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Abstract 
We propose that self-control failures, and variation across individuals in self-control 
abilities, are partly due to differences in the speed with which the decision-making 
circuitry processes basic attributes, such as tastiness, versus more abstract attributes, such 
as healthfulness. We tested these hypotheses by combining a dietary-choice task with a 
novel form of mouse tracking that allowed us to pinpoint when different attributes were 
being integrated into the choice process with temporal resolution at the millisecond level. 
We found that, on average, tastiness was processed about 195 ms earlier than 
healthfulness during the choice process. We also found that 13% to 39% of observed 
individual differences in self-control ability could be explained by differences in the 
relative speed with which tastiness and healthfulness were processed. 

 

Keywords 

decision making, self-control, food, delay of gratification, individual differences, open 
data, open materials 

Received 11/19/13; Revision accepted 9/27/14 

 

A large fraction of the population struggles with dietary self-control. For these people, a 
choice between an apple and a chocolate chip cookie is more difficult than a choice 
between an apple and an orange, and is also more likely to result in decision mistakes 
(Rangel, 2013). This leads to two basic questions: Why is sustained dietary self-control 
so difficult for so many? Why do some individuals have better self-control than others? 
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These important questions have received considerable attention in several disciplines, 
including economics, psychology, and neuroscience. Behavioral economists 
conceptualize self-control failures as instances in which individuals overdiscount the 
future consequences of their decisions (Ikeda, Kang, & Ohtake, 2010; Laibson, 1997; 
O’Donoghue & Rabin, 1999). Related to this idea is the proposal that dietary self-control 
is hard because of inherent limitations in how people process two different types of 
attributes (Liberman & Trope, 2008). In this view, basic attributes, such as the anticipated 
tastiness of foods, are easily represented at the time of choice and reliably weighted in 
decisions. In contrast, taking into account more abstract attributes, such as the 
healthfulness of foods, is thought to require effort, and as a result, these attributes are not 
weighted as reliably in decisions. This leads to a relative overweighting of taste compared 
with health information, which can result in poor dietary choices. Neuroscientists have 
identified neural mechanisms underlying the differences between how tastiness and 
healthfulness are computed at the time of decision in people with good and poor self-
control (Hare, Camerer, & Rangel, 2009). In both groups, areas of ventromedial 
prefrontal cortex (vmPFC) represent the overall value assigned to the food. However, in 
individuals with poor self-control, this area responds only to the taste of foods, whereas 
in individuals with good self-control, it responds to both healthfulness and taste 
information. Furthermore, in individuals with good self-control, areas of left dorsolateral 
prefrontal cortex seem to modulate value-related activity in vmPFC. 

We propose that dietary self-control failures are partly due to differences in the 
speed with which the decision-making circuitry processes basic attributes, such as 
tastiness, versus more abstract attributes, such as healthfulness. To investigate this idea, 
we tested two explanations for the questions posed in the first paragraph. First, we 
hypothesized that dietary self-control is difficult for many because, on average, tastiness 
attributes are processed earlier than healthfulness attributes. Second, we hypothesized 
that individual differences in dietary self-control abilities are related to differences in the 
relative speed with which tastiness and healthfulness attributes are processed. In 
particular, does the ability to deploy self-control decrease with increasing delays of the 
start of health-information processing, relative to taste-information processing? 

These two hypotheses were inspired by a robust implication of several models of 
choice, including decision-field theory (Busemeyer & Townsend, 1993); the drift-
diffusion model (Ratcliff & McKoon, 2008); and the leaky, competing-accumulator 
model (Usher & McClelland, 2001). As illustrated in Figure 1, these models assume that 
the brain makes decisions by computing a dynamic signal that measures the value of two 
possible responses: for example, choosing to eat a cookie (“yes”) or declining it (“no”). 
At every instant, the signal estimates the relative value of “yes” by adding a noisy 
measure of the value of the item, given by a weighted linear combination of the item’s 
attributes plus some Gaussian noise. A choice is made the first time one of two 
preestablished barriers is crossed: “Yes” if the upper one is reached first and “no” if the 
lower one is reached first. A critical feature of this model is that an attribute can affect the 
evolution of the value signal only if it is being represented at that instant. Thus, as in 
Figure 1, if taste information is processed starting at 500 ms, but health information is 
processed only starting at 1,000 ms, then during the interim, the value signal is influenced 
only by taste information. This would move the signal closer to the choice to eat the 
cookie and decrease the likelihood of declining it. In fact, if the onset of health-
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information processing is sufficiently delayed, a choice will be made before it can 
influence the decision at all. 

