 

Population decoding enabled readout of functionally important variables not 

emphasized by single neurons. For example, the sum of object values represents a 

motivational variable suited to calibrate performance vigor
44

 and accordingly correlated 

inversely with the animals’ trial initiation times. Consistently, population activity encoded 

value sum most strongly at trial start. Such a value sum signal arises naturally in biologically 

realistic decision systems with attractor dynamics, which converge to a choice state faster 

when value sum is high
7,10

. Flexible population readout of different value variables could be 

achieved by selective wiring from object-specific value neurons onto different downstream 
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neurons or by dynamically adjustable synaptic connections (Fig. 8b). For example, DLPFC 

object value subpopulations could provide common inputs to parts of the striatum containing 

value sum-coding neurons
44

. The additionally observed (although less accurate) population 

coding of unsigned value difference is predicted by computational decision models
46

, and 

considered a key quantity related to decision confidence28,45,46. (We did not include a 

behavioral confidence test in our task but unsigned value difference correlated with reaction 

times). Notably, value difference signals are frequently observed in human neuroimaging 

population signals, which average across large numbers of neurons
10-15

. Although such 

techniques successfully localize decision signals across distributed brain systems
10-15

, our 

results suggest that they may not necessarily accurately identify the information encoded by 

single neurons in a given cortical area. 

Two previous studies provided critical evidence that the primate brain computes 

internal values during matching behavior
3,5

. Our findings build on this earlier work and offer 

new insights into the neural basis of value construction. First, value signals during matching 

in parietal area LIP and striatum are spatially referenced and time-locked to sensory targets or 

movement onset
3,5

. By contrast, the DLPFC neurons reported here signalled the value of 

choice objects, rather than actions, irrespective of and prior to action information. Such 

object-based valuations confer greater flexibility by enabling arbitrary mappings from chosen 

objects to required actions and by allowing object choices before action information is 

available. We suggest, following Sugrue and colleagues
3
, that abstract, action-independent 

valuations as uncovered here in DLPFC neurons are computed upstream of LIP and 

subsequently remapped onto space and action. Our finding that DLPFC neurons convert 

object values to choices, spatial representations and actions indicate that DLPFC participates 

in this remapping alongside LIP, although conclusive evidence will require simultaneous 

recordings from both areas in the same monkeys, performing the same task. Second, in 

contrast to LIP and striatal neurons, many DLPFC neurons encoded value precursor 

variables, such as reward and choice history, before encoding value. This could suggest that 

DLPFC participates actively in the current-trial computation of values from recent 

reinforcement history. Third, different from striatal action value neurons
5
, the presently 

described DLPFC object value neurons encoded explicit conversions from value to choice. 

This could suggest a role for DLPFC in the decision process. This interpretation is supported 

by a recent study
23

 showing stronger and earlier action coding in DLPFC compared to 

striatum, although value-to-choice transitions as shown here were not demonstrated. While 
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the basal ganglia may be important for storing values long-term
1,5,51

, DLPFC neurons seem 

important for their construction and conversion to choice on single trials. 

The present value-to-choice conversions in single DLPFC neurons are consistent with 

biologically plausible attractor theories of how decisions arise in neural networks
8,9

. 

However, the present results cannot determine whether these coding transitions originate in 

DLPFC or reflect processing in another brain area. This determination will likely require 

simultaneous recordings from multiple brain systems. Thus, although our experiments cannot 

directly show that choice computations are performed in DLPFC, our results support the 

hypothesis
14,24,25

 that DLPFC is important for neuronal decision processes. 

DLPFC object value neurons resemble offer value neurons in OFC observed during 

economic choice
16-18

 as both types of neuron encode object-specific values irrespective of 

choice and action. However, whereas separate OFC neurons encode values and choices
17

, 

many DLPFC neurons reported here exhibited dynamic value-to-choice conversions. Further, 

transitions from reward experience to value as reported here in DLPFC have not been found 

in OFC. This could suggest that OFC and DLPFC make different contributions to decision-

making, or that decision processes differ between choice tasks with explicit value cues and 

those requiring internal, history-based value construction. The latter interpretation is 

supported by a recent study with explicitly cued flavoured juice rewards
21

 in which DLPFC 

neurons showed choice-to-action conversions while apparently only few DLPFC neurons 

encoded offer values. Our DLPFC object-value signals contrast markedly with explicit 

relative value (value difference) signals reported in ventromedial prefrontal cortex
52

