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Human VMPFC encodes early signatures
of confidence in perceptual decisions
Sabina Gherman, Marios G. Philiastides*

Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United
Kingdom

Abstract Choice confidence, an individual’s internal estimate of judgment accuracy, plays a

critical role in adaptive behaviour, yet its neural representations during decision formation remain

underexplored. Here, we recorded simultaneous EEG-fMRI while participants performed a

direction discrimination task and rated their confidence on each trial. Using multivariate single-trial

discriminant analysis of the EEG, we identified a stimulus-independent component encoding

confidence, which appeared prior to subjects’ explicit choice and confidence report, and was

consistent with a confidence measure predicted by an accumulation-to-bound model of decision-

making. Importantly, trial-to-trial variability in this electrophysiologically-derived confidence signal

was uniquely associated with fMRI responses in the ventromedial prefrontal cortex (VMPFC), a

region not typically associated with confidence for perceptual decisions. Furthermore, activity in

the VMPFC was functionally coupled with regions of the frontal cortex linked to perceptual

decision-making and metacognition. Our results suggest that the VMPFC holds an early confidence

representation arising from decision dynamics, preceding and potentially informing metacognitive

evaluation.

DOI: https://doi.org/10.7554/eLife.38293.001

Introduction
Our everyday lives involve situations where we must make judgments based on noisy or incomplete

sensory information – for example deciding whether crossing the street on a foggy morning, in poor

visibility, is safe. Being able to rely on an internal estimate of whether our perceptual judgments are

accurate is fundamental to adaptive behaviour and accordingly, recent years have seen a growing

interest in understanding the neural basis of confidence judgments.

Within the perceptual decision making field, several studies have sought to characterise the neu-

ral correlates of confidence during metacognitive evaluation (i.e., while subjects actively judge their

performance following a choice), revealing the functional involvement of frontal networks, in particu-

lar the lateral anterior and anterior cingulate prefrontal cortices (Fleming et al., 2012;

Hilgenstock et al., 2014; Morales et al., 2018). Concurrently, psychophysiological work in humans

and non-human primates using time-resolved measurements has shown that confidence encoding

can also be observed at earlier stages, and as early as the decision process itself (Kiani and Shadlen,

2009; Zizlsperger et al., 2014; Gherman and Philiastides, 2015).

In line with these latter observations, recent fMRI studies have reported confidence-related sig-

nals nearer the time of decision (e.g., during perceptual stimulation) in regions such as the striatum

(Hebart et al., 2016), dorsomedial prefrontal cortex (Heereman et al., 2015), cingulate and insular

cortices (Paul et al., 2015), and other areas of the prefrontal, parietal, and occipital cortices

(Heereman et al., 2015; Paul et al., 2015). Interestingly, confidence-related processing has also

been reported in the ventromedial prefrontal cortex (VMPFC) during value-based decisions and vari-

ous ratings tasks (De Martino et al., 2013; Lebreton et al., 2015), however the extent to which this
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region is additionally involved in perceptual judgments relying on temporal integration of sensory

evidence remains unclear.

Importantly, the studies above suggest that confidence is likely to involve a temporal progression

of neural events requiring the involvement of multiple networks, as opposed to a single event or

quantity. Identifying neural confidence representations that arise early in the decision process (e.g.,

prior to metacognitive report or as early as the choice itself) is an important prerequisite in under-

standing the broader confidence-related dynamics, as these signals may provide the basis for

higher-order and more deliberate processes such as metacognitive appraisal. Nevertheless, efforts

to characterise early confidence representations in the human brain have been limited.

One potential limitation in previous approaches to studying the neural representations of confi-

dence is the exclusive reliance on correlations with behavioural measures, most commonly in the

form of subjective ratings given by participants after the decision (Grimaldi et al., 2015). However,

theoretical and empirical work suggests that post-decisional metacognitive reports may be affected

by processes occurring after termination of the initial decision (Resulaj et al., 2009; Pleskac and

Busemeyer, 2010; Fleming et al., 2015; Moran et al., 2015; Murphy et al., 2015; Yu et al., 2015;

Navajas et al., 2016; van den Berg et al., 2016; Fleming and Daw, 2017), such as integration of

existing information, processing of novel information arriving post-decisionally, or decay

(Moran et al., 2015), and may consequently be only partly reflective of early confidence-related

states.

Here we aimed to derive a more faithful representation of these early confidence signals using

EEG, and exploit the trial-by-trial variability in these signals to build parametric EEG-informed fMRI

predictors, thus providing a starting point to a more comprehensive spatiotemporal account of deci-

sion confidence. We hypothesised that using an electrophysiologically-derived (i.e., endogenous)

representation of confidence to detect associated fMRI responses would provide not only a more

eLife digest While waiting to cross the road on a foggy morning, you see a shape in the

distance that appears to be an approaching car. How do you decide if it is safe to cross? We often

have to make important decisions about the world based on imperfect information. What guides our

subsequent actions in these situations is a sense of accuracy, or confidence, that we associate with

our initial judgments. You would not step off the kerb if you were only 10% confident the car was a

safe distance away. But how, when, and where in the brain does such confidence emerge?

Gherman and Philiastides examined how brain activity relates to confidence during the early

stages of decision-making, that is, before people have explicitly committed to a particular choice.

Healthy volunteers were asked to judge the direction in which dots were moving across a screen.

They then had to rate how confident they were in their decision. Two techniques – EEG and fMRI –

tracked their brain activity during the task. EEG uses scalp electrodes to reveal when and how

electrical activity is changing inside the brain, while fMRI, a type of brain scan, shows where these

changes in brain activity occur. Used together, the two techniques provide a greater understanding

of brain activity than either used alone.

Activity in multiple regions of the brain correlated with confidence at different stages of the task.

Certain brain networks showed confidence-related activity while the volunteers tried to judge the

direction of movement, and others were engaged when volunteers made their confidence ratings.

However, activity in only one area reliably indicated how confident the volunteers felt before they

had made their choice. This area, the ventromedial prefrontal cortex, also helps process rewards.

This suggests that feelings of confidence early in the decision-making process could guide our

behaviour by virtue of being rewarding.

Many brain disorders – including depression, schizophrenia and Parkinson’s disease –

compromise decision-making. Patients show changes in accuracy, response times, and in their ability

to accurately evaluate their decisions. The methods used in the current study could help reveal the

neural changes that cause these impairments. This could lead to new methods to diagnose and

predict cognitive deficits, and new ways to treat them at an earlier stage.

DOI: https://doi.org/10.7554/eLife.38293.002
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temporally precise, but also a more accurate spatial representation of confidence around the time of

decision.

To test this hypothesis, we collected simultaneous EEG-fMRI data while participants performed a

random-dot direction discrimination task and rated their confidence in each choice. Using a multivar-

iate single-trial classifier to discriminate between High vs. Low confidence trials in the EEG data, we

extracted an early, stimulus-independent discriminant component appearing prior to participants’

behavioural response. These early representations of confidence correlated across subjects with

measures of confidence predicted by an accumulation-to-bound model of decision making. We then

used the trial-to-trial variability in the resulting confidence signal as a predictor for the fMRI

response, revealing a positive correlation within a region of the VMPFC not commonly associated

with confidence for perceptual decisions. Crucially, activation of this region was unique to our EEG-

informed fMRI predictor (i.e., additional to those detected with a conventional fMRI regressor, which

relied solely on participants’ post-decisional confidence reports). Furthermore, a functional connec-

tivity analysis revealed a link between the activation in the VMPFC, and regions of the prefrontal cor-

tex involved in perceptual decision making and metacognition.

Results

Behaviour
Subjects (N = 24) performed a speeded perceptual discrimination task whereby they were asked to

judge the motion direction of random dot kinematograms (left vs. right), and rate their confidence in

each choice on a 9-point scale (Figure 1A). Stimulus difficulty (i.e., motion coherence) was held con-

stant across all trials, at individually determined psychophysical thresholds. We found that on aver-

age, subjects indicated their direction decision 994 ms (SD = 172 ms) after stimulus onset and

performed correctly on 75% (SD = 5.2%) of the trials. In providing behavioural confidence reports,

subjects tended to employ the entire rating scale, showing that subjective confidence varied from

trial-to-trial despite perceptual evidence remaining constant throughout the task (Figure 1B).

As a general measure of validity of subjects’ confidence reports, we first examined the relation-

ship with behavioural task performance. Specifically, confidence is largely known to scale positively

with decision accuracy and negatively with response time (Vickers and Packer, 1982; Baranski and

Petrusic, 1998), though this relationship is not perfect, and is subject to individual

differences (Baranski and Petrusic, 1994; Fleming et al., 2010; Fleming and Dolan, 2012). As

expected, we found a positive correlation with accuracy (subject-averaged R = 0.30; one-sample

t-test, t(23) = 13.9, p<0.001) (Figure 1C), and a negative correlation with response time (subject-

averaged R = �0.27; one-sample t-test, t(23) = �7.8, p<0.001) (Figure 1D). Thus, subjects’ confi-

dence ratings were generally reflective of their performance on the perceptual decision task.

Next, we asked whether the observed variability in subjects’ confidence reports could be

explained by sustained fluctuations in attention (i.e., spanning multiple trials). We reasoned that

decreases in attention may be reflected as serial correlations in confidence ratings across trials. To

test this possibility, we performed a serial autocorrelation regression analysis on a single subject

basis, which predicted confidence ratings on the current trial from ratings given on the immediately

preceding five trials. On average, this model accounted for only a minimal fraction of the variance in

confidence ratings (subject-averaged R2 = 0.07). Finally, we sought to rule out the possibility that

trial-to-trial variability in confidence could be explained by potential subtle differences in low-level

physical properties of the stimulus that may go beyond motion coherence (e.g., location and/or tim-

ing of individual dots). To this end, we compared subjects’ confidence reports on the two experi-

mental blocks (consisting of identical sequences of random-dot kinematograms), and found no

significant correlation between these (subject-averaged R = 0.02, one-sample t-test, p=0.44). Taken

together, these results support the hypothesis that subjects’ reports reflected internal fluctuations in

their sense of confidence, which are largely unaccounted for by external factors.