 

 
Figure 1. Illustration of how the time at which attributes are computed 
could affect choices in sequential integrator models of choice. Consider an 
example in which the subject needs to decide whether to eat a food that is 
a little tasty but very unhealthy. Suppose also that taste information is 
computed from 500 ms until a decision is made, whereas health 
information is computed only after 1,000 ms. A choice is made by 
computing a dynamic value signal that starts at zero and sequentially 
integrates a weighted linear sum of the attributes represented at this time 
plus noise. These weights can be interpreted as the true preferences that 
the individual is trying to maximize. A choice is made the first time the 
integrated value signal crosses one of the two preestablished barriers: 
“yes” to eat the item and “no” to decline it. For simplicity, the integrated 
value signal is depicted without noise. The gap in processing times then 
implies that only taste information affects the value signal between 500 
and 1,000 ms, which increases the likelihood that an unhealthful choice 
will be made. 

 

These hypotheses are related to the previous literature (Hare et al., 2009), but we 
posit a different and novel mechanism underlying difficulties in the ability to exercise 
self-control. The emphasis in the present study was on the speed at which attributes are 
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processed and not on differences in the ability to process the attributes or on how they 
would be weighted under the individual’s true preference (i.e., if choices could be made 
without noise). In particular, differences in the speed of processing can generate 
differences in the relative influence of healthfulness and tastiness on the final decision, 
but such weighting differences need not be due to differences in processing speed. This 
distinction is important because many contextual variables (e.g., time pressure) could 
have a direct effect on the relative speed at which different attributes are computed 
without directly affecting how they influence choice. 

To test these hypotheses, it is necessary to have a dynamic measure of the extent 
to which different attributes are integrated into the choice process while the decision is 
being made and for this measure to provide subsecond temporal resolution. Building on 
the pioneering mouse-tracking literature (Dale, Kehoe, & Spivey, 2007; Dshemuchadse, 
Scherbaum, & Goschke, 2013; Freeman & Ambady, 2009; Freeman, Ambady, Rule, & 
Johnson, 2008; McKinstry, Dale, & Spivey, 2008; Song & Nakayama, 2008; Spivey, 
Grosjean, & Knoblich, 2005), we asked subjects to indicate their choice between two 
options using a continuous computer-mouse movement. By measuring the mouse 
positions along the trajectory, we can infer the state of the choice process prior to the 
final decision. Scherbaum, Dshemuchadse, and Goschke (2012) propose a related link 
between connectionist models and intertemporal choice. 

Method 
Subjects 
Twenty-eight students (25% female, 75% male; 93% right-handed) participated in the 
experiment, which was approved by the California Institute of Technology’s Institutional 
Review Board. Subjects received $25 for their participation. They were asked to fast for 4 
hr prior to the experiment. Compliance with this instruction was monitored by self-report. 

Task 

Subjects performed three tasks, always in the same order. First, over three separate 
blocks, they rated 160 different foods in terms of (a) tastiness (“How tasty is this food?”), 
(b) healthfulness (“How healthy is this food?”), and (c) overall liking (“How much would 
you like to eat this food at the end of the experiment?”). Block and stimulus order were 
randomized across subjects. All ratings were made on a 5-point scale (−2, very little, to 2, 
very much). On the basis of pretesting, we selected food stimuli in which healthfulness 
and tastiness had minimal correlation for a typical subject (r = .2, p < .001). The foods 
included fruits, candies, chips, and granola bars. On every rating trial, a single color 
image was presented at the center of the screen (~5.6  4.3 in.), on a black background, 
and in high resolution (1,680  1,050 pixels) on 20.1-in., 96 dots-per-inch LCD monitors. 

Second, subjects were asked to read a short excerpt from WebMD.com on the 
importance of healthy eating (see Fig. S1 in the Supplemental Material available online). 
This was done to increase the frequency with which they exhibited dietary self-control in 
the subsequent food-choice task. 

Third, subjects made 280 binary choices among randomly selected pairs of foods. 
Food pairs were selected so that all possible combinations of tastiness and healthfulness 
ratings were equally represented (excluding any foods rated as neutral in either category). 
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Choices were made in 40-trial blocks, with short rests in between. There were two types 
of trials. In six randomly selected blocks, subjects used the mouse to indicate their choice 
(mouse trials). In the other block, they used the keyboard to enter their response 
(keyboard trials). Subjects were informed of the type of the trial at the beginning of each 
block. 

Figure 2a depicts a typical mouse trial. The trial began with the display of a box 
containing the word “START” at the bottom center of a black screen. Subjects had to 
click in this box to start the trial. This was followed by a blank screen of random duration 
drawn from a uniform distribution of 200 to 500 ms (mean duration = 350 ms), during 
which the mouse cursor disappeared from the screen. At the end of this blank screen, the 
mouse cursor reappeared in the bottom center of the screen, where the start box used to 
be, and pictures of two foods appeared, one at the top left and one at the top right of the 
screen, respectively, each surrounded by a white box (174  131 pixels).  