, 

striatum
44,53,54

, and anterior cingulate cortex
55

, which could reflect processing differences 

between DLPFC and these other regions. Although differences in data modelling can 

contribute to different findings between studies, we confirmed that our results were robust to 

analysis variations with several regression approaches and population decoding. DLPFC 

object value neurons also differ from explicit reward prediction by conditioned stimuli
39,51,56-

58
, as their activity was object-specific, not linked to sensory-motor responses, measured 

during free choice, and independent of current-trial choice. These features distinguish a 

genuine decision variable
40

 from known reward prediction and reward-modulated sensory-

motor activity in DLPFC
59,60

. Finally, although we replicated previously shown DLPFC 

chosen value signals
21

, these were separate from and could not account for object value 

coding. 

In conclusion, our data show that single DLPFC neurons encode reward valuations for 

specific choice objects based on recent experience. Object value signals complied with 
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criteria for a decision variable, tracked the animals’ performance, and followed Herrnstein’s 

classical matching law. Individual DLPFC neurons dynamically encoded conversions from 

reward and choice history to object value, and from object value to object choice. Thus, 

DLPFC object value neurons seem well suited to support learning and decision-making in 

situations requiring internal, experience-based value construction. DLPFC population activity 

encoded additional value variables not emphasized by single neurons, which could inform 

motivational and decision processes at different task stages. Together, our data suggest that 

DLPFC implements a dynamic and computationally flexible object value code, consistent 

with its signature role in adaptive behavior. 
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METHODS 

Animals 

All animal procedures conformed to US National Institutes of Health Guidelines and were 

approved by the Home Office of the United Kingdom. Two adult male macaque monkeys 

(Macaca mulatta) weighing 5.5 – 6.5 kg served for the experiments. The number of animals 

used is typical for primate neurophysiology experiments. The animals had no history of 

participation in previous experiments. A head holder and recording chamber were fixed to the 

skull under general anaesthesia and aseptic conditions. Standard electrophysiological 

techniques permitted extracellular recordings from single neurons in the sulcus principalis 

area of the frontal cortex via stereotaxically oriented vertical tracks, as confirmed by 

histological reconstruction. After completion of data collection, recording sites were marked 

with small electrolytic lesions (15–20 µA, 20–60 s). The animals received an overdose of 

pentobarbital sodium (90 mg/kg iv) and were perfused with 4% paraformaldehyde in 0.1 M 

phosphate buffer through the left ventricle of the heart. Recording positions were 

reconstructed from 50-µm-thick, stereotaxically oriented coronal brain sections stained with 

cresyl violet. 

 

Behavioral Task 

Each monkey was trained in an oculomotor free-choice task. In every trial, the subject chose 

one of two objects to which reward was independently and stochastically assigned. Two 

different abstract pictures served as choice objects (square, 5º visual angle). Each trial started 

with presentation of a red fixation spot (diameter: 0.6º) in the center of a computer monitor in 

front of the animal (viewing distance: 41 cm) (Figure 1A). The animal fixated the spot and 

contacted a touch sensitive, immobile resting key at elbow height. An infrared eye tracking 

system continuously monitored eye positions (ISCAN, Cambridge, MA). During the fixation 

period at 1.0-2.0 s after eye fixation and key touch, an alert cue covering the fixation spot 

appeared for 0.7-1.0 s. At 1.4-2.0 s following offset of the alert stimulus, two different visual 

fractal objects (A, B) appeared simultaneously as ocular choice targets on each side of the 

fixation spot at 10º lateral to the center of the monitor. Left and right positions of objects A 

and B alternated pseudorandomly across trials. The animal made a saccadic eye movement to 

the target of its choice within a time window of 0.25-0.75 s. A red peripheral fixation spot 

replaced the target after 1.0-2.0 s of target fixation. This fixation spot turned to green after 

0.5-1.0 s, and the monkey released the touch key immediately after color change. Rewarded 

trials ended with a fixed quantity of 0.7 ml juice delivered immediately upon key release. A 
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computer-controlled solenoid valve delivered juice reward from a spout in front of the 

animal's mouth. Unrewarded trials ended at key release and without further stimuli. The 

fixation requirements restricted the animals’ eye movements in our main periods from trial 

start to cue appearance and, following the animals’ saccade choice, from choice acquisition to 

reward delivery. This ensured that neuronal activity was minimally influenced by oculomotor 

activity, especially in our main periods of interest before cue appearance.  