EEG-derived measure of confidence
To identify confidence-related signals in the EEG data, we first separated trials into three confidence

groups (Low, Medium, and High) on the basis of subjects’ confidence ratings. We then conducted a

single-trial multivariate classifier analysis (Parra et al., 2005; Sajda et al., 2009) on the stimulus-
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locked EEG data, designed to estimate linear spatial weightings of the EEG sensors (i.e., spatial pro-

jections) discriminating between Low- vs. High-confidence trials (see Materials and methods). Apply-

ing the estimated electrode weights to single-trial data produced a measurement of the

discriminating component amplitudes (henceforth yCONF), which represent the distance of individual

trials from the discriminating hyperplane, and which we treat as a surrogate for the neural confi-

dence of the decision.

Note that even though participants’ post-decision ratings may not form an entirely faithful repre-

sentation of earlier confidence signals, they can nevertheless be used to separate trials into broad

confidence groups for training the classifier and estimating the relevant discrimination weights at the

time of decision. Data from individual trials, including those not originally used in the discrimination

analysis, were subsequently subjected through these electrode weights to obtain a trial-specific

graded measure of internal confidence. In other words, these electrophysiologically-derived confi-

dence measures depart from their behavioural counterparts in that they contain trial-to-trial informa-

tion from the neural generator giving rise to the relevant discriminating components. As such, these
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Figure 1. Experimental design and behavioural performance. (A) Schematic representation of the behavioural paradigm. Subjects made speeded left

vs. right motion discriminations of random dot kinematograms calibrated to each individual’s perceptual threshold. Stimulus difficulty (i.e., motion

coherence) and was held constant across trials. Stimuli were presented for up to 1.2 s, or until a behavioural response was made. After each direction

decision, subjects rated their confidence on a 9-point scale (3 s). The response mapping for high vs. low confidence ratings alternated randomly across

trials to control for motor preparation effects, and was indicated by the horizontal position of the scale, with the tall end representing high confidence.

All behavioural responses were made on a button box, using the right hand. (B) Mean confidence rating behaviour, showing the frequency with which

subjects selected each point on the confidence scale. (C) Mean proportion of correct direction choices as a function of reported confidence. (D) Mean

response time as a function of reported confidence. Faint grey lines in (B), (C), and (D) indicate individual subject data. For (C) and (D) we excluded any

trial averages based on fewer than five trials.
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estimates can potentially offer additional insight into the internal processes that underlie confidence

at these early stages of the decision.

To quantify the discriminator’s performance over time we used the area under a receiver operat-

ing characteristic curve (i.e., Az value) with a leave-one-out trial cross validation approach to control

for overfitting (see Materials and methods).

We found that discrimination performance (Az) between the two confidence trial groups peaked,

on average, 708 ms after stimulus onset (SD = 162 ms, Figure 2A; see Figure 2—figure supplement

1 for Az locked to the time of rating). To visualise the spatial extent of this confidence component,

we computed a forward model of the discriminating activity (Materials and methods), which can be

represented as a scalp map (Figure 2A). Importantly, both the temporal profile and electrode distri-

bution of confidence-related discriminating activity were consistent with our previous work

(Gherman and Philiastides, 2015) where we used stand-alone EEG to identify time-resolved signa-

tures of confidence during a face vs. car visual categorisation task. Together these observations are

an indication that the temporal dynamics of decision confidence can be reliably captured using EEG

data acquired inside the MR scanner, and that these early confidence-related signals may generalise

across tasks.

To provide additional support linking this discriminating component to choice confidence, we

considered the Medium-confidence trials. Importantly, these trials can be regarded as ‘unseen’ data,

as they are independent from those used to train the classifier. We subjected these trials through

the same neural generators (i.e., spatial projections) estimated during discrimination of High- vs.

Low-confidence trials and, as expected from a graded quantity, found that the mean component

amplitudes for Medium-confidence trials were situated between, and significantly different from,

those in the High- and Low-confidence trial groups (both p<0.001, Figure 2B). To ensure these

results were not due to overfitting, we also repeated the above comparisons using fully out-of-sam-

ple discriminant component amplitudes obtained from our leave-one-out cross-validation procedure

(see Materials and methods), and found that differences remained significant (both p<0.001, Fig-

ure 2—figure supplement 2)

We next examined the relationship between the confidence-discriminating component and objec-

tive performance on the perceptual discrimination task. We found that component amplitudes were

positively correlated with decision accuracy (one-sample t-test on logistic regression coefficients, t

(23)=8.6, p<0.001, Figure 2C), and were consistently higher for correct vs. incorrect responses

across subjects (t(23)=7.58, p<0.001, Figure 2D), in line with the well-established relationship

between confidence and accuracy. To rule out the possibility that the modulation of discriminant

component amplitude by confidence was purely explained by objective performance, we compared

component amplitudes for Medium-confidence against High-/Low-confidence using only trials asso-

ciated with correct responses, and showed that differences between these trial groups remained sig-

nificant (both p<0.001, Figure 2E). The same pattern was found when repeating the analysis

separately on error trials (both p<0.001). These results indicate that the confidence-related neural

component can be dissociated from objective performance, as might be expected from previous

reports (Lau and Passingham, 2006; Rounis et al., 2010; Komura et al., 2013; Lak et al., 2014;

Fleming and Daw, 2017).

As the duration of the visual motion stimulus varied across trials in our task (i.e., remained on until

subjects made a motor response on the perceptual task) another potential concern might be that

the variability in the EEG-derived confidence signatures we identified here could be explained by

these stimulus-related factors. We reasoned that if that were the case, we might expect high correla-

tion between stimulus duration and discriminant component amplitudes. However, we found that

this correlation was weak (subject-averaged R = -.15), suggesting that our classification results could

not have been solely driven by this factor.

Finally, we addressed the possibility that the observed variability in the confidence discriminating

component could be attributed to sustained fluctuations in attention, by conducting a serial autocor-

relation analysis which predicted component amplitudes on a given trial from those on the preced-

ing five trials (separately for each subject). As before, we expected that if attentional fluctuations are

driving the variability in our EEG-derived confidence measures, component amplitudes on a given

trial would be reliably predicted by those observed in the immediately preceding trials. We found

that this model only explained a small fraction of the variance in component amplitudes (subject-

averaged R2 = 0.03).
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Figure 2. Neural representation of confidence in the EEG. (A) Classifier performance (Az) during High- vs. Low-confidence discrimination for stimulus-

locked data. Each row represents the Az as a function of time, for a single subject (warm colours indicate higher values). The overlapping line (orange)

shows the mean classifier performance across subjects. Outlined in white are the pre-response time windows of peak confidence discrimination used

subsequently to extract single-trial measures of confidence (i.e., discriminant component amplitudes). In selecting these, we considered only the

discrimination period ending, on average, at least 100 ms (across-subject mean 271 ± 162 ms) prior to subjects’ mean response times, to minimise

potential confounds with activity related to motor execution, due to a sudden increase in corticospinal excitability in this period (Chen et al., 1998).

Inset shows average (normalised) topography associated with the discriminating component at subject-specific times of peak confidence discrimination.

(B) Mean amplitude of the confidence discriminant component as a function of reported confidence, showing a parametric effect across the Low,

Medium, and High bins. The mean component amplitudes for individual confidence ratings (weighted by each subjects’ trial count per rating) are also

shown (inset). (C) Trial-by-trial confidence discriminant component amplitudes were positively correlated with accuracy. To visualise this relationship,

single-trial component amplitudes were grouped into five bins. (D) Mean amplitude of the confidence discriminant component for correct vs. error

responses, showing a significant effect of choice accuracy.(E) Mean amplitude of the confidence discriminant component as a function of reported

confidence, for correct trials only (in order to control for accuracy). The same pattern as in (B) is observed. (F) Mean amplitudes of the confidence

discriminant component did not differ significantly between trials associated with High vs. Low prestimulus oscillatory power in the alpha band (which

we used as a proxy for subjects’ prestimulus attentional state). (G) Relationship between the strength of electrophysiological confidence signals on the

current trial (i.e., confidence-discriminating component amplitudes) and the tendency to repeat a choice on the immediately subsequent trial, for trial

pairs showing stimulus motion in the same direction (i.e., nominally identical stimuli). Faint orange (in B) and grey lines (in C–G) represent individual

subject data.

DOI: https://doi.org/10.7554/eLife.38293.004

The following figure supplements are available for figure 2:

Figure supplement 1. Classifier performance (Az) during High- vs Low-confidence discrimination, for data locked to the rating phase of the trial

(defined as the onset of the rating prompt).

Figure 2 continued on next page
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We also assessed the influence of a neural signal known to correlate with attention (Thut et al.,

2006) and predict visual discrimination (van Dijk et al., 2008), namely occipitoparietal prestimulus

alpha power. To do this, we separated trials into High vs. Low alpha power groups, individually for

each subject, and compared the corresponding average discriminant component amplitudes. We

found that these did not differ significantly between the two groups (paired t-test, p=0.19,

Figure 2F). Note that variability in the confidence discriminant component was also independent of

stimulus difficulty, as this was held constant across all trials. In line with this, discriminant component

amplitudes for the two identical-stimulus experimental blocks were not significantly correlated (sub-

ject-averaged R = 0.02; one-sample t-test, p=0.39).

Confidence-dependent influences on behaviour
We next sought to identify potential influences of neural confidence signals on decision-related

behaviour. In particular, there is evidence that confidence, as reflected in behavioural (Braun et al.,

2018) and physiological (Urai et al., 2017) correlates, can play a role in the modulation of history-

dependent choice biases. Here, we tested whether the strength of our EEG-derived confidence sig-

nals (i.e., confidence discriminant component amplitude yCONF) on a given trial might influence the

probability to repeat a choice on the immediately subsequent trial (PREPEAT). While we observed no

overall significant links between yCONF and subsequent choice behaviour when considering the entire

data set, we found a positive relationship between yCONF and PREPEAT if stimulus motion on the

immediately subsequent trial was in the same direction as in the current trial (F(2,46)=5.89, p=.005,

with post-hoc tests showing a significant difference in PREPEAT following Low vs. High yCONF trials,

p=.015, Bonferroni corrected), as shown in Figure 2G. Thus, stronger confidence signals were asso-

ciated with an increased tendency to repeat the previous choice.