Subjects were instructed to select which of the two foods they preferred by 
moving the cursor continuously to the box inside which their preferred food was 
displayed. The location of foods (left vs. right) was completely randomized. Once the 
subject clicked inside one of the food boxes, a choice was recorded. Subjects could take 
as long as they wanted to make their response, but they were instructed to respond as 
quickly and accurately as possible. The foods did not appear until a mouse movement 
was detected. This was done to promote fluid mouse movements during the choice 
process. Cursor velocity was significantly greater than zero for normalized Time Points 1 
through 99 (two-tailed t test; p < .01, uncorrected for multiple comparisons; see the Time 
Normalization section below), which suggests that movements were fluid on average. 
Trials were separated by a fixation of random duration (400–700 ms; M = 550 ms). 

 

 
Figure 2. The mouse tracking choice task. Each trial (a) began when 
participants clicked the start box. After a blank screen of random duration, 
participants were shown two pictures, each of which depicted a different 
food, and they had to move the cursor continuously starting from its 
position at the bottom of the screen to select one. Two representative 
mouse paths for Subject 1 are shown in (b) for trials on which the left-
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hand food and the right-hand food, respectively, were selected. Mean 
paths for the same subject are shown in (c). 

 

 

Keyboard trials had a structure identical to that of mouse trials, except for the 
following differences. Subjects kept two fingers over the keyboard buttons associated 
with left and right responses at all times and did not use the mouse. Trials were initiated 
by pressing the space bar. Foods appeared automatically after the blank screen preceding 
the food display. Subjects indicated their choices by pressing the left or right keys. 

Subjects were incentivized to care about their choices by giving them, at the end 
of the experiment, one food they chose on a single, randomly selected trial. Subjects were 
asked to remain in the lab following the choice task until they had eaten the food or 30 
min had expired, whichever occurred first. Since they did not know in advance which 
trial would be selected, their best strategy was to treat every choice as if it were the only 
one. 

Mouse tracking 
During mouse trials, the cursor’s x,y position was tracked using the Psychophysics 
Toolbox (Brainard, 1997) with a temporal resolution of 67 Hz. For our analyses, we 
shifted and normalized the coordinates so that the center of the start box—the location at 
which the cursor appeared—was at (0,0), the pixel clicked to select the left option was at 
(−1,1), and the pixel clicked to select the right option was at (1,1). 

Data preprocessing 
To reduce some of the noise caused by trials on which subjects seemed to have difficulty 
complying with the instruction to make continuous and rapid mouse movements, we 
applied two preprocessing steps to the mouse data. First, for each subject, mouse trials 
with reaction times (RTs) greater than two standard deviations above their mouse-trial 
mean were excluded from further analysis (13.3% of all trials). The mean RT in mouse 
trials was 1,814 ms (SD = 524 ms). Second, we also removed a small fraction of trials in 
which the mouse trajectory crossed the y-axis more than three times (a mean of 3.3% of 
trials per subject; 26 of 28 subjects had at least one such trial). In contrast, as illustrated 
in Figure 2b, most trials involved one or two changes of direction. These criteria were 
selected a priori, were not based on their effect on the analyses, and did not have a 
qualitative impact on the results. 

Time normalization 
To facilitate comparison across trials with large differences in RTs, we normalized time 
in most of the analyses. In particular, the duration of every trial was sliced into 101 time 
bins of identical length, with the start position at (0,0) designated as t = 1 and the time a 
choice was recorded as t = 101. Thus, the index t provides a measure of normalized time. 

We also carried out all of the analyses using absolute time and found similar but 
noisier qualitative results. We believe that this is due to sizable cross-subject differences 
in RTs, which might reflect differences in underlying cognitive-processing speeds. Such 
differences would render these analyses problematic, because absolute time would then 
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reflect different stages of cognitive processing in different subjects. In contrast, this issue 
does not arise in the time-normalized analyses. 

Trajectory analyses 
We conducted two types of trajectory analyses. First, we estimated several linear 
regressions of how the trajectory angle at every normalized time point was affected by 
the attributes of the foods. The trajectory angle at time t provided a measure of the angle 
between t and t + 1 and was normalized such that −45 always indicated a direct 
movement toward the left item, 0 always indicated a movement straight upward, and 
+45 always indicated a direct movement toward the right item. These regressions were 
estimated at the individual level, and then the relevant estimated coefficients were pooled 
across subjects. 

We also used the results from these regressions to identify the earliest 
(normalized) time at which various properties of the foods had a significant and lasting 
influence on the trajectories. This was done by carrying out a one-tailed test of the 
hypothesis that the estimated regression coefficient of interest would be significant at the 
5% level, for each individual and time index. We used one-tailed tests because we were 
interested in when they would become positively significant. The earliest time window at 
which the test was satisfied was then labeled as the earliest time at which the variable of 
interest had a significant positive impact on the mouse trajectory for that subject. 
Notably, the test requires that the variable maintain its significance from that time point 
through the end of the trial. Group comparisons were then performed using two-sided t 
tests on the relevant distribution of individual statistics. For expositional reasons, further 
details on the trajectory analyses are provided in the relevant parts of the Results section. 