 According to the basic rule of the matching task, the reward probabilities of object A 

and B were independently calculated in every trial, depending on the numbers of consecutive 

unchosen trials (Eq. 1): 

 

𝑃 = 1 − (1 − 𝑃0)𝑛+1 

 

with P as instantaneous reward probability, P0 as experimentally imposed, base probability 

setting, and n as the number of trials that the object had been consecutively unchosen. This 

equation implies that reward was probabilistically assigned to the object in every trial, and 

once a reward was assigned, it remained available until the associated object was chosen. 

Therefore the likelihood of being rewarded on a target increased as the number of trials 

performed after the object was last chosen. On the other hand, it stayed at the base probability 

while the object was repeatedly chosen. The reward probability fell back to the base 

probability with every choice of that object, irrespective of whether that choice was rewarded 

or not. 

 We varied the base reward probability in blocks of typically 50-150 trials without 

signalling these changes to the animal. The sum of reward probabilities for objects A and B 

was held constant so that only relative reward probability varied. 

 

Definition of object value 

We followed an established approach for modelling action value used in previous behavioral 

and neurophysiological experiments in macaques
2-5

. As the optimal strategy in our task 

involved tracking the changing values of objects, rather than actions, we formulated the 

model in terms of object choices rather than action choices. The approach involves fitting a 

logistic regression model to the animal’s trial-by-trial choice data to estimate coefficients for 

the recent history of received rewards and recently made choices. The resulting coefficients 

quantify the extent to which the animals based their choices on recently received rewards and 
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made choice for a given option. We used the following logistic regression model to determine 

the coefficients for reward history and choice history (Eq. 2):  

 

log (
𝑝𝐴(𝑖)

𝑝𝐵(𝑖)
) =  ∑ 𝛽𝑗

𝑟(𝑅𝐴(𝑖 − 𝑗) − 𝑅𝐵(𝑖 − 𝑗)) + 

𝑁

𝑗=1

∑ 𝛽𝑗
𝑐(𝐶𝐴(𝑖 − 𝑗) − 𝐶𝐵(𝑖 − 𝑗)) + 𝛽0 

𝑁

𝑗=1

 

 

with 𝑝𝐴(𝑖)[or 𝑝𝐵(𝑖)] as the probability of choosing object A (or B) on the ith trial, 𝑅𝐴[or 𝑅𝐵] 

as reward delivery after choice of object A [or B] on the ith trial, 𝐶𝐴[or 𝐶𝐵] as choice of 

object A [or B] on the ith trial, N denoting the number of past trials included in the model (N 

= 10),  𝛽𝑗
𝑟 and 𝛽𝑗

𝑐as regression coefficients for the effect of past rewards and choices and 𝛽0 

as bias term. The regression model was estimated by fitting regressors to a binary choice 

indicator function using a binomial distribution with logit link function. The coefficients for 

reward and choice history from this analysis are plotted in Fig. 2B as reward and choice 

filters. Within each animal, we used half of the behavioral data set to estimate model 

coefficients and the remaining half of the data for testing the model. To test the model in an 

out-of-sample prediction, we used logistic regressions to fit each animal’s choices in a given 

testing session to the corresponding reward and choice histories multiplied with the filter 

weights obtained from independent data. For this model, we summed the weighted reward 

and choice histories for each object to obtain measures of object A value and object B value, 

which constituted our regressors for the out-of-sample prediction. Figure 2C shows the mean 

coefficients for these object values averaged over both animals and all remaining sessions 

(random effects analysis). The same object value measures were used as regressors for 

neuronal data. 

 

Neuronal data analysis 

We counted neuronal impulses in each neuron on correct trials relative to different task 

events with 500 ms time windows that were fixed across neurons: before fixation spot (Pre-

fix, starting 500 ms before fixation onset), early fixation (Fix, following fixation onset), late 

fixation (Fix2, starting 500 ms after fixation spot onset), pre-cue (Pre-cue, starting 500 ms 

before cue onset), cue (Cue, following cue onset), post-fixation (Post-fix, following fixation 

offset), before cue offset (Pre-cue off, starting 500 ms before cue offset), after cue offset 

(Post-cue off, following cue offset), pre-outcome (Pre-outc, starting 500 ms before reinforcer 
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delivery), outcome (Outc, starting at outcome delivery), late outcome (Outc2, starting 500 ms 

after outcome onset). 