In contrast, we did not find any modulatory effect of yCONF on choice repetition/alternation

behaviour when motion on the current trial was in the opposite direction from that of the previous

trial. Thus, choices were only affected by previous confidence when no global change in motion

direction had occurred from one trial to the next. Interestingly, this dependence of confidence-

related repetition bias on stimulus identity points to a mechanism by which the representation of

confidence interacts with a putative process of (subliminal) stimulus-consistency detection (distin-

guishable from the decision process itself) on the subsequent trial, to influence the decision and/or

behaviour.

Dynamic model of decision making
To seek preliminary insight into how our confidence-related EEG measure relates to the decision for-

mation process, we compared our neural signals with a measure of confidence derived from a

dynamic model of decision making. Namely, we fitted subjects’ behavioural data (i.e., accuracy and

response time) with an adapted version of the race model (Vickers, 1979; Vickers and Packer,

1982; De Martino et al., 2013) (see Materials and methods). This class of models describes the

decision process as a stochastic accumulation of perceptual evidence over time by independent sig-

nals representing the possible choices (Figure 3A). The decision terminates when one of the accu-

mulators reaches a fixed threshold, with choice being determined by the winning accumulator.

Importantly, confidence for binary choices can be estimated in these models as the absolute dis-

tance (De) between the states of the two accumulators at the time of decision (i.e., ‘balance of evi-

dence’ hypothesis).

Overall, we found that this model provided a good fit to the behavioural data (Accuracy:

R = 0.76, p<0.001, Figure 3B; RT: subject-averaged R = 0.965, all p<=0.0016, see Figure 3—figure

supplement 1 for individual subject fits). We illustrate model fits to response time data in Figure 3C

(see Figure 3—figure supplement 2 for individual subject fits), whereby response time distributions

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.38293.005

Figure supplement 2. Mean amplitude of the confidence discriminant component showing parametric modulation by reported confidence.

DOI: https://doi.org/10.7554/eLife.38293.006
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for correct and error trials are summarised separately using five quantile estimates of the associated

cumulative distribution functions (Forstmann et al., 2008).

Here, we were interested in how our neural measures of confidence (EEG-derived discriminant

component yCONF) compared against the confidence estimates predicted by the decision model

(De), at the subject group level. To this end, we computed the mean difference in confidence (as

reflected by yCONF and De, respectively) between correct and error trials, separately for each subject,

and tested the extent to which these quantities were correlated across participants. This relative

measure, which captured the relationship between confidence and choice accuracy, also ensured
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Figure 3. Modelling results. (A) Schematic representation of the decision model for one trial. Evidence in favour

of the two choice alternatives (here, leftward and rightward motion) accumulates gradually over time. A decision is

made when one of the accumulators reaches a decision threshold (q). The model quantifies confidence as the

absolute difference in the accumulated evidence for the two options, at the time of decision (De). (B) Correlation

between behavioural vs. model-predicted choice accuracy. Each point represents trial-averaged data for one

subject. (C) Behavioural (circles) and model-predicted (crosses) response time distribution. On the x axis from left

to right, data points represent the RT below which 10%, 30%, 50%, 70% and 90% of the data, respectively, are

situated. The y axis shows the associated proportion of data for correct (upper symbols) and incorrect (bottom

symbols) responses. (D) Across-subject correlation between the model-predicted and neurally observed

relationship of confidence with choice accuracy (quantified as the difference in confidence estimates between

correct and error trials). Each dot represents data for one subject.

DOI: https://doi.org/10.7554/eLife.38293.007

The following figure supplements are available for figure 3:

Figure supplement 1. Model fits for individual subjects.

DOI: https://doi.org/10.7554/eLife.38293.008

Figure supplement 2. Behavioural (circles) and model-predicted (crosses) response time distribution for individual

subjects.

DOI: https://doi.org/10.7554/eLife.38293.009
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that comparisons across subjects remained meaningful after averaging across trials. We found a sig-

nificant positive correlation (i.e., subjects who showed stronger difference in yCONF between correct

and error trials also showed a higher difference in De, R=.48, p=.019, robust correlation coefficient

obtained using the percentage bend correlation analysis (Wilcox, 1994); see Figure 3D), opening

the possibility that neural confidence signals might be informed by a process similar to the race-like

dynamic implemented by the current model.

Exploratory mediation analysis
We sought to further clarify the link between model-derived confidence estimates (De), early neural

signatures of confidence (yCONF), and subjects’ behavioural reports during the rating phase of the

trial (Ratings), by performing an exploratory mediation analysis on these measures. We hypothesised

that yCONF may be informed by quantities equivalent to De, and in turn influence the confidence esti-

mates reflected in post-choice reports. Thus, we tested whether yCONF may act as a statistical media-

tor on the link between De and Ratings. As with our previous analysis linking yCONF and De

(Figure 3D), we first computed the mean difference between correct and error trials for each of the

three variables of interest, to produce comparable measures across subjects (i.e., by removing

potentially task-irrelevant individual differences in the trial-averaged scores, such as rating biases).

These quantities (henceforth referred to as DeDIFF, yCONF_DIFF, and RatingsDIFF) were then submitted

to the mediation analysis.

Specifically, we defined a three-variable path model (Wager et al., 2008) with DeDIFF as the pre-

dictor variable, RatingsDIFF as the dependent variable, and yCONF_DIFF as the mediator (Materials and

methods). In line with our prediction, we found that: 1) DeDIFF was a significant predictor of

yCONF_DIFF (p=.01), 2) yCONF_DIFF reliably predicted RatingsDIFF after accounting for the effect of pre-

dictor DeDIFF (p<.001), and 3) the indirect effect of yCONF_DIFF, defined as the coefficient product of

effects 1) and 2), was also significant (p=.004). While the across-subject nature of the analysis calls

for caution in interpreting the results, these observations are consistent with the possibility that

yCONF reflects a (potentially noisy) readout of decision-related balance of evidence (as modelled by

De), and informs eventual confidence reports.

fMRI correlates of confidence
We sought primarily to identify fMRI activations correlating uniquely with the endogenous signatures

of confidence at the time of the perceptual decision, as obtained from our EEG discrimination analy-

sis. In particular, we were interested in confidence-related variability in the fMRI response that might

be over and above what can be inferred from behavioural confidence reports alone. To this end, we

constructed a general linear model (GLM; see Materials and methods) of the fMRI using an EEG-

derived regressor for confidence (yCONF) together with additional regressors accounting for variance

related to subjects’ behavioural confidence reports (i.e., ratings), and other potentially confounding

factors (task performance, response time, attention, and visual stimulation).

fMRI correlates of behavioural confidence reports. We first investigated the activation patterns

associated with confidence ratings during the perceptual decision phase of the trial (Figure 4A),

defined as the time window beginning at the onset of the random-dot stimulus (and ending prior to

the onset of the confidence rating prompt). The coordinates of all activations are listed in Supple-

mentary Table 1 (Supplementary file 1). We found that the BOLD response increased with reported

confidence in the striatum, lateral orbitofrontal cortex (OFC), the ventral anterior cingulate cortex

(ACC) – areas thought to play a role in human valuation and reward

(O’Doherty, 2004; Rushworth et al., 2007; Grabenhorst and Rolls, 2011) – as well as the right

anterior middle frontal gyrus, amygdala/hippocampus, and visual association areas. Overall, these

activations appear consistent with findings from previous studies that have identified spatial corre-

lates of decision confidence (Rolls et al., 2010; De Martino et al., 2013; Heereman et al.,

2015; Hebart et al., 2016). Negative activations (i.e., regions showing increasing BOLD response

with decreasing reported confidence) were found in the right supplementary motor area, dorsome-

dial prefrontal cortex, right inferior frontal gyrus (IFG), anterior insula/frontal operculum, in line with

previous reports of decision uncertainty near the time of decision (Heereman et al., 2015;

Hebart et al., 2016 ).
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During the metacognitive report stage of the trial (i.e., ’rating phase’, defined as the time window

beginning at the onset of the confidence prompt; Figure 4B), we found negative correlations with

confidence ratings in extended networks (Supplementary Table 2; Supplementary file 1) which

included regions of the rostrolateral prefrontal cortex (bilateral, right lateralised), middle frontal

gyrus, superior frontal gyrus (extending along the cortical midline and into the medial prefrontal cor-

tex), orbital regions of the IFG, angular gyrus, precuneus, posterior cingulate cortex (PCC), and

regions of the occipital and middle temporal cortices. These activations are largely in line with

research on the spatial correlates of choice uncertainty (Grinband et al., 2006; Fleming et al.,

2012; ) and metacognitive evaluation (Fleming et al., 2010; Molenberghs et al., 2016). Finally, pos-

itive correlations were observed in the striatum and amygdala/hippocampus, as well as motor

cortices.

fMRI correlates of EEG-derived confidence signals. To identify potential brain regions encoding

early representations of confidence as captured by our confidence-discriminating EEG component,

we turned to the parametric EEG-derived fMRI regressor (i.e., yCONF regressor), which captured the

inherent single-trial variability in these signals. Our approach therefore allowed us to model the fMRI

response using time-resolved neural signatures of confidence, which were specific to each subject.

Crucially, as these measures captured the variability in the neural representation of confidence near

the time of the perceptual decision itself (i.e., prior to behavioural response), they may be better

suited for spatially characterising confidence during this time window compared to the behavioural

confidence reports obtained later on in the trial (as the latter may be more reflective of confidence-

related information arriving post-decisionally). Note that these signals were only moderately corre-

lated with reported confidence (subject-averaged R=.39, SD=.07), and thus could potentially provide

additional explanatory power in our fMRI model.

This EEG-informed fMRI analysis revealed a large cluster in the ventromedial prefrontal cortex

(VMPFC, peak MNI coordinates [�8 40 – 14]), extending into the subcallosal region and ventral stria-

tum, and a smaller cluster in the right precentral gyrus (peak MNI coordinates [30 -20 64]), where the

BOLD response correlated positively with the EEG-derived confidence discriminating component

(Figure 5). The VMPFC has been linked to confidence-related processes in value-based, as well as

other complex decisions (De Martino et al., 2013; Lebreton et al., 2015), however this region is
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not typically associated with confidence in perceptual decisions (though see Heereman et al., 2015;

Fleming et al., 2018).