Results 
To test whether the relative speed with which tastiness and healthfulness are computed 
affects dietary self-control, it was necessary to have a good measure of how the influence 
of these attributes evolves over the decision process. Here, we constructed such a 
measure by asking subjects to indicate their choice using a continuous mouse movement, 
with positions along the trajectory serving to measure the state of the choice process prior 
to the final decision. This was a critical aspect of our experiment because it allowed us to 
identify, prior to the final decision, the time at which the tastiness and healthfulness 
attributes began influencing choice. The method was justified as long as movements of 
the computer mouse were correlated, at every instant, with changes in the integrated 
value signal illustrated in Figure 1. In this case, if the trajectory of the mouse at time t 
was affected by health information, then we could conclude that the underlying relative 
value signal of interest was also being modulated by healthfulness at that time. 

To see the power of this technique, consider a hypothetical example. Suppose that 
the mouse trajectories for a given subject have the following two properties. First, the 
relative position between the left and right options, as measured by x-position, is 
significantly related to the relative tastiness rating of the items on the left and right (i.e., 
tastinessright – tastinessleft) after 300 ms but not before. Second, the x-position is also 
related to the relative healthfulness rating of the foods on the right and the left (i.e., 
healthfulnessright – healthfulnessleft) after 800 ms but not before. Then we could conclude 
that attributes of tastiness were processed by the choice circuitry 500 ms earlier than 
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attributes of healthfulness. Furthermore, the technique allowed us to test whether 
differences in the earliest time at which health and taste information were processed 
could explain differences in dietary self-control across individuals. 

Paradigm validation 
We began the analysis by carrying out several tests designed to address concerns about 
the validity of the paradigm. One natural concern is that requiring subjects to indicate 
their choices with a mouse, instead of more common methods, such as a button press, 
might affect the choices or the computations of the choice circuitry. To address this 
concern, we asked subjects to make otherwise identical choices using either the keyboard 
or the mouse, and then we compared the behavior in both conditions. Figure 3a depicts 
the average choice curve for each condition, plotting the probability of choosing left 
against the relative value of the left item (measured by likingleft – likingright).  

We found that the two methods of choosing led to indistinguishable choice curves 
(mouse: mean logistic slope = −0.37; keyboard: mean logistic slope = −0.33), t(27) = 
1.25, p = .22 (two-tailed). Figure 3b plots mean RT as a function of choice difficulty 
(measured by likingleft – likingright). RTs were longer in the mouse condition (M = 1,814 
ms) than in the keyboard condition (M = 1,258 ms), t(27) = 4.54, p = .0001 (two-tailed), 
likely because of the additional motor complexity of the mouse-tracking task. However, 
in both cases, RTs decreased with choice difficulty (mouse: mean linear regression slope 
= −0.036; keyboard: mean linear regression slope = −0.051), t(27) = −1.36, p = .18 (two-
tailed). This pattern is a common property of binary choice (Ashby, 1983; Luce, 1986; 
Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010; Ratcliff & Rouder, 1998; Rolls, 
Grabenhorst, & Deco, 2010) and a key prediction of the type of integrator models of 
decision making discussed in the introduction. These results suggest that the nature of the 
choice process was not substantially altered by the use of mouse tracking. 
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Figure 3. Results of the analyses validating the paradigm. Average 
psychometric choice curves for mouse and keyboard trials (a) are plotted 
for the probability of choosing left as a function of the relative value of the 
left item over the right item. Mean reaction time (b) is shown as a function 
of choice difficulty, as measured by the absolute value of the difference 
between liking for the right item and for the left item. A 0 indicates a 
difficult choice between two equally liked foods, and a 4 indicates an easy 
choice between foods with opposite liking ratings. The graph in (c) depicts 
the results of a regression analysis showing the impact of the relative value 
of the right item over the left item (likingright – likingleft) on the mouse’s 
angle trajectory, measured at each normalized time window. Error bands 
in graphs (a–c) denote standard errors computed across subjects. The 
distribution of self-control success ratios (SCSRs) across subjects is 
shown in (d). The SCSR was defined as the fraction of trials in which self-
control was successfully exercised when subjects were presented with one 
food that had a higher healthfulness rating and another food that had a 
higher tastiness rating. 

