3 research outputs found

    Chlorophyll Concentration Retrieval by Training Convolutional Neural Network for Stochastic Model of Leaf Optical Properties (SLOP) Inversion

    No full text
    Miniaturized hyperspectral imaging techniques have developed rapidly in recent years and have become widely available for different applications. Combining calibrated hyperspectral imagery with inverse physically based reflectance models is an interesting approach for estimating chlorophyll concentrations that are good indicators of vegetation health. The objective of this study was to develop a novel approach for retrieving chlorophyll a and b values from remotely sensed data by inverting the stochastic model of leaf optical properties using a one-dimensional convolutional neural network. The inversion results and retrieved values are validated in two ways: A classical machine learning validation dataset and calculating chlorophyll maps from empirical remotely sensed hyperspectral data and comparing them to TCARIOSAVI , an index that has strong negative correlation with chlorophyll concentration. With the validation dataset, coefficients of determination ( R2 ) of 0.97 were obtained for chlorophyll a and 0.95 for chlorophyll b. The chlorophyll maps correlate with the TCARIOSAVI map. The correlation coefficient (R) is −0.87 for chlorophyll a and −0.68 for chlorophyll b in selected plots. These results indicate that the approach is highly promising approach for estimating vegetation chlorophyll content.peerReviewe

    Drone-based spectral and 3D remote sensing applications for forestry and agriculture

    Get PDF
    Practising sustainable agriculture and forestry requires information on the state of forests and crops to support management. In precision agriculture, crops are observed in order to treat them precisely in the right place and at the right time, saving both production costs and the environment. Similarly, in forests, information on the composition and state of forest health are crucial to enable their sustainable management. In particular, climate-change-driven insect pests have increased, but economic and ecological losses can be reduced by the right actions if up-to-date and precise information on the health of forests is available. In recent years, drones with cameras have evolved into a flexible way to collect remote sensing data locally. Spectral cameras provide accurate information about the reflection properties of objects, and photogrammetric methods also provide a cost-effective way to collect three-dimensional (3D) data from an object. The objective of this work was to develop and assess drone-based 3D and spectral remote sensing techniques to classify the health status of individual trees and to estimate crop biomass, various biochemical parameters such as nitrogen content, and grass-feeding quality. The work developed a processing chain in which spectral and 3D features were extracted from remote sensing data. Then, combining the features with observations and reference measurements collected from plants, machine learning models were developed for tree health classification and estimation of crop-related parameters. The effects of different factors related to data collection and processing on classification and estimation accuracies were studied in order to generate knowledge on optimal sensors and methods. In general, radiometric corrections, spectral resolution, and the combined use of spectral and 3D features improved classification and estimation accuracies. However, the optimal sensors as well as the data collection and processing methods depend on the different applications and their accuracy requirements. This work was the first to demonstrate the ability of drone hyperspectral data to map the health status of a forest by classifying individual trees infested by bark beetles. The results of the work also showed that drone-based mapping offers a great tool to estimate agricultural crop parameters which can be applied to the optimization of various precision agriculture tasks.Kestävän maa- ja metsätalouden harjoittaminen vaatii tietoa metsien ja viljelykasvien tilasta päätöksenteon tueksi. Täsmämaataloudessa viljelykasveja havainnoidaan, jotta viljelytoimenpiteet voidaan kohdistaa oikeaan paikkaan ja oikea-aikaisesti säästäen sekä tuotantokustannuksia että ympäristöä. Metsissä tieto metsien terveydentilasta on tärkeää, jotta voidaan hillitä metsätuhojen leviämistä. Erityisesti hyönteistuhot ovat lisääntyneet voimakkaasti ilmastonmuutoksen vauhdittamana, mutta taloudellisia ja ekologisia tappiota voidaan vähentää oikeilla toimenpiteillä, jos on olemassa ajantasaisesta tietoa metsien terveydentilasta. Dronet ja niihin asennettavat kamerat ovat kehittyneet viime vuosina joustavaksi tavaksi kerätä kaukokartoitusaineistoa paikallisesti. Spektrikameroilla saadaan tarkkaa tietoa kohteen heijastusominaisuuksista, ja fotogrammetriset menetelmät mahdollistavat myös kustannustehokkaan tavan kerätä kohteesta kolmiulotteista (3D) tietoa. Tämän työn tavoitteena oli kehittää näihin aineistoihin nojautuen kaukokartoitusmenetelmiä yksittäisten puiden terveydentilan luokitteluun sekä viljelykasvien biomassan, erilaisten biokemiallisten parametrien, kuten typpipitoisuuden sekä nurmen ruokintalaadun, kuten D-arvon estimointiin. Työssä kehitettiin prosessointiketju, jossa kaukokartoitusaineistoista irrotettiin spektri- ja 3D-piirteitä, yhdistettiin ne kasveista kerättyihin havaintoihin ja mittauksiin sekä muodostettiin koneoppimismalleja puiden luokittelua ja viljelykasveihin liittyvien parametrien estimointia varten. Työssä verrattiin useiden aineistonkeräykseen ja -prosessointiin liittyvien tekijöiden vaikutuksia luokittelu- ja estimointitulosten tarkkuuteen optimaalisten menetelmien löytämiseksi. Esimerkiksi spektri- ja 3D-piirteiden hyödyntäminen yhdessä sekä radiometriset korjaukset paransivat yleisesti luokittelu- ja estimointitarkkuuksia. Optimaaliset sensorit sekä aineistonkeräys- ja käsittelytavat riippuvat kuitenkin eri sovelluksista ja niiden tarkkuusvaatimuksista. Työssä osoitettiin ensimmäistä kertaa dronesta kerätyn hyperspektrisen aineiston kyvykkyys metsän terveydentilan havainnoinnissa luokittelemalla kuuset kolmeen luokkaan kirjanpainajan aiheuttaman tuhon perusteella. Työn tulokset myös osoittivat drone-pohjaisen kartoituksen kyvyn estimoida erilaisia viljelykasvien parametreja, joita voidaan edelleen soveltaa suunniteltaessa esimerkiksi lisälannoitusta tai säilörehun optimaalista korjuuaikaa
    corecore