We first identified task-related responses in individual neurons and then used multiple 

regression analysis to test for different forms of value-related activity while controlling for 

the most important behaviorally relevant covariates. We identified task-related responses by 

comparing activity to a control period (Pre-fix) using the Wilcoxon test (P < 0.005, 

Bonferroni-corrected for multiple comparisons). A neuron was included as task-related if its 

activity in at least one task period was significantly different to that in the control period. 

Because the Pre-fixation period served as control period we did not select for task-relatedness 

in this period and included all neurons with observed impulses in the analysis. We chose the 

pre-fixation period as control period because it was the earliest period at the start of a trial in 

which no sensory stimuli were presented. The additional use of a sliding-window regression 

approach for which no comparison with a control period was performed (see below) 

confirmed the results of the fixed window analysis that involved testing for task-relationship. 

The fixed-window analysis identified the following numbers of task-related responses in the 

different task periods: Pre-fix: 205, Fix: 84, Fix2: 93, Pre-cue: 96, Cue: 133, Post-fix: 119, 

Pre-cue off: 110, Post-cue off: 103, Pre-outc: 115, Outc: 103, Outc2: 61. 

We next used multiple regression analysis to assess relationships between neuronal 

activity and planning variables. The use of multiple regression was considered appropriate for 

the present data after testing assumptions of randomness of residuals, constancy of variance, 

and normality of error terms. Statistical significance of regression coefficients was 

determined using t-test with P < 0.05 as criterion, and was supported by the results of a 

bootstrap technique as described in the Results. Our analysis followed established approaches 

previously used to test for value coding in different brain structures
1,5

. All tests performed 

were two-sided. Each neuronal response was tested with the following main multiple 

regression model (Eq. 3):  

 

𝑦 =  𝛽0 +  𝛽1𝑂𝑏𝑗𝑒𝑐𝑡𝐶ℎ𝑜𝑖𝑐𝑒 + 𝛽2𝐶𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 + 𝛽3𝐴𝑐𝑡𝑖𝑜𝑛 +  𝛽4𝑂𝑏𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐴 

+  𝛽5𝑂𝑏𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐵 +  𝜀  

 

with y as trial-by-trial neuronal impulse rate, ObjectChoice as current-trial object choice (0 

for A, 1 for B), CuePosition as current-trial spatial cue position (0 for object A on the left, 1 

for object A on the right), Action as current-trial action (0 for left, 1 for right), ObjectValueA 
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as current-trial value of object A, ObjectValueB as current-trial value of object B, 1 to 5 as 

corresponding regression coefficients, 0 as constant, ε as residual. Object value regressors 

were defined as described in the previous section. Coefficients for all regressors within a 

model were estimated simultaneously. Thus, a significant regressor indicated that a 

significant portion of the variation in neuronal impulse rate could be uniquely attributed to 

this variable. We followed standard procedures for assessing multicollinearity in multiple 

regression analysis. We confirmed that variance inflation factors were generally low (Mean = 

1.53 ± 0.17 s.e.m.; 99% of VIFs < 3; VIFs calculated separately within each neuronal testing 

session for regression model in Eq. 3), indicating that multicollinearity did not affect our 

statistical analysis. 

 For the regression analysis shown in Fig. 6D, we fit the following model to the 

neuronal data (Eq. 4): 

 

𝑦 =  𝛽0 +  𝛽1𝑂𝑏𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐴 +  𝛽2𝑂𝑏𝑗𝑒𝑐𝑡𝑉𝑎𝑙𝑢𝑒𝐵 +  𝜀  

 

A neuronal response was categorized as value-related if it showed a significant overall model 

fit (P < 0.05, F-test). We then projected each value-related response onto the value space 

given by the regression coefficients for object value A and object value B (Fig. 6D). 

Following a previous study
44

, we divided the value space into eight equally spaced segments 

of 45° which provided a categorization of neuronal responses based on their polar angle of 

coefficients in value space. Responses were classified as coding object value (‘absolute 

value’) if their coefficients fell in the segments pointing toward 0° or 180° (object value A) or 

toward 90° or 270° (object value B). Responses were categorized as coding value difference 

if their coefficients fell in the segments pointing toward 135° or 315° and as coding value 

sum if their coefficients fell in the segments pointing toward 45° or 225°. This method of 

classification has been called ‘axis-invariant’ as its results do not depend on the choice of axis 

for the regression model, i.e. whether the regression model includes separate independent 

variables for object values A and B or separate independent variables for the sum and 

differences between object values
44

.  