 

Another natural concern is that the mouse trajectories might not provide a good 
measure of the extent to which the properties of the foods are dynamically incorporated 
in the decision process. This could happen, for example, if individuals always made their 
decision before moving the mouse and then made a very rapid straight movement to the 
chosen option. The paths depicted in Figures 2b and 2c suggest that this was not the case, 
but we also conducted a more rigorous test. For each normalized time window and each 
individual, the local angle trajectory was regressed against the relative value of the two 
options (as measured by likingright – likingleft). The estimated slope, plotted in Figure 3c 
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across the 101 time windows, provides a measure of the extent to which the value 
information influenced the choice process at different times. We found that, across 
subjects, the earliest time point at which the value information had a sustained, 
significant effect on the trajectories, without ever returning to being nonsignificant, was 
56. Furthermore, the impact of value rose gradually over the course of the trial. In 
contrast, if subjects had made their choice before moving their mouse and then had 
responded very rapidly with a straight trajectory, the time course depicted in Figure 3c 
would look approximately like a step function. The resulting coefficients suggest that the 
information about the choice options was incorporated gradually into the choice process 
and that the magnitude of the effect could be measured with our methodology. 

Finally, we tested whether there was cross-subject variation in the ability to 
exercise dietary self-control. This is important because we were interested in the extent to 
which individual differences in self-control could be explained by differences in the 
speed with which tastiness and healthfulness attributes are computed. To measure self-
control success for each subject, we first divided trials into those that entailed a self-
control challenge and those that did not. Challenge trials involved a choice between two 
foods, in which one food had a higher healthfulness rating and the other had a higher 
tastiness rating. In this case, successful self-control occurred when the subject chose the 
healthier item, whereas choosing the tastier item constituted a self-control failure. In 
contrast, in nonchallenge trials, one of the items had a higher rating in both dimensions, 
and thus there was no need to exercise self-control. Given this, we defined a subject’s 
self-control-success ratio (SCSR) to be the fraction of challenge trials in which self-
control was successfully exercised. Figure 3d, which depicts the distribution of SCSRs 
across subjects, shows that there was substantial variation across subjects (M = 25%, 
range = 2–78%). There were no significant RT differences between challenge trials (M = 
1,782 ms) and nonchallenge trials (M = 1,701 ms), t(27) = 0.78, p = .44 (two-tailed), 
which is consistent with the hypothesis that subjects utilized a similar decision process in 
both types of trials. 

Tastiness and healthfulness in the choice process 
To test whether taste information influenced the choice process earlier than health 
information, we examined how mouse-angle trajectories across successive normalized 
time windows were weighted on taste and health information. For every subject and time 
window, we estimated a linear regression of the angle trajectory on relative tastiness 
(tastinessright – tastinessleft) and relative healthfulness (healthfulnessright – healthfulnessleft). 
The resulting estimated coefficients provide a measure of the extent to which each 
attribute influences the choice process at that time window. Figure 4a summarizes the 
effect of these regressions by plotting the mean time course of the estimated coefficients, 
as well as the times at which the distribution of estimates for the group first became 
significantly larger than zero without ever returning to being nonsignificant. As 
hypothesized, mouse trajectories were influenced by tastiness at significantly earlier time 
windows (t = 55) compared with healthfulness (t = 67; p < .05 threshold, one-tailed).  

We carried out an additional test of the same hypothesis by estimating the earliest 
normalized time at which the effect of each attribute became significant without 
subsequently becoming nonsignificant, separately for each individual, and then 
comparing their distributions. We found that healthfulness never became a significant 
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influence on the trajectory for 32% of subjects, whereas for tastiness this happened for no 
subjects. Furthermore, as shown in Figure 4b, we also found that the mean earliest time 
for a significant effect of healthfulness was later than the mean earliest time for tastiness 
(mean difference = 9.11), t(18) = −1.97, p = .032 (one-tailed). 

 
Figure 4. Effect of taste and health attributes on mouse trajectories. 
Results from the regression analyses exploring the mean effect of the 
relative tastiness of the right item over the left item (tastinessright – 
tastinessleft) and the relative healthfulness of the right item over the left 
item (healthfulnessright – healthfulnessleft) is shown in (a) at each 
normalized time window. Error bands denote standard errors. Vertical 
lines indicate the earliest time at which each attribute became and 
remained significantly greater than zero. The distribution of individual 
estimates of the earliest time at which each attribute significantly affected 
the trajectory is shown in b. 

 

Together, these results suggest that, on average, taste information began to 
influence the choice process about 9% earlier than health information. Given the average 
duration of the trials, this corresponded to an onset of health-attribute processing by the 
choice circuitry approximately 195 ms later than the onset for tastiness. 