Note also that, as regression parameter estimates resulting from standard GLM analysis reflect

variability unique to each regressor (i.e., disregarding common variability) (Mumford et al. 2015), the

correlation we observed with the EEG-derived yCONF regressor in the VMPFC during the perceptual

decision period is over and above what can be explained by behavioural confidence ratings alone (i.
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Figure 5. Positive parametric modulation of the BOLD signal by an EEG-derived single-trial confidence measure

(see Materials and methods), during the decision phase of the trial. Results are reported at |Z|�2.57, and cluster-

corrected using a resampling procedure (minimum cluster size 162 voxels). Bottom right: Time course of VMPFC

BOLD response, showing parametric modulation by neural confidence (presented for illustration purposes only).

Trials are separated by the strength of confidence-discriminating component amplitudes (yCONF). VMPFC,
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DOI: https://doi.org/10.7554/eLife.38293.011

The following figure supplements are available for figure 5:

Figure supplement 1. Positive correlation of the BOLD signal with the EEG-derived confidence measures in the

posterior cingulate cortex (PCC), during the decision phase of the trial.

DOI: https://doi.org/10.7554/eLife.38293.012

Figure supplement 2. Positive parametric modulation of the BOLD signal by EEG-derived confidence at the

confidence rating stage.

DOI: https://doi.org/10.7554/eLife.38293.013

Figure supplement 3. Correlations between HRF-convolved regressors locked to stimulus (i.e., decision phase)

and confidence rating prompt (i.e., rating phase).

DOI: https://doi.org/10.7554/eLife.38293.014

Figure supplement 4. Parametric modulation of the BOLD signal by confidence, resulting from two GLM analyses

whereby events pertaining to the decision and rating phases of the trial, respectively, were modelled separately.

DOI: https://doi.org/10.7554/eLife.38293.015

Figure supplement 5. Positive parametric modulation of the BOLD signal by EEG-derived measures of

confidence resulting from a leave-one-trial-out cross validation procedure (shown in pink).

DOI: https://doi.org/10.7554/eLife.38293.016
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e., the RatingsDEC regressor, Figure 4A). Consistent with this, correlation of the RatingsDEC regressor

with activity in the relevant VMPFC cluster (including in a supplementary GLM analysis whereby the

yCONF regressor was removed) failed to pass statistical thresholding and would have therefore been

missed using behavioural ratings alone.

Interestingly, the scalp map associated with our confidence discriminating EEG component

showed a diffused topography including contributions from several centroparietal electrode sites.

One possibility is that the observed spatial pattern reflects sources of shared variance between the

EEG component and confidence ratings themselves (which was otherwise controlled for in our origi-

nal fMRI analysis). To test this, we ran a separate control GLM analysis where the confidence

ratings regressor (RatingsDEC) was removed, and found that with this model the yCONF regressor

explained additional variability of the BOLD signal within several regions, including precuneus/PCC

regions of the parietal cortex (Figure 5—figure supplement 1). Notably, activity in these regions

has been previously shown to scale with confidence (De Martino et al., 2013; White et al., 2014)

and hypothesised to play a role in metacognition (McCurdy et al., 2013).

In a separate analysis, we also explored BOLD signal correlations with the yCONF regressor locked

to the confidence rating stage (as part of a GLM model which only included regressors at the time

of rating). We found no correlation with yCONF in the VMPFC, suggesting confidence-related activa-

tion in this region was specific to the earlier stages of the decision. Clusters showing positive correla-

tion with yCONF were found in the (bilateral) motor cortex, left planum temporale, putamen/

pallidum, and lateral occipital cortex (Figure 5—figure supplement 2). Suggestive mainly of motor-

related processes, these activations may have been partially confounded by repeated movement (i.

e., button pushes) during the rating stage of the trial. More speculatively, confidence representa-

tions may be present within motor regions, in line with the idea that decision-related information

’leaks’ into the motor systems that support relevant action (Gold and Shadlen, 2000; Song and

Nakayama, 2009). We found no clusters showing negative correlation with yCONF at this stage of

the trial.

Psychophysiological interaction (PPI) analysis
Having identified the VMPFC as uniquely encoding a confidence signal early on in the trial (i.e., near

the time of the perceptual decision), we next sought to explore potential functional interactions of

this region with the rest of the brain (for instance, with networks involved in perceptual decision

making and/or post-decision metacognitive processes). To this end, we conducted a whole-brain PPI

analysis (see Materials and methods), whereby we searched for areas showing increased correlation

of their BOLD response with that of a VMPFC seed, during the perceptual decision phase of the trial

(i.e., defined here as the trial-by-trial time window between the onset of the motion stimulus and

subject’s explicit commitment to choice).

Based on existing literature showing negative BOLD correlations with confidence ratings in

regions recruited post-decisionally (e.g., during explicit metacognitive report), such as the anterior

prefrontal cortex (Fleming et al., 2012; Hilgenstock et al., 2014; Morales et al., 2018), we

expected that increased functional connectivity of such regions with the VMPFC would be reflected

in stronger negative correlation in our PPI. Similarly, we hypothesised that fMRI activity in regions

encoding the perceptual decision would also correlate negatively with confidence/VMPFC activation,

in line with the idea that easier (and thus more confident) decisions are characterised by faster evi-

dence accumulation to threshold (Shadlen and Newsome, 2001) and weaker fMRI signal in reaction

time tasks (Ho et al., 2009; Kayser et al., 2010; Liu and Pleskac, 2011; Filimon et al., 2013;

Pisauro et al., 2017). Accordingly, we expected that if such regions increased their functional con-

nectivity with the VMPFC during the decision, this would manifest as stronger negative correlation in

the PPI analysis.

We found that clusters in the bilateral orbitofrontal cortex (OFC; peak MNI: [16 18 -16] and [�28

28–20]), left anterior prefrontal cortex (aPFC; peak MNI: [�40 46 4]), and right dorsolateral prefrontal

cortex (dlPFC; peak MNI: [48 22 30]) (Figure 6) showed increased negative correlation with VMPFC

activation during the perceptual decision. Interestingly, regions in the aPFC and dlPFC in particular

have been previously linked to perceptual decision making (Noppeney et al., 2010; Liu and Ple-

skac, 2011; Philiastides et al., 2011; Filimon et al., 2013), as well as post-decisional confidence-

related processes (Fleming et al., 2012; Hilgenstock et al., 2014; Morales et al., 2018) and meta-

cognition (Fleming et al., 2010; Rounis et al., 2010; McCurdy et al., 2013).
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Discussion
Here, we used a simultaneous EEG-fMRI approach to investigate the neural correlates of confidence

during perceptual decisions. Our method capitalised on the unique explanatory power of time-

resolved, internal measures of confidence to identify associated responses in the fMRI, allowing for a

more precise spatiotemporal characterisation of confidence than if relying solely on behavioural

measures. We found that BOLD response in the VMPFC was uniquely explained by the single-trial

variability in an early, EEG-derived neural signature of confidence occurring prior to subjects’ behav-

ioural expression of response. This activity was additional to what could be explained by subjects’

behavioural reports alone. Our results provide empirical support for the involvement of the VMPFC

in confidence of perceptual decisions, and suggest that this region may support an early readout of

confidence (i.e., at, or near, the time of decision) preceding explicit choice or metacognitive

evaluation.

We first showed that our EEG results - namely the temporal and spatial profile of the confidence-

discriminating activity - were consistent with our previous work (Gherman and Philiastides, 2015)

where we used a different perceptual task involving face vs. car visual categorisations, indicating

that these confidence-related signals may generalise across a broader range of tasks. Interestingly,

the spatial topography associated with this activity appears consistent with centroparietal scalp pro-

jections arising from signals culminating near the decision (O’Connell et al., 2012; Kelly and O’Con-

nell, 2013; Philiastides et al., 2014). While the spatial limitation of EEG precludes conclusive

interpretations based on this similarity, this pattern could potentially reflect a mixture of decision-

and confidence-related signals, in line with the evidence that suggests these quantities may unfold

together around the decision process itself (Kiani and Shadlen, 2009; Gherman and Philiastides,

2015; van den Berg et al., 2016; Dotan et al., 2018). Signals such as the centroparietal positivity

(CPP) (O’Connell et al., 2012) and/or related P300 may themselves hold information about confi-

dence as suggested by electrophysiological work (Boldt and Yeung, 2015) (see also (Urai and

Pfeffer, 2014; Twomey et al., 2015) for brief discussions).

Further, our fMRI data revealed activation patterns suggesting that distinct neural networks carry

information about confidence during perceptual decision vs. explicit confidence reporting stages of
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the trial, respectively. Indeed, it seems plausible that qualitatively distinct representations of confi-

dence may be encoded at different times relative to the decision process. In particular, activations

during the decision phase of the trial such as the VMPFC or anterior cingulate cortex, are in line with

a more automatic encoding of confidence, i.e., in the absence of explicit confidence report

(Lebreton et al., 2015; Bang and Fleming, 2018). In line with this idea, we also observed activations

in regions associated with the human reward/valuation system, such as the striatum and orbitofrontal

cortex. In contrast, regions showing correlation with confidence during the confidence rating stage,

in particular the anterior prefrontal cortex, have been previously associated with explicit metacogni-

tive judgment/report (Fleming et al., 2012; Morales et al., 2018), potentially serving a role in

higher-order monitoring and confidence communication.

We presented several findings that sought to further clarify the nature and role of the early confi-

dence signals observed in the EEG data, as well as their relationship with the perceptual decision

and metacognition. Our computational modelling approach provided preliminary insight into the

potential decision dynamics that might inform early confidence. Namely, we showed that these neu-

ral signals were consistent with predictions from a dynamic model of decision that quantifies confi-

dence as the difference in accumulated evidence in favour of the possible choice alternatives, at the

termination of the decision process. A possible interpretation is that the early confidence represen-

tations reflect a readout of this difference (for instance, by a distinct system than the one supporting

the perceptual choice itself). In other words, early confidence representations could be informed by,

yet be distinct from, the quantities reflected in the model-derived confidence, in line with a dissocia-

tion between the information supporting the decision vs. confidence. Our exploratory mediation

analysis is in agreement with this interpretation, suggesting that EEG-derived confidence representa-

tions can be thought of as a statistical mediator between model-derived confidence measures

(reflecting the balance of accumulated evidence at the time of decision) and confidence ratings.