We also used a sliding window multiple regression analysis (using the regression 

model in Eq. 3) with a 200-ms window that we moved in steps of 25 ms across each trial. To 

determine whether neuronal activity was significantly related to a given variable we used a 

bootstrap approach based on shuffled data as follows. For each neuron, we performed the 
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sliding window regression 1,000 times on trial-shuffled data and determined a false positive 

rate by counting the number of consecutive windows in which a regression was significant 

with P<0.05. We found that less than five per cent of neurons with trial-shuffled data showed 

more than six consecutive significant analysis windows. In other words, we used the shuffled 

data to obtain the percentage of neurons with at least on case of six consecutively significant 

windows. Therefore, we counted a sliding window analysis as significant if a neuron showed 

a significant (P < 0.05) effect for more than six consecutive windows. 

  

Normalization of population activity 

We subtracted from the measured impulse rate in a given task period the mean impulse rate 

of the control period and divided by the standard deviation of the control period (z-score 

normalization). Next, we distinguished neurons that showed a positive relationship to object 

value and those with a negative relationship, based on the sign of the regression coefficient, 

and sign-corrected responses with a negative relationship. 

 

Normalization of regression coefficients 

Standardized regression coefficients were defined as xi(si/sy), xi being the raw slope 

coefficient for regressor i, and si and sy the standard deviations of independent variable i and 

the dependent variable, respectively. These coefficients were used for Fig. 3d, Fig. 4e,i, Fig. 

5b, Fig. 6e, Supplementary Fig. 2a,b and Supplementary Fig. 3c.  

 

Population decoding 

We used support vector machine (SVM) and nearest-neighbor (NN) classifiers to quantify the 

information contained in DLPFC population activity in defined task periods, following 

decoding analysis approaches from previous neurophysiological studies
61-63

. The SVM 

classifier was trained on a set of training data to find a linear hyperplane that provides the 

best separation between two patterns of neuronal population activity defined by a grouping 

variable (e.g. high vs. low object value). Decoding was typically not improved by non-linear 

(e.g. quadratic) kernels. The NN classifier was similarly trained on a set of test data and 

decoding was performed by assigning each trial to the group of its nearest neighbor in a space 

defined by the distribution of impulse rates for the different levels of the grouping variables 

using the Euclidean distance
62

. Both SVM and NN classification are biologically plausible in 

that a downstream neuron could perform similar classification by comparing the input on a 

given trial with a stored vector of synaptic weights. Both classifiers performed qualitatively 
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similar, although SVM decoding was typically more accurate. We therefore focus our main 

results on SVM decoding. 

We aggregated z-normalized trial-by-trial impulse rates of independently recorded 

DLPFC neurons from specific task periods into pseudo-populations. We used all recorded 

neurons that met inclusion criteria for a minimum trial number, without pre-selecting for 

value coding, except where explicitly stated. For each decoding analysis, we created two n by 

m matrices with n columns defined by the number of neurons and m rows by the number of 

trials. We defined two matrices, one for each group for which decoding was performed (e.g. 

high vs. low object value, left vs. right action etc.). Thus, each cell in a matrix contained the 

impulse rate from a single neuron on a single trial measured for a given group. Because 

neurons were not simultaneously recorded, we randomly matched up trials from different 

neurons for the same group and then repeated the decoding analysis with different random 

trial matching (within-group trial matching) 150 times for the SVM and 500 times for the 

NN. We found these numbers to produce very stable classification results. (We note that this 

approach likely provides a lower bound for decoding performance as it ignores potential 

contributions from cross-correlations between neurons; investigation of cross-correlations 

would require data from simultaneously recorded neurons.) We used a leave-one-out cross-

validation procedure whereby a classifier was trained to learn the mapping from impulse rates 

to groups on all trials except one; the remaining trial was then used for testing the classifier 

and the procedure repeated until all trials had been tested. An alternative approach of using 

80% trials as training data and testing on the remaining 20% produced highly similar 

results
61

. We only included neurons in the decoding analyses that had a minimum number of 

10 trials per group for which decoding was performed, and we confirmed that results were 

very similar when increasing this minimum number to 20 trials. 