Dietary self-control and the speed at which tastiness and healthfulness are computed 
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To address whether individual differences in dietary self-control were associated with 
differences in the relative speed at which the healthfulness and tastiness attributes were 
computed, we began by comparing how taste and health information were reflected in the 
mouse trajectories for individuals with high versus low self-control, as defined using a 
median split of the SCSR statistic. As shown in Figure 5a, we found substantial 
differences across the groups. In particular, in the high-self-control group, the paths for 
tastiness and healthfulness were quite similar and became significantly greater than zero 
at approximately the same time (healthfulness: t = 67; tastiness: t = 60). In contrast, for 
the low-self-control group, the latency at which tastiness became significant was similar 
to that of the high-self-control group (t = 56), but the latency for healthfulness occurred 
much later (t = 85). As before, we tested for the significance of these differences by 
estimating at the individual level the earliest time at which healthfulness become 
significantly greater than zero and then comparing the distributions. The normalized time 
at which tastiness and healthfulness became significant did not differ significantly for 
high-self-control subjects (mean healthfulness: t = 69.50; mean tastiness: t = 68.54; mean 
difference = −2.9), t(9) = −0.46, p = .33 (one-tailed), but they were significantly different 
in the low-self-control group (mean healthfulness: t = 81.22; mean tastiness: t = 61.35; 
mean difference = −16), t(8) = −2.5, p = .02 (one-tailed). 

 

 
Figure 5. Individual differences in self-control. The graph (a) shows 
results from the regression analyses exploring the effect of the relative 
tastiness of the right item over the left item (tastinessright – tastinessleft) and 
the relative healthfulness of the right item over the left item 
(healthfulnessright – healthfulnessleft) on the mouse trajectory, computed 
separately for individuals with high and low self-control. Error bands 
denote standard errors. Vertical lines indicate the earliest time at which 
each attribute became significantly different from zero. The scatter plot in 
(b; with best-fitting regression line) shows self-control-success ratios 
(SCSRs) as a function of the difference between the earliest time at which 
healthfulness became significant minus the earliest time at which tastiness 
became significant. Circles indicate subjects for whom both tastiness and 
healthfulness had a significant effect on trajectories before the end of the 
trial. Crosses indicate subjects for whom it did not; for those subjects, the 
value of the earliest time for health was set to 102.  
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Figure 5b takes this analysis a step further. For each subject, we computed a 
measure of the computational advantage of tastiness, given by the earliest time at which 
tastiness significantly affected and continued to affect the trajectories minus the earliest 
time at which healthfulness did. We then estimated a linear regression of the SCSR 
measures of self-control against the individual measures of the computational advantage 
for tastiness versus healthfulness. This regression tested the extent to which individual 
differences in self-control could be attributed to individual differences in the relative 
speed at which the healthfulness and tastiness attributes are processed. Since 
healthfulness never became significant for 32% of the subjects, we carried out the test in 
two different ways. In one case, we assumed that for the problem subjects, healthfulness 
first became significant at t = 102, one time point after the final time point, and estimated 
the regression using all of the subjects (linear regression slope = 0.005, p < .0004, R2 = 
.39). In the other case, we simply excluded these subjects, carrying out the regression 
using only the 67.9% of subjects for whom healthfulness became significant during the 
trial. This yielded a similar result (linear regression slope = 0.005, p = .02, R2 = .29). 

We also carried out an additional analysis to rule out a potential confound in these 
results. To understand the concern, suppose that healthfulness and tastiness begin to 
influence the true data-generation process at the same instant but that, on average, the 
weight given to tastiness in the instantaneous value signal being integrated is larger than 
the average weight given to healthfulness. In this case, if the noise associated with both 
signals is sufficiently similar, a test based on significance time will identify an earlier 
entrance for tastiness than healthfulness purely on the basis of the ratio of the weight to 
the noise and may falsely overestimate the difference in significant times. Furthermore, 
this potential bias would be correlated with the relative “true” weights of healthfulness 
and tastiness, and thus with the SSCR measure, which could lead to a spurious 
correlation. Figure 6 depicts the results of an analysis designed to control for this 
problem. For every subject and for every percentile value p between 10% and 90%, we 
used the previous regression results to identify the time at which each of the attributes 
reaches and never drops below p% of its final magnitude. This leads to the plot in Figure 
6a, which depicts the speed at which healthfulness and tastiness reach different 
thresholds. We then fit a cubic polynomial to the estimates of each subject, separately for 
healthfulness and tastiness, and interpolated its value to the y-axis, which provides a 
measure of the earliest time at which each of the attributes begins and continues to 
influence the mouse trajectories. Note that this measure does not depend on the final 
weights that the attributes have on choice and is fairly robust to noise. As shown in 
Figure 6b, we found that the differences in earliest significant time identified with the 
previous analysis were highly correlated with those identified with this new method (R2 = 
.51, p = .006). Likewise, the alternative measure of the relative earliest times can still 
significantly predict a sizable fraction of the individual differences in self-control (Fig. 
6c; R2 = .13, p = .059). 
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Figure 6. Results from the control analysis. The graph (a) shows the 
estimated normalized time at which each attribute’s weighting on cursor 
trajectory had accumulated a percentage of its final value. Error bands 
denote standard errors. The cross-subject scatter plot in (b; with best-
fitting regression line) shows the relationship between significance time 
(the earliest time at which tastiness significantly affected the trajectory 
minus the earliest time at which healthfulness did) as a function of the 
intercept-based measure of the time advantage of tastiness over 
healthfulness. Circles indicate subjects for whom healthfulness had a 
significant effect on trajectories before the end of the trial, and crosses 
indicate subjects for whom healthfulness did not have such an effect. The 
cross-subject scatter plot in (c; with best-fitting regression line) shows the 
correlation between self-control-success ratios (SCSRs) and the intercept-
based measure of the time advantage for tastiness. 