In another exploratory analysis that aimed to better understand the potential impact of neural

confidence signals on subsequent behaviour, we found that stronger signal amplitude increased the

likelihood of repeating a choice on the subsequent trial, when the motion direction of the stimulus

was consistent with that of the previous trial. Interestingly however, we did not observe this effect

when subsequent motion was in the opposite direction. This dependence of the confidence-related

choice repetition bias on stimulus identity is counterintuitive yet intriguing, as it points to a process

that detects stimulus consistency (i.e., independently of the decision process itself), which interacts

with representations of previous confidence to alter decision/behaviour (e.g., through selective re-

weighting of evidence). While our current decision model cannot account for this confidence-driven

trial-to-trial dependence, future computational developments may help reconcile these observations

with formal models of decision and confidence.

Our main fMRI finding, linking early confidence representations with VMPFC activity suggests par-

tial independence of these signals from decision centres. Specifically, as the VMPFC is not typically

known to support perceptual decision processes, it seems more plausible that the confidence signals

we observe here represent a (potentially noisy) readout of confidence-related information. In line

with this, computational and neurobiological accounts of confidence processing have proposed

architectures by which a first-level form of confidence in a decision emerges as a natural property of

the neural processes that support the decision, and in turn is read out (i.e., summarised) by separate

higher-order monitoring network(s) (Insabato et al., 2010; Meyniel et al., 2015; Pouget et al.,

2016).

The timing of our EEG-derived confidence representations arising in close temporal proximity to

the decision (but prior to commitment to a motor response) further endorse the hypothesis that the

VMPFC may encode an automatic readout of confidence (Lebreton et al., 2015) in decision making,

or early (and automatic) ‘feeling of rightness’ (Hebscher and Gilboa, 2016) in memory judgments.

While dedicated research will be necessary to establish the functional role of these early signals, fast

pre-response confidence signals could be necessary to regulate the link between decision and

impending action, for example with low confidence signalling the need for additional evidence

(Desender et al., 2018).

Consistent with a role in providing a confidence readout, recent work suggests the VMPFC may

encode confidence in a task-independent and possibly domain-general manner. Specifically, several

functional neuroimaging studies have shown positive modulation of VMPFC activation by confi-

dence, across a range of decision making tasks (Rolls et al., 2010; De Martino et al., 2013;
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Heereman et al., 2015; Lebreton et al., 2015; Fleming et al., 2018). Notably, one study showed

that fMRI activation in the VMPFC was modulated by confidence across four different tasks involving

both value-based and non-value based rating judgments (Lebreton et al., 2015). Furthermore, evi-

dence from memory-related decision making research appears to also implicate the VMPFC in confi-

dence processing (Hebscher and Gilboa, 2016).

An outstanding question is whether, and how, the early confidence signals we identified in the

VMPFC might further contribute to post-decisional metacognitive signals and eventual confidence

reports. It has been long proposed that metacognitive evaluation relies on additional processes tak-

ing place post-decisionally (Pleskac and Busemeyer, 2010; Moran et al., 2015; Yu et al., 2015).

For instance, recent evidence suggests that choice itself (and corresponding motor-related activity)

affects confidence (Fleming et al., 2015; Gajdos et al., 2018) and may help calibrate metacognitive

reports (Siedlecka et al., 2016; Fleming and Daw, 2017). The early confidence signals in the

VMPFC could serve as one of multiple inputs to networks supporting retrospective metacognitive

processes, e.g., anterior prefrontal regions (Fleming et al., 2012). Interestingly, our functional con-

nectivity analysis revealed a strengthening of the link between the VMPFC and frontal areas (notably

the aPFC and dlPFC) during the perceptual decision stage of the trial. While the functional signifi-

cance of these connections remains to be determined, previous involvement of these regions in per-

ceptual decision making and metacognition makes them likely candidates for providing or receiving

input to/from the VMPFC within a confidence-related network.

The observation that the VMPFC, a region known for its involvement in choice-related subjective

valuation (Philiastides et al., 2010; Rangel and Hare, 2010; Bartra et al., 2013; Pisauro et al.,

2017) encodes confidence signals during perceptual decisions raises an interesting possibility for

interpreting our results. Our behavioural paradigm did not involve any explicit reward/feedback

manipulation and accordingly, the observed confidence-related activation cannot be interpreted as

an externally driven value signal. Instead, as has been suggested previously (Barron et al., 2015;

Lebreton et al., 2015), a likely explanation is that as an internal measure of performance accuracy,

confidence is inherently valuable. Such a signal may represent implicit reward and possibly act as a

teaching signal (Daniel and Pollmann, 2012; Guggenmos et al., 2016; Hebart et al., 2016;

Lak et al., 2017) to drive learning.

In line with this interpretation, recent work suggests that confidence may be used in the computa-

tion of prediction errors (i.e., the difference between expected and currently experienced reward)

(Lak et al., 2017; Colizoli et al., 2018), thus guiding a reinforcement-based learning mechanism.

Relatedly, confidence prediction error (the difference between expected and experienced confi-

dence) has been hypothesised to act as a teaching signal and guide learning in the absence of feed-

back. In particular, regions in the human mesolimbic dopamine system, namely the striatum and

ventral tegmental area, have been shown to encode both anticipation and prediction error related

to decision confidence, in the absence of feedback (Guggenmos et al., 2016), similarly to what is

typically observed during reinforcement learning tasks where feedback is explicit (Preuschoff et al.,

2006; Fouragnan et al., 2015; Fouragnan et al., 2017; Fouragnan et al., 2018). Importantly, these

effects were predictive of subjects’ perceptual learning efficiency. Thus, confidence in valuation/

reward networks could be propagated back to the decision systems to optimize the dynamics of the

decision process, possibly by means of a reinforcement-learning mechanism. At the neural level, this

could be implemented through a mechanism of strengthening or weakening information processing

pathways that result in high and low confidence, respectively (Guggenmos and Sterzer, 2017).

Though testing this hypothesis extends beyond the scope of the current study, we might expect

that fluctuations in expected vs. actual confidence signals observed in our data have a similar influ-

ence on learning (e.g., perceptual learning (Law and Gold, 2009; Kahnt et al., 2011; Diaz et al.,

2017).

In conclusion, we showed that by employing a simultaneous EEG-fMRI approach, we were able to

localise an early representation of confidence in the brain with higher spatiotemporal precision than

allowed by fMRI alone. In doing so, we provided novel empirical evidence for the encoding of a gen-

eralised confidence readout signal in the VMPFC preceding explicit metacognitive report. Our find-

ings provide a starting point for further investigations into the neural dynamics of confidence

formation in the human brain and its interaction with other cognitive processes such as learning, and

the decision itself.
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Materials and methods

Participants
Thirty subjects participated in the simultaneous EEG-fMRI experiment. Four were subsequently

removed from the analysis due to near chance (n = 3) and near ceiling (n = 1) performance, respec-

tively, on the perceptual discrimination task. Additionally, one subject was excluded whose confi-

dence reports covered only a limited fraction of the provided rating scale, thus yielding an

insufficient number of trials to be used in the EEG discrimination analysis (see below). Finally, one

subject had to be removed due to poor (chance) performance of the EEG decoder. All results pre-

sented here are based on the remaining 24 subjects (age range 20 – 32 years). All were right-

handed, had normal or corrected to normal vision, and reported no history of neurological prob-

lems. The study was approved by the College of Science and Engineering Ethics Committee at the

University of Glasgow (CSE01355) and informed consent was obtained from all participants. While

we conducted no explicit power analysis for determining sample size, note that our EEG analysis

was performed on individual subjects using cross validation, such that in estimating our electrophysi-

ologically-derived measure of confidence, each subject became their own replication unit

(Smith and Little, 2018).

Stimuli and task
All stimuli were created and presented using the PsychoPy software (Peirce, 2007). They were dis-

played via an LCD projector (frame rate = 60 Hz) on a screen placed at the rear opening of the bore

of the MRI scanner, and viewed through a mirror mounted on the head coil (distance to screen = 95

cm). Stimuli consisted of random dot kinematograms (Newsome and Pare, 1988), whereby a pro-

portion of the dots moved coherently to one direction (left vs. right), while the remainder of the

dots moved at random. Specifically, each stimulus consisted of a dynamic field of white dots (num-

ber of dots = 150; dot diameter = 0.1 degrees of visual angle, dva; dot life time = 4 frames; dot

speed = 6 dva/s), displayed centrally on a grey background through a circular aperture (diameter = 6

dva). Task difficulty was controlled by manipulating the proportion of dots moving coherently in the

same direction (i.e., motion coherence).

We aimed to maintain overall performance on the main perceptual decision task consistent across

subjects (i.e., near perceptual threshold, at approximately 75% correct). For this reason, task diffi-

culty was calibrated individually for each subject on the basis of a separate training session, prior to

the day of the main experiment.

Training
To first familiarise subjects with the random dot stimuli and facilitate learning on the motion discrimi-

nation task, subjects first performed a short simplified version of the main task (lasting approx. 10

min), where feedback was provided on each trial. The task, which required making speeded direc-

tion discriminations of random dot stimuli (see below), began at a low-difficulty level (motion coher-

ence = 40%) and gradually increased in difficulty in accordance with subjects’ online behavioural

performance (a 3-down-1-up staircase procedure, where three consecutive correct responses

resulted in a 5% decrease in motion coherence, whereas one incorrect response yielded a 5%

increase). This was followed by a second, similar task, which served to determine subject-specific

psychophysical thresholds. Seven motion coherence levels (5%, 8%, 12%, 18%, 28%, 44%, 70%)

were equally and randomly distributed across 350 trials. The proportion of correct responses was

separately computed for each motion coherence level, and a logarithmic function was fitted through

the resulting values in order to estimate an optimal motion coherence yielding a mean performance

of approximately 75% correct. Subjects who showed near-chance performance across all coherence

levels or showed no improvement in performance with increasing motion coherence were not tested

further and did not participate in the main experiment. No feedback was given for this or any of the

subsequent tasks.