The SVM decoding was implemented in Matlab (Version R2013b, Mathworks, 

Natick, MA) using the ‘svmtrain’ and ‘svmclassify’ functions with a linear kernel and the 

default sequential minimal optimization method for finding the separating hyperplane. 

Decoding could typically not be improved by using radial basis function or quadratic kernels. 

The NN decoding was performed in Matlab using custom-written code. We quantified 

decoding accuracy as the percentage of correctly classified trials, averaged over all decoding 

analyses for different random within-group trial matchings. To investigate how decoding 

accuracy depends on population size, we randomly selected a given number of neurons at 

each step and then determined the percentage correct. For each step (i.e. each possible 

population size) this procedure was repeated 10 times. We also performed decoding for 
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randomly shuffled data (shuffled group assignment without replacement) with 1,500 – 5,000 

iterations to test whether decoding on real data differed significantly from chance. Statistical 

significance (P < 0.0001) was determined by comparing vectors of percentage correct 

decoding accuracy between real data and randomly shuffled data using the rank sum test
62

. 

For all analyses, decoding was performed on neuronal responses taken from the same task 

period. We trained classifiers to distinguish high from low value terciles (decoding based on 

median split produced very similar results). Notably, even these discretized values fit 

significantly to choices (P = 2.4 × 10
-6

, logistic regression), suggesting they were 

behaviorally relevant. 

 

Data availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 
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Fig. 1. Foraging task and matching behavior. a. Object-based foraging task. b. 

Relationship between log-transformed choice and reward ratios across sessions. The base 

reward probability ratio was significantly related to the choice ratio (animal A: 11,040 trials 

from 139 sessions, t137 = 13.09, linear regression; data were similar for animal B: R
2
 = 0.740, 

P = 4.7 × 10
-20

; 5,306 trials from 65 sessions, t63=13.37) c. Behavior in one example session: 

choices tracked relative reward probability. Dark blue curve: instantaneous fraction (7-trial 

running average) of object A choices. Light blue curve: instantaneous fraction of rewards 

received from object A. Yellow curves: block-wise reward (light) and choice (dark) ratios. 

Colored boxes indicate block durations, numbers indicate reward ratios: object A to B. d. 

Filters used to generate subjective object values: influence of past rewards on current-trial 

choice. Filters represent logistic regression weights derived from independent behavioral data 

(animal A: 5520 trials, d.f. = 5,499; animal B: 2,653 trials, d.f. = 2,632). * P < 0.05. e. Model 

choices closely tracked the animal’s choices (same session as in a). Dark/light blue curve: 

running average of animal/model choices for object A. Vertical bars: animal choices for 

objects A (red) and B (green); long bars indicate rewarded trials. Black traces: subjective 
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object values derived from weighted and summed reward and choice histories. f. Out-of-

sample prediction of choices from values. Logistic regression weights for object A value (P = 

1.3 × 10
-22

, t-test) and object B value (P = 7.1 × 10
-20

) and cue position (non-significant; 

coefficients pooled over animals and sessions; 102 sessions, t-test, d.f. = 99). g. Decision 

function relating value difference to choice probability (data pooled over animals and 

sessions). h. Multiple regression of trial initiation times (key touch latencies) on value sum 

and covariates (12,358 trials, d.f. = 12,352). Only value sum and animal coefficients were 

significant (both P < 0.0001, t-test). i. Single linear regression of trial initiation time on value 

sum (plot constructed by binning trials according to value sum and then determining reaction 

time means; data pooled over animals and sessions). Error bars show s.e.m. 
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Fig. 2. A single DLPFC neuron encoding object value. a. Peri-event time histogram of 

impulse rates, aligned to cue onset, sorted into terciles of object value (derived from our 

behavioral model). Raster display: ticks indicate impulses, rows indicate trials; grey dots 

indicate event markers (labelled below graph; Off: cue offset). Pre-cue activity leading up to 

the current-trial choice in the cue period reflected the value of object A. Visual stimulation 

and eye position were constant in this period; thus, the activity pattern reflected an internal 

valuation process based on reward and choice history and was not due to sensory or motor 

variables. Yellow shaded period (500 ms before cue onset) was used for analysis. b. Linear 

regression of pre-cue impulse rate on the value of object A and object B (12 equally 

populated value bins from 133 trials; d.f. = 11). c. Independence of activity from object 

choice. Same data as in a, sorted by trial-specific object choice. d. Coefficients obtained from 

fitting a multiple linear regression model to pre-cue impulse rate. Only the value of object A 

explained a significant proportion of variance in impulse rate (t127 = -3.48, t-test). All 

coefficients were fit simultaneously. e. Plot of regression coefficient in value space using an 

axis-invariant classification that categorizes neurons as coding object value (value A or value 