 

Together, these results suggest that a sizable fraction of individual differences in 
dietary self-control, on the order of 13 to 39%, might be attributable to differences in the 
relative speed at which the healthfulness and tastiness attributes are processed by the 
choice circuitry. 

Relative computation time and attribute decision weights 
The previous results suggest that the relative speed at which healthfulness and tastiness 
are computed is related to the ability to exercise dietary self-control. We concluded our 
investigation by carrying out a post hoc analysis to examine further the nature of the 
relationship. This was done in two steps. 
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First, Figure 7a depicts the extent to which differences in SCSRs are related to 
differences in the weights given to the tastiness and healthfulness attributes in the final 
decision. The plot was constructed as follows. For every subject, we computed a logistic 
regression of the probability of choosing the right item against relative tastiness 
(tastinessright – tastinessleft) and relative healthfulness (healthfulnessright – healthfulnessleft). 
This provided individual estimates of the weights that each attribute received on the final 
decision. We then plotted the individual estimates against the SCSR, and for each type of 
attribute, we carried out a linear regression of the SCSR measure against the individual 
estimates. Both attributes were highly significant and, on their own, explained a sizable 
fraction of the individual differences in self-control (healthfulness: p = .0004, R2 = .39; 
tastiness: p = .0004, R2 = .38). 

 
Figure 7. Relationship between final decision weights and speed of 
computation. The scatter plot in (a) depicts self-control-success ratios 
(SCSRs) as a function of final decision weight for the healthfulness and 
tastiness attributes. Lines denote the best linear fits for the regressions of 
SCSRs on each of the attribute weights, separately. The scatter plot in (b; 
with best-fitting regression line) shows relative final decision weight as a 
function of the earliest time at which tastiness significantly affected the 
trajectory minus the earliest time at which healthfulness did. Circles 
indicate subjects for whom healthfulness had a significant effect on 
trajectories before the end of the trial, and crosses indicate subjects for 
whom healthfulness did not have such an effect.  

 

Second, we hypothesized that the final decision weights for tastiness and 
healthfulness were influenced by the speed with which the attributes were computed. 
This hypothesis was based on the idea that the earlier an attribute starts influencing the 
choice process, the longer it is integrated and thus the stronger its effect on the final 
choice. This hypothesis is consistent with the type of integrator decision models 
described in the introduction. To test this hypothesis, we regressed the individual 
estimates of the final relative decision weight of healthfulness minus tastiness on the 
computational advantage of tastiness, as defined in the previous section. As shown in 
Figure 7b, we found that the two variables had a significant and sizable relation (slope = 
−0.02, p = .001, R2 = .487). 
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Given these results, we then hypothesized that the main mechanism through 
which the speed of attribute processing influences SCSRs is the modulation of the weight 
assigned to each attribute in the final choice. To test this hypothesis, we carried out a 
mediation analysis. Using this method, we found that the when the final weight of 
tastiness was included in the model, tastiness’s time to significance was reduced by 
79.14%, which made tastiness’s time to significance nonsignificant for predicting SCSR 
(p = .60). This was also true for the healthfulness coefficient, which when added to the 
model reduced path strength by 88.26%, making healthfulness’s time-to-significance 
nonsignificant for predicting SCSR (p = .75). See Figure S2 in the Supplemental Material 
for details. 

Together, these results suggest that attributes that are computed earlier have a 
stronger weight in the final decision, likely because the amount of time during which they 
are integrated into the decision is relatively increased. In particular, this suggests that 
initial delays in the computation of an attribute are not made up later on during the choice 
process, for example, by a heavier weighting closer to the time of decision. 

Discussion 
In this study, we proposed that dietary self-control failures can be traced back to relative 
differences in the speed with which the decision-making circuitry processes basic 
attributes, such as tastiness, versus more abstract attributes, such as healthfulness. We 
found evidence that, on average, tastiness attributes are processed about 195 ms earlier 
than healthfulness attributes during the choice process. We also found that individual 
differences in dietary self-control are related to differences in the relative speed with 
which tastiness and healthfulness are processed. In particular, we found that self-control 
decreases with increasing lag between the onset of taste- and health-information 
processing. 