Main task
On the day of the main experiment, subjects practised the main task once outside the scanner, and

again inside the scanner prior to the start of the scan (a short 80 trial block each time). Subjects
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made left vs. right direction discriminations of random dot kinematograms and rated how confident

they were in their choices, on a trial-by-trial basis (Figure 1A). Each trial began with a random dot

stimulus lasting for a maximum of 1.2 s, or until the subject made a behavioural response. Subjects

were instructed to respond as quickly as possible, and had a time limit of 1.5 s to do so. The mes-

sage ‘Oops! Too slow’ was displayed if this time limit was exceeded or no direction response was

made. Once the dot stimulus disappeared, the screen remained blank until the 1.2 s stimulation

period elapsed and through an additional random delay (1.5 – 4 s).

Next, subjects were presented with a rating scale for 3 s, during which they reported their confi-

dence in the previous direction decision. The confidence scale was represented intuitively by means

of a white horizontal bar of linearly varying thickness, with the thick end representing high confi-

dence. Its orientation on the horizontal axis (thin-to-thick vs. thick-to-thin) informed subjects of the

response mapping, and this was equally and randomly distributed across trials to control for motor

preparation effects. To make a confidence response, subjects moved an indicator (a small white tri-

angle) along a 9-point marked line. The indicator changed colour from white to yellow when a confi-

dence response was selected and this remained on the screen until the 3 s elapsed). A final delay

(blank screen, jittered between 1.5 – 4 s) ended the trial. The timing of the inter-stimulus jitters was

optimised using a genetic algorithm (Wager and Nichols, 2003) in order to increase estimation effi-

ciency in the fMRI analysis. Failing to provide either a direction or a confidence response within the

respective allocated time limits on a given trial rendered it invalid, and this was subsequently

removed from further analyses. This resulted in a total fraction of .04 (.02 and. 02, respectively) of tri-

als being discarded.

Subjects performed two experimental blocks of 160 trials each, corresponding to two separate

fMRI runs. Each block contained two short (30 s) rest breaks, during which the MR scanner continued

to run. Subjects were instructed to remain still throughout the entire duration of the experiment,

including during rest breaks and in between scans. Motion coherence was held constant across trials,

at the subject-specific level estimated during training. The direction of the dots was equally and ran-

domly distributed across trials. To control for confounding effects of low-level trial-to-trial variability

in stimulus properties on decision confidence, an identical set of stimuli was used in the two experi-

mental blocks. Specifically, for each subject, the random seed, which controlled dot stimulus motion

parameters in the stimulus presentation software was set to a fixed value. This manipulation allowed

for subsequent control comparisons between pairs of identical stimuli.

Subjects were encouraged to explore the entire scale when making their responses and to abstain

from making a confidence response on a given trial if a motor mapping error had been made (for

instance, a premature or accidental button press that was inconsistent with the perceptual represen-

tation). They were instructed to make their responses as quickly and accurately as possible, and pro-

vide a response on every trial. All behavioural responses were executed using the right hand, on an

MR-compatible button box.

EEG data acquisition
EEG data was collected using an MR-compatible EEG amplifier system (Brain Products, Germany).

Continuous EEG data was recorded using the Brain Vision Recorder software (Brain Products, Ger-

many) at a sampling rate of 5000 Hz. We used 64 Ag/AgCl scalp electrodes positioned according to

the 10 – 20 system, and one nasion electrode. Reference and ground electrodes were embedded in

the EEG cap and were located along the midline, between electrodes Fpz and Fz, and between elec-

trodes Pz and Oz, respectively. Each electrode had in-line 10 kOhm surface-mount resistors to

ensure subject safety. Input impedance was adjusted to < 25 kOhm for all electrodes. Acquisition of

the EEG data was synchronized with the MR data acquisition (Syncbox, Brain Products, Germany),

and MR-scanner triggers were collected separately to enable offline removal of MR gradient artifacts

from the EEG signal. Scanner trigger pulses were lengthened to 50ms using a built-in pulse stretcher,

to facilitate accurate capture by the recording software. Experimental event markers (including par-

ticipants’ responses) were synchronized, and recorded simultaneously, with the EEG data.

EEG data processing
Preprocessing of the EEG signals was performed using Matlab (Mathworks, Natick, MA). EEG signals

recorded inside an MR scanner are contaminated with gradient artifacts and ballistocardiogram
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(BCG) artifacts due to magnetic induction on the EEG leads. To correct for gradient-related artifacts,

we constructed average artifact templates from sets of 80 consecutive functional volumes centred

on each volume of interest, and subtracted these from the EEG signal. This process was repeated

for each functional volume in our dataset. Additionally, a 12 ms median filter was applied in order to

remove any residual spike artifacts. Further, we corrected for standard EEG artifacts and applied a

0.5 – 40 Hz band-pass filter in order to remove slow DC drifts and high frequency noise. All data

were downsampled to 1000 Hz.

To remove eye movement artifacts, subjects performed an eye movement calibration task prior

to the main experiment (with the MRI scanner turned off, to avoid gradient artifacts), during which

they were instructed to blink repeatedly several times while a central fixation cross was displayed in

the centre of the computer screen, and to make lateral and vertical saccades according to the posi-

tion of the fixation cross. We recorded the timing of these visual cues and used principal component

analysis to identify linear components associated with blinks and saccades, which were subsequently

removed from the EEG data (Parra et al., 2005).

Next, we corrected for cardiac-related (i.e., ballistocardiogram, BCG) artifacts. As these share fre-

quency content with the EEG, they are more challenging to remove. To minimise loss of signal

power in the underlying EEG signal, we adopted a conservative approach by only removing a small

number of subject-specific BCG components, using principal component analysis. We relied on the

single-trial classifiers to identify discriminating components that are likely to be orthogonal to the

BCG. BCG principal components were extracted from the data after the data were first low-pass fil-

tered at 4 Hz to extract the signal within the frequency range where BCG artifacts are observed.

Subject-specific principal components were then determined (average number of components across

subjects: 1.8). The sensor weightings corresponding to those components were projected onto the

broadband data and subtracted out. Finally, data were baseline corrected by removing the average

signal during the 100 ms prestimulus interval.

Single-trial EEG analysis
To increase statistical power of the EEG data analysis, trials were separated into three confidence

groups (Low, Medium, High), on the basis of the original 9-point confidence rating scale. Specifically,

we isolated High- and Low-confidence trials by pooling across each subject’s three highest and three

lowest ratings, respectively. To ensure robustness of our single trial EEG analysis, we imposed a min-

imum limit of 50 trials per confidence trial group. For those data sets where subjects had an insuffi-

cient number of trials in the extreme ends of the confidence scale, neighbouring confidence bins

were included to meet this limit.

We used a single-trial multivariate discriminant analysis, combined with a sliding window

approach (Parra et al., 2005; Sajda et al., 2009) to discriminate between High- and Low-confidence

trials in the stimulus-locked EEG data. This method aims to estimate, for predefined time windows

of interest, an optimal combination of EEG sensor linear weights (i.e., a spatial filter) which, applied

to the multichannel EEG data, yields a one-dimensional projection (i.e., a ’discriminant component’)

that maximally discriminates between the two conditions of interest. Importantly, unlike univariate

trial-average approaches for event-related potential analysis, this method spatially integrates infor-

mation across the multidimensional sensor space, thus increasing signal-to-noise ratio whilst simulta-

neously preserving the trial-by-trial variability in the signal, which may contain task-relevant

information. In our data, we identified confidence-related discriminating components, y(t), by apply-

ing a spatial weighting vector w to our multidimensional EEG data x(t), as follows:

y tð Þ ¼wTx tð Þ ¼
X

D

i¼1

wixi tð Þ (1)

where D represents the number of channels, indexed by i, and T indicates the transpose of the

matrix. To estimate the optimal discriminating spatial weighting vector w, we used logistic regres-

sion and a reweighted least squares algorithm (Jordan and Jacobs, 1994). We applied this method

to identify w for short (60 ms) overlapping time windows centred at 10 ms-interval time points,

between -100 and 1000 ms relative to the onset of the random dot stimulus (i.e., the perceptual

decision phase of the trial). This procedure was repeated for each subject and time window. Applied

to an individual trial, spatial filters (w) obtained this way produce a measurement of the discriminant
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component amplitude for that trial. In separating the High and Low trial groups, the discriminator

was designed to map the component amplitudes for one condition to positive values and those of

the other condition to negative values. Here, we mapped the High confidence trials to positive val-

ues and the Low confidence trials to negative values, however note that this mapping is arbitrary.

To quantify the performance of the discriminator for each time window, we computed the area

under a receiver operating characteristic (ROC) curve (i.e., the Az value), using a leave-one-out

cross-validation procedure (Duda et al., 2001). Specifically, for every iteration, we used N-1 trials to

estimate a spatial filter (w), which was then applied to the remaining trial to obtain out-of-sample dis-

criminant component amplitudes (y) for High- and Low-confidence trials and compute the Az. Note

that these out-of-sample y values were highly correlated with the y values resulting from the original

High- vs. Low-confidence discrimination described above (subject-averaged R=.93). We determined

significance thresholds for the discriminator performance using a bootstrap analysis whereby trial

labels were randomised and submitted to a leave-one-out test. This randomisation procedure was

repeated 500 times, producing a probability distribution for Az, which we used as reference to esti-

mate the Az value leading to a significance level of p<0.01.

Given the linearity of our model we also computed scalp projections of the discriminating compo-

nents resulting from Equation 1 by estimating a forward model for each component:

a¼
X y

yTy
(2)

where the EEG data (X) and discriminating components (y) are now in a matrix and vector notation,

respectively, for convenience (i.e., both X and y now contain a time dimension). Equation 2 describes

the electrical coupling of the discriminating component y that explains most of the activity in X.

Strong coupling indicates low attenuation of the component y and can be visualised as the intensity

of vector a.

Single-trial power analysis
We calculated prestimulus alpha power (8 – 12 Hz) in the 400 ms epoch beginning at �500 ms rela-

tive to the onset of the random dot stimulus. To do this, we used the multitaper method (Mitra and

Pesaran, 1999) as implemented in the FieldTrip toolbox for Matlab (http://www.ru.nl/neuroimaging/

fieldtrip). Specifically, for each epoch data were tapered using discrete prolate spheroidal sequences

(two tapers for each epoch; frequency smoothing of ± 4 Hz) and Fourier transformed. Resulting fre-

quency representations were averaged across tapers and frequencies. Single-trial power estimates

were then extracted from the occipitoparietal sensor with the highest overall alpha power and base-

line normalised through conversion to decibel units (dB).