B) or coding relative value (value difference, value sum) based on the polar angle in value 

space. Error bars show s.e.m. 
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Fig. 3. Characteristics of value coding in DLPFC neurons. a. Mean normalized activity 

for value responses in different trial periods (identified by multiple linear regression, P < 

0.05, calculated for each response), sorted into value terciles. Yellow shaded periods were 

used for analysis. N refers to number of responses b. Percentages of value responses (among 

task-related responses) in different trial periods. c. Recording locations in upper and lower 

principal sulcus banks. Numbers indicate anterior-posterior distance from inter-aural line. 

Inset: photomicrograph of a cresyl violet-stained coronal section of the frontal lobe in 

monkey A. The lesion in the principal sulcus marks a typical electrode track. d. Object-

specificity of value coding. Linear regression of population activity (273 value-coding 

responses taken across task periods) on object value for preferred and alternative object. Data 

points indicate means of 11 equally populated value bins ± s.e.m. e. Classification of value 

responses (across task periods) based on position of regression coefficients in value space. 

The figure shows the classification into object value coding or relative (sum/difference) value 

coding depending on the polar angle (θ) of coefficients in value space (colored areas), 

calculated as four-quadrant arc-tangent of the coefficients. Yellow data point: example 

neuron from Fig. 2. f. Proportion of value coding responses across task periods reflecting 
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object value (only value A or value B) and responses reflecting relative value (value 

sum/difference). Black/orange bars: results obtained from conventional multiple regression 

and axis-invariant method. * P < 0.05 (χ
2
-test). g. Distribution of regression coefficients (273 

value-coding responses; fixed-window analysis across all task periods) for object value and 

choice. Most value responses had non-significant choice coefficients (Kolmogorov-Smirnov 

test). 
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Fig. 4. Neuronal object values and matching behavior. a. Neuronal object values provide a 

suitable foundation for local choice probability and global matching behavior. Left: Average 

value-related activities for object A (red) and B (green) tracked local choice probability 

(bars), calculated for discrete 16 value bins (d.f. = 14). Right: Local choice probabilities, 

binned according to object value and aggregated over trial blocks, were related to 

experienced reward ratios, consistent with matching behavior. b. Neuronal sensitivity to 

object value is related to behavioral valuation accuracy. Unsigned neuronal regression 

coefficients for value coding plotted against behavioral ‘valuation accuracy’ (defined as 

session-specific correlation between estimated values and true reward probabilities). Stronger 

neuronal value coding predicted more accurate behavioral valuation. Valuation accuracy was 

also related to better choices (i.e. choosing the object with higher true reward probability, R = 

0.178, P = 0.0037, linear regression). c. Relationship between neuronal object values and 

performance. The strength of neuronal value coding dropped transiently when the animals 

would commit an error and subsequently increased on the next correct trial. Linear 

regressions of normalized population activity on object value, calculated across 273 value-

coding responses (18,117 trials), separately for pre-error, error and post-error trials. *: P < 

0.05, t-test for dependent samples. Data in all plots are taken across all task periods. 
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Fig. 5. Value construction and choice conversion in DLPFC neurons. a. A single DLPFC 

neuron with pre-cue activity reflecting last-trial choice before reflecting current-trial object 

value. Coefficients of partial determination (partial R
2
) obtained from multiple regression 

model applied with a sliding window. Asterisks indicate coding latencies, i.e. first time points 

at which activity was significantly related to a variable. b. Last-trial object choice and 

current-trial object value were coded with reference to the same object in individual neurons. 