Since several alternative mechanisms are likely to be at work in dietary self-
control (Baumeister & Vohs, 2004; Beaver et al., 2006; Hare et al., 2009; Harris, Hare, & 
Rangel, 2013; Hutcherson, Plassmann, Gross, & Rangel, 2012; Ikeda et al., 2010; 
Loewenstein, 1996; Muraven & Baumeister, 2000), we were surprised to find that 
between 13% and 39% of observed individual differences in self-control ability could be 
explained by differences in the relative speed with which tastiness and healthfulness are 
processed. By comparison, previous studies have found that personality traits such as 
impulsivity or IQ can explain only around 13% and 5%, respectively, of individual 
differences in self-control (de Wit, Flory, Acheson, McCloskey, & Manuck, 2007; 
Mitchell, 1999; Shamosh & Gray, 2008; Steinberg et al., 2009). 

Our results are consistent with basic ideas from a wide class of integrator models 
of decision making, including decision-field theory; the drift-diffusion model; and the 
leaky, competing-accumulator model. Despite technical differences, in all of these 
models, decisions are made by dynamically integrating information for and against the 
different options (Bogacz, 2007; Rangel & Clithero, 2013). At every instant during the 
choice process, the decision circuitry receives instantaneous information about the 
attributes associated with each stimulus under consideration and integrates them into a 
dynamic value signal that measures the relative value of the two options. A decision is 
made when the relative-value signal becomes sufficiently large or sufficiently small. 
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These models are an important benchmark for understanding self-control because they 
have been shown to account, with high quantitative accuracy, for psychometric choice 
data. Notably, they predict that the earlier an attribute is processed, the longer it is 
integrated into the relative-value measure, and thus the larger the weight that the attribute 
receives in the final decision. Thus, these models provide computational foundations for 
our findings. 

Our study borrows heavily from the pioneering mouse-tracking literature, which 
has been used to study intertemporal choice (Dshemuchadse et al., 2013), visual search 
(Song & Nakayama, 2008), stereotyping (Freeman & Ambady, 2009), and 
psycholinguistics (Spivey et al., 2005). However, we used the mouse-tracking data in a 
different way. Whereas most mouse-tracking studies focus on comparisons between the 
average paths generated by various experimental conditions, we used regression analyses 
to identify the time at which different stimulus attributes begin influencing choice. (See 
Dshemuchadse et al., 2013; Scherbaum, Dshemuchadse, Fischer, & Goschke, 2010; 
Scherbaum, Dshemuchadse, Leiberg, & Goschke, 2013, for related uses of mouse-
tracking data.) 

Our study also suggests a potential mechanism by which the difficulty and 
abstractness of attributes may influence the choice process (Liberman & Trope, 2008). 
Rather than simply resulting in a weaker representation of attributes such as 
healthfulness, as is sometimes assumed, the abstractness of attributes might also affect 
the speed with which they are processed. One limitation of our study is that we cannot 
disentangle the influence that processing difficulty and processing speed have on self-
control. In fact, it is possible that, in some contexts, both effects might be correlated. 
Future work will be needed to tease apart the relative roles of these two mechanisms. 

Several implications of these findings merit future investigation. First, these data 
suggest that slowing down decisions, even if only by adding a waiting period before 
choice, might increase the relative influence of abstract attributes such as healthfulness 
on final choice. To see why, note that at longer decision times, there is a decrease in the 
fraction of time during which only the tastiness attribute is computed. Indeed, there is 
already a literature suggesting the influence of time pressure on choice (e.g., Reutskaja, 
Nagel, Camerer, & Rangel, 2011; Suter & Hertwig, 2011). Second, our results suggest 
that self-control could be improved by interventions that increase the relative speed with 
which health information is processed. Consistent with this, a previous study showed that 
simply cuing subjects to pay attention to healthfulness can improve dietary self-control 
(Hare, Malmaud, & Rangel, 2011). Third, these findings provide a rationale for 
regulating marketing practices that increase the relative ease with which abstract 
attributes such as healthfulness are processed. For example, prominently displaying 
health information (e.g., calorie counts) may allow more rapid integration of 
healthfulness attributes.  

The fourth reason these findings merit future investigation is that they provide a 
potential mechanism through which differences in cognitive abilities might affect self-
control. For example, individuals with higher IQ might be relatively faster at processing 
abstract attributes, such as healthfulness, which increases their self-control. Fifth, the 
relative speed of attribute processing might also play a role in other types of decisions in 
which basic and abstract information need to be combined. Potential examples include 
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altruism, in which information about the self might be calculated faster than information 
about others, and any decision involving discounting, in which information about 
immediate rewards might be processed earlier than information about future rewards. 
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