Assessing the influence of neural confidence on behaviour
To test whether fluctuations in the confidence-discriminating component amplitudes, yCONF, were

predictive of the probability to repeat a choice on the immediately subsequent trial, PREPEAT), we

divided yCONF into 3 equal bins (Low, Medium, and High), separately for each subject, and compared

the corresponding PREPEAT across subjects, using a one-way repeated measures ANOVA. To ensure

that any observed modulation of PREPEAT by yCONF was independent of the correlation of yCONF with

accuracy on the current trial(s), we first equalised the number of correct and error trials within each

yCONF bin. Specifically, for each subject, we removed either exclusively correct or error trials

(depending on which of the two was in excess) via random selection from 500 permutations of the

trial set. We report results based on the average yCONF values obtained with this procedure (see

Results).

Modelling decision confidence
We modelled the perceptual decision process using a variant of the original race model of decision

making (Vickers, 1979; Vickers and Packer, 1982; De Martino et al., 2013). Specifically, each deci-

sion was represented as a race-to-threshold between two independent accumulating signals - varia-

bles L and R - which collected evidence in favour of the left and right choices, respectively. At each

time step of the accumulation (time increment = 1 ms), the two variables were updated separately
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with an evidence sample s(t) extracted randomly from normal distributions with mean m and standard

deviation s, s(t)=N(m,s), such that:

Lðtþ 1Þ ¼ LðtÞþ sLðtÞ (3)

Rðtþ 1Þ ¼ RðtÞþ sRðtÞ

Here, we assumed that evidence samples for the two possible choices are drawn from distribu-

tions with identical variances but distinct means, whereby the mean of the distribution is dependent

on the identity of the presented stimulus. For instance, a leftward motion stimulus would be associ-

ated with a larger distribution mean (and thus on average faster rate of evidence accumulation) in

the left (stimulus-congruent) than right (stimulus-incongruent) accumulator. We defined the mean of

the distribution associated with the stimulus-congruent accumulator as mcongr=0.1 (arbitrary units),

and that of the stimulus-incongruent accumulator as mincongr=mcongr/r, where r is a free parameter in

the model. For each simulated trial, evidence accumulation for the two accumulator variables began

at 0 and progressed towards a fixed decision threshold q, with choice being determined by the first

accumulator to reach this threshold. Finally, response time was defined as the time taken to reach

the decision threshold plus a non-decision time (nDT) accounting for early visual encoding and motor

preparation processes.

We fitted the model to each subject’s response time data, using a maximum likelihood function

(as in Pisauro et al., 2017). Namely, we combined RTs for correct and incorrect trials into a single

distribution by mirroring the distribution of incorrect trials at the 0 point on the time axis, and thus

transforming all error RTs into negative values. We compared resulting distributions and mean

choice accuracies obtained from behavioural data vs. model simulations. The log likelihood function

was estimated according to:

LL ~ log KS RTdata ; RTmodelð Þð Þþ log exp �
Accuracydata �Accuracymodel

0:1

� �2
 ! !

(4)

KS represents the estimated probability that two independent samples (here, behavioural vs. sim-

ulated RTs) come from populations with the same distribution, as inferred with the two-sample Kol-

mogorov-Smirnov test (implemented in Matlab function kstest2).

For each subject, the free model parameters were iteratively adjusted to maximise the LL. This

was done by performing a grid search through a fixed range of values (s=[.6:0.1:1], q=[55:7:97],

nDT=[250:50:450], r=[1.2:0.05:1.6]), determined after an initial exploratory search which sought to

identify parameter ranges that generated plausible behavioural measures (RT and accuracy) (i.e.,

comparable to those observed in subjects’ behaviour). For each set of parameters, we simulated 500

trials and recorded mean choice accuracy, RT, and confidence (De).

To assess the quality of the model fits, we computed the correlation between observed vs.

model-predicted behaviour (namely response time quantiles for correct and error responses, as well

as mean choice accuracy), using the robust percentage bend correlation analysis (Wilcox, 1994).

Exploratory mediation analysis
To examine the relationship between model-derived confidence estimates (De), neural confidence

signals (yCONF), and behavioural confidence reports (Ratings), we performed an exploratory media-

tion analysis (M3 toolbox for Matlab; Wager, 2018 http://wagerlab.colorado.edu/tools) on these

measures. A mediation analysis aims to identify whether the link between a predictor variable (here,

De) and an outcome (Ratings) can be explained, fully or partially, by the indirect effect of a mediator

variable (yCONF). For each of the three variables of interest, we computed the mean difference

between correct and error trials, and resulting values (DeDIFF, yCONF_DIFF, and RatingsDIFF, respec-

tively) were subjected to the mediation analysis. To establish significance of the mediator effect of

yCONF_DIFF, three conditions must be met 1) DeDIFF reliably predicts yCONF_DIFF, 2) yCONF_DIFF reliably

predicts RatingsDIFF when the effect of DeDIFFis accounted for, and (3) a significant indirect effect of

yCONF_DIFF, defined as the coefficient product of effects (1) and (2), can be observed. We established

coefficient significance in the three models using a 5000 sample bootstrap test (Wager et al., 2008).
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MRI data acquisition
Imaging was performed at the Centre for Cognitive Neuroimaging, Glasgow, using a 3-Tesla Sie-

mens TIM Trio MRI scanner (Siemens, Erlangen, Germany) with a 12-channel head coil. Cushions

were placed around the head to minimize head motion. We recorded two experimental runs of 794

whole-brain volumes each, corresponding to the two blocks of trials in the main experimental task.

Functional volumes were acquired using a T2*-weighted gradient echo, echo-planar imaging

sequence (32 interleaved slices, gap: 0.3 mm, voxel size: 3 � 3 � 3 mm, matrix size: 70 � 70, FOV:

210 mm, TE: 30 ms, TR: 2000 ms, flip angle: 80˚). Additionally, a high-resolution anatomical volume

was acquired at the end of the experimental session using a T1-weighted sequence (192 slices, gap:

0.5 mm, voxel size: 1 � 1 � 1 mm, matrix size: 256 � 256, FOV: 256 mm, TE: 2300 ms, TR: 2.96 ms,

flip angle: 9˚), which served as anatomical reference for the functional scans.

fMRI preprocessing
The first 10 volumes prior to task onset were discarded from each fMRI run to ensure a steady-state

MR signal. Additionally, 13 volumes were discarded from the post-task period at the end of each

block. The remaining 771 volumes were used for statistical analyses. Pre-processing of the MRI data

was performed using the FEAT tool of the FSL software (FMRIB Software Library, http://www.fmrib.

ox.ac.uk/fsl) and included slice-timing correction, high-pass filtering (>100 s), and spatial smoothing

(with a Gaussian kernel of 8 mm full width at half maximum), and head motion correction (using the

MCFLIRT tool). The motion correction preprocessing step generated motion parameters which were

subsequently included as regressors of no interest in the general linear model (GLM) analysis (see

fMRI analysis below). Brain extraction of the structural and functional images was performed using

the Brain Extraction tool (BET). Registration of EPI images to standard space (Montreal Neurological

Institute, MNI) was performed using the Non-linear Image Registration Tool with a 10 mm warp reso-

lution. The registration procedure involved transforming the EPI images into an individual’s high-res-

olution space (with a linear, boundary-based registration algorithm [Greve and Fischl, 2009]) prior

to transforming to standard space. Registration outcome was visually checked for each subject to

ensure correct alignment.

fMRI analysis
Whole-brain statistical analyses of functional data were conducted using a general linear model

(GLM) approach, as implemented in FSL (FEAT tool):

Y ¼ bXþ "¼ b1X1 þ b2X2 þ . . .þ bnXn þ " (5)

where Y represents the BOLD response time series for a given voxel, structured as a T�1 (T time

samples) column vector, and X represents the T�N (N regressors) design matrix, with each column

representing one of the psychological regressors (see GLM analysis below for details), convolved

with a canonical hemodynamic response function (double-gamma function). b represents the param-

eter estimates (i.e., regressor betas) resulting from the GLM analysis in the form of a N � 1 column

vector. Lastly, e is a T � 1 column vector of residual error terms. A first-level analysis was performed

to analyse each subject’s individual runs. These were then combined at the subject-level using a sec-

ond-level analysis (fixed effects). Finally, a third-level mixed-effects model (FLAME 1) was used to

combine data across all subjects.

Simultaneous EEG-fMRI analysis
With the combined EEG-fMRI approach, we sought to identify confidence-related activation in the

fMRI surpassing what could be explained by the relevant behavioural predictors alone. In particular,

we looked for brain regions where BOLD responses correlated with the confidence-discriminating

component derived from the EEG analysis. Our primary motivation behind this approach was the

hypothesis that endogenous trial-by-trial variability in the confidence discriminating EEG component

(near the time of perceptual decision, and prior to behavioural response) would be more reflective

of early internal representations of confidence at the single-trial level, compared to the metacogni-

tive reports which are provided post-decisionally and therefore likely to be subjected to additional

processes. We predicted that the simultaneous EEG-fMRI approach would enable identification of

latent brain states that might remain unobserved with a conventional analysis approach. To this end,
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we extracted trial-by-trial amplitudes of y tð Þ (resulting from Eq. 1) at the time window of maximum

confidence discrimination, and used these to build a BOLD predictor (i.e., the yCONF regressor).

Importantly, to avoid possible confounding effects of motor preparation/response, the time of this

component was determined on a subject-specific basis, by only considering the period prior to the

behavioural choice (mean peak discrimination time = 708 ms from stimulus onset, SD=162 ms).

Thus, on average this was selected 287ms (SD=171 ms) prior to each subject’s mean response time.

To ensure our results were not affected by potential overfitting during the estimation of y, we con-

ducted a control GLM analysis whereby the yCONF regressor was built using fully out-of-sample

y values resulting from our leave-one-out cross-validation procedure detailed above (Figure 5—fig-

ure supplement 5).

Note that the trial-by-trial variability in our EEG component amplitudes is driven mostly by corti-

cal regions found in close proximity to the recording sensors and to a lesser extent by distant (e.g.,

subcortical) structures. Nonetheless, an advantage of our EEG-informed fMRI predictors is that they

can also reveal relevant fMRI activations within deeper structures, provided that their BOLD activity

covaries with that of the cortical sources of our EEG signal.