Neuronal value coefficients for object A (upper panel, N = 49 coefficients, d.f. = 47) plotted 

against coefficients for choice history (defined as last-trial object A choice) for all responses 

with conjoint value and choice history encoding. A corresponding negative relationship was 

found for object B value coding (N = 63 coefficients, d.f. = 61).  c. A single DLPFC neuron 

with pre-cue activity reflecting object value before reflecting object choice. d. Comparison of 

coding latencies for value and choice. Cumulative record of coding latencies obtained from 

sliding window regression. Each curve was normalized to the total number of neurons 

significant for that variable (value: N = 119 neurons; choice: N = 74 neurons). e. A single 

DLPFC neuron with pre-cue activity reflecting transitions from last-trial history variables to 

current-trial object value, and from object value to upcoming object choice. f. Summary of 

neurons with significant coding of value, history (reward, choice, reward × choice) and 

choice and their conjunctions, obtained from sliding window regression. 
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Fig. 6. Population decoding of object value. a. Performance of a linear support vector 

machine classifier in decoding object choice, cue position, action, and object value across 

task periods. Performance was measured as cross-validated classification accuracy (% 

correct, mean ± s.e.m.) based on single-trial data from all DLPFC neurons that met inclusion 

criteria for decoding (N = 166 for binary variables choice, cue position and action; N = 157 

for object value terciles). The grey line in each plot indicates mean (± s.e.m) decoding 

performance from trial-shuffled data. Red asterisks indicate that decoding accuracy 

significantly exceeded shuffled decoding (rank-sum test). b. Object value decoding 

performance in the pre-cue period increased with the number of neurons. Data for each 

neuron number show means (± s.e.m) over 10 random combinations of different neurons. The 

classifier was trained to decode both object A and B value; thus, data from each neuron (N = 

157) were sampled twice. c. Object value decoding in individual neurons (in pre-cue period) 

was related to individual neuron’s value sensitivity (object value linear regression slope). d. 

Object value decoding in different sets of neurons (in pre-cue period), depending on 

individual neuron’s significance of object value regression. Signif: neurons with individually 

significant object A value regression coefficients (based on randomly chosen subsets of N = 

20); All: neurons that met inclusion criteria for decoding (N = 157); Rand: randomly selected 

neurons irrespective of object value significance (N = 20); Single: single-neuron decoding 
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decoding for all neurons that met inclusion criteria (N = 157); N-signif: randomly selected 

neurons excluding those with significant object value coefficients (N = 20). e. Relationship 

between decoding performance and single-neuron value sensitivities, tested over randomly 

selected neuron subsets (8,000 samples randomly drawn without replacement, N = 20 per 

sample). Decoding depended on average single-neuron sensitivity (mean unsigned value 

regression coefficient, averaged over all 20 neurons in each sample). 
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Fig. 7. Population decoding of decision variables derived from object value. a. 

Performance (% correct, mean ± s.e.m.) of a linear support vector machine classifier in 

decoding value sum, signed value difference and absolute (unsigned) value difference in 

different task periods (N = 157 neurons). b. Comparison of decoding performance for object 

value (blue data) and value sum (red data). The grey horizontal line indicates chance level. 

Red asterisks indicate significantly higher accuracy for value sum than object value (rank-

sum test); blue asterisks indicate significantly higher accuracy for object value than value 

sum. c. Relationship between decoding accuracy in individual neurons and neurons’ 

standardized object value regression coefficients, shown separately for object value A (upper 

panels, pre-cue period) and value sum (lower panels, fixation period). d. Decoding 

performance as a function of neuron number for object value and value sum in fixation period 

(top) and pre-cue period (bottom). Asterisks indicate significant differences in decoding 

accuracy for object value and value sum. 
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Fig. 8. Summary of present findings. a. DLPFC contains subpopulations of neurons that are 

non-selective for object value but code value precursor variables, including object reward and 

choice history. We suggest that convergence of these signals onto postsynaptic DLPFC 

neurons generates the explicit value signals for specific choice objects as observed in single 

DLPFC neurons in the present study. b. Hypothesized relations between DLPFC object value 

neurons and population readout, based on the current data. Individual object value neurons 

learn and update values of specific objects (A, B), signal object-specific values, and convert 

value to choice signals, as suggested by our single-neuron analyses. Curved arrows indicate a 

hypothesized competition process via mutual inhibition
7-9

 (likely involving pools of 

inhibitory interneurons
7-9

 not shown). Convergence of object value signals onto different 

downstream neurons could enable readout of value sum (‘Motivation’), signed value 

difference (‘Decision-making’) and unsigned value difference (‘Confidence’), as suggested 

by our population decoding analyses; these quantities are conceptually linked with specific 

motivational and decision processes.  
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