GLM analysis
We designed our GLM model to account for variance in the BOLD signal at two key stages of the

trial, namely the perceptual decision period (beginning at the onset of the random dot visual stimu-

lus) and the metacognitive evaluation/rating (beginning at the onset of the rating scale display),

respectively. A total of 10 regressors were included in the model. Our primary predictor of interest

was the EEG-derived endogenous measure of confidence (yCONF regressor). We modelled this as a

stick function (duration = 0.1 s) locked to the stimulus onset, with event amplitudes parametrically

modulated by the trial-to-trial variability in the confidence discriminating componenty tð Þ. To ensure

variance explained by this regressor was unique (i.e., not explained by subjects’ behavioural reports),

we included a second regressor whose event amplitudes were parametrically modulated by confi-

dence ratings, and which was otherwise identical to the yCONF regressor (i.e., RatingsDEC regressor,

duration = 0.1 s, locked to stimulus onset). Importantly, yCONF amplitudes were only moderately cor-

related with behavioural confidence ratings, thus allowing us to exploit additional explanatory power

inherent to this regressor. Other regressors of no interest for the perceptual decision stage included:

one regressor parametrically modulated by prestimulus alpha power in the EEG signal (to control for

potential attentional baseline effects), one categorical regressor (1/0) accounting for variability in

response accuracy, and one unmodulated regressor (all event amplitudes set to (1) modelling stimu-

lus-related visual responses of no interest across both valid and non-valid (missed) trials (all event

durations = 0.1 s, locked to stimulus onset). To control for motor preparation/response, we also

included a parametric regressor modulated by subjects’ reaction time on the direction discrimination

task (duration = 0.1 s, locked to the time of behavioural response). Note that including an additional

unmodulated regressor locked to the time of the behavioural response did not alter our results.

Additionally, locked to the onset of the metacognitive rating period, we included one parametric

regressor (duration = 0.1 s) with event amplitudes modulated by subjects’ confidence ratings, one

boxcar regressor with duration equivalent to subjects’ active behavioural engagement in confidence

rating (to minimise effects relating to motor processes), and one unmodulated regressor (dura-

tion = 0.1 s). Lastly, we included one categorical boxcar regressor (1/0) to model non-task activation

(i.e., rest breaks within each run). Motion correction parameters obtained from fMRI preprocessing

were entered as additional covariates of no interest.

As we included two rating-modulated regressors in our model, which were identical except for

their onset times (i.e., decision and rating phases, respectively), we sought to ensure that these were

not highly correlated. We computed the correlation between the convolved regressors, separately

for each subject and experimental run (mean R = -.13; Figure 5—figure supplement 3). Addition-

ally, we conducted two separate control GLM analyses whereby only the regressors pertaining to

one trial phase (i.e., decision or rating, respectively) were included at a time. This allowed us to fur-

ther validate our results, to ensure they remained unaffected by potential correlations between

regressors at the two stages of the trial (Figure 5—figure supplement 4). Finally, we also assessed

the correlations between all regressors by computing the variance inflation factors (VIF) for the

regressors in our model. We found that mean VIF = 3.57 (±1.83), with multicollinearity typically being

considered high if VIF > 5 – 10.
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Resampling procedure for fMRI thresholding
To estimate a significance threshold for our fMRI statistical maps whilst correcting for multiple

comparisons, we performed a nonparametric permutation analysis that took into account the a

priori statistics of the trial-to-trial variability in our primary regressor of interest (yCONF), in a way

that trades off cluster size and maximum voxel Z-score (Debettencourt et al., 2011). For each

resampled iteration, we maintained the onset and duration of the regressor identical, whilst shuf-

fling amplitude values across trials, runs and subjects. Thus, the resulting regressors for each

subject were different as they were constructed from a random sequence of regressor amplitude

events. This procedure was repeated 200 times. For each of the 200 resampled iterations, we

performed a full 3-level analysis (run, subject, and group). Our design matrix included the same

regressors of non-interest used in all our GLM analysis. This allowed us to construct the null

hypothesis H0, and establish a threshold on cluster size and Z-score based on the cluster out-

puts from the permuted parametric regressors. Specifically, we extracted cluster sizes from all

activations exceeding a minimal cluster size (5 voxels) and Z-score (2.57 per voxel) for positive

correlations with the permuted parametric regressors. Finally, we examined the distribution of

cluster sizes (number of voxels) for the permuted data and found that the largest 5% of cluster

sizes exceeded 162 voxels. We therefore used these results to derive a corrected threshold for

our statistical maps, which we then applied to the clusters observed in the original data (that is,

Z=2.57, minimum cluster size of 162 voxels, corrected at p=0.05).

Psychophysiological interaction analysis
We conducted a psychophysiological (PPI) analysis to explore potential functional connectivity

between the region of the VMPFC found to uniquely explain trial-to-trial variability in our electro-

physiologically-derived measures of confidence, and the rest of the brain, during the perceptual

decision phase of the trial. To carry out the PPI analysis, we first extracted the time-series data from

the seed region. Specifically, we identified the cluster of interest at the group level (i.e., in standard

space) by applying the cluster correction procedure described in the previous section. Using this as

a template, we constructed subject-specific masks of the voxels exhibiting the strongest correlation

with the VMPFC region of interest, and back-projected these into the functional space of each indi-

vidual. Resulting masks were used to compute average time-series data, separately for each subject

and functional run, which subsequently served as the physiological regressor(s) in the PPI model. To

carry out the PPI analysis, we performed a new GLM analysis. This included the following regressors,

locked to the time of stimulus onset: (1) an unmodulated regressor (all event amplitudes set to 1), (2)

the physiological regressor (time course of the VMPFC seed), (3) the psychological regressor (a box-

car function with event amplitudes set to one and duration parametrically modulated by trial-specific

decision times (i.e., interval between stimulus presentation and behavioural response on the percep-

tual task), and (4) the interaction regressor. Additionally, motion parameters estimated during regis-

tration (see preprocessing step) were included as regressors of no interest. The statistical output

from the interaction regressor thus reveals regions of the brain where correlation with the BOLD sig-

nal in the VMPFC is stronger during the perceptual decision than the rest of the trial. Importantly,

this represents variance additional to that explained by the psychological and physiological regres-

sors alone. Correction for multiple comparisons was performed on the whole brain using the out-

come of the resampling procedure as described earlier.

Extracting BOLD response time course
To illustrate the activation time course within the VMPFC cluster identified with our EEG-informed

fMRI analysis, we first extracted the average BOLD response time-series from this region, separately

for each subject and functional run (as detailed in the previous section). We aligned our data to the

onset of the random-dot stimulus, by approximating to the time of the nearest fMRI volume, and

defined the temporal window of interest as the -4 s to 10 s interval relative to stimulus onset. We

proceeded to separate trials into three bins according to the magnitude of the confidence discrimi-

nating component yCONF (i.e., Low, Medium, and High yCONF), and computed the respective percent

signal change as follows:

Gherman and Philiastides. eLife 2018;7:e38293. DOI: https://doi.org/10.7554/eLife.38293 23 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.38293


%BOLD Changej tð Þ ¼
BOLDj tð Þ� BOLDbaseline

j

BOLD
(6)

where j represents the trial index, BOLD tð Þ represents the stimulus-locked data at time point t,

andBOLDbaseline is the mean baseline data, with the baseline window defined as the 4 s interval prior

to stimulus onset. Finally, BOLD is the average signal across the entire functional run. Resulting sig-

nals were averaged across trials, runs, and subjects.
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Zizlsperger L, Sauvigny T, Händel B, Haarmeier T. 2014. Cortical representations of confidence in a visual
perceptual decision. Nature Communications 5:3940. DOI: https://doi.org/10.1038/ncomms4940, PMID: 24
899466

Gherman and Philiastides. eLife 2018;7:e38293. DOI: https://doi.org/10.7554/eLife.38293 28 of 28

Research article Neuroscience

https://doi.org/10.1016/j.neuron.2006.06.024
http://www.ncbi.nlm.nih.gov/pubmed/16880132
http://www.ncbi.nlm.nih.gov/pubmed/16880132
https://doi.org/10.1016/j.conb.2010.03.001
https://doi.org/10.1038/nature08275
https://doi.org/10.1016/j.neuroimage.2010.06.073
https://doi.org/10.1080/17588921003632529
https://doi.org/10.1016/j.conb.2007.03.001
https://doi.org/10.1016/j.conb.2007.03.001
https://doi.org/10.1109/RBME.2009.2034535
http://www.ncbi.nlm.nih.gov/pubmed/22275042
https://doi.org/10.1152/jn.2001.86.4.1916
http://www.ncbi.nlm.nih.gov/pubmed/11600651
https://doi.org/10.3389/fpsyg.2016.00218
https://doi.org/10.3389/fpsyg.2016.00218
http://www.ncbi.nlm.nih.gov/pubmed/26925023
https://doi.org/10.3758/s13423-018-1451-8
https://doi.org/10.1016/j.tics.2009.04.009
https://doi.org/10.1523/JNEUROSCI.0875-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16971533
https://doi.org/10.1111/ejn.12936
https://doi.org/10.1038/ncomms14637
https://doi.org/10.1523/JNEUROSCI.0477-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/24719086
https://doi.org/10.7554/eLife.12192
https://doi.org/10.7554/eLife.12192
https://doi.org/10.1523/JNEUROSCI.1853-07.2008
https://doi.org/10.1523/JNEUROSCI.1853-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18287498
https://doi.org/10.1016/0001-6918(82)90006-3
https://doi.org/10.1016/0001-6918(82)90006-3
https://doi.org/10.1016/j.neuron.2008.09.006
http://www.ncbi.nlm.nih.gov/pubmed/18817740
https://doi.org/10.1016/S1053-8119(02)00046-0
https://github.com/canlab
https://doi.org/10.1016/j.bandc.2013.12.002
https://doi.org/10.1016/j.bandc.2013.12.002
https://doi.org/10.1007/BF02294395
https://doi.org/10.1007/BF02294395
https://doi.org/10.1037/xge0000062
https://doi.org/10.1038/ncomms4940
http://www.ncbi.nlm.nih.gov/pubmed/24899466
http://www.ncbi.nlm.nih.gov/pubmed/24899466
https://doi.org/10.7554/eLife.38293

