650 research outputs found

    Computational study of resting state network dynamics

    Get PDF
    Lo scopo di questa tesi è quello di mostrare, attraverso una simulazione con il software The Virtual Brain, le più importanti proprietà della dinamica cerebrale durante il resting state, ovvero quando non si è coinvolti in nessun compito preciso e non si è sottoposti a nessuno stimolo particolare. Si comincia con lo spiegare cos’è il resting state attraverso una breve revisione storica della sua scoperta, quindi si passano in rassegna alcuni metodi sperimentali utilizzati nell’analisi dell’attività cerebrale, per poi evidenziare la differenza tra connettività strutturale e funzionale. In seguito, si riassumono brevemente i concetti dei sistemi dinamici, teoria indispensabile per capire un sistema complesso come il cervello. Nel capitolo successivo, attraverso un approccio ‘bottom-up’, si illustrano sotto il profilo biologico le principali strutture del sistema nervoso, dal neurone alla corteccia cerebrale. Tutto ciò viene spiegato anche dal punto di vista dei sistemi dinamici, illustrando il pionieristico modello di Hodgkin-Huxley e poi il concetto di dinamica di popolazione. Dopo questa prima parte preliminare si entra nel dettaglio della simulazione. Prima di tutto si danno maggiori informazioni sul software The Virtual Brain, si definisce il modello di network del resting state utilizzato nella simulazione e si descrive il ‘connettoma’ adoperato. Successivamente vengono mostrati i risultati dell’analisi svolta sui dati ricavati, dai quali si mostra come la criticità e il rumore svolgano un ruolo chiave nell'emergenza di questa attività di fondo del cervello. Questi risultati vengono poi confrontati con le più importanti e recenti ricerche in questo ambito, le quali confermano i risultati del nostro lavoro. Infine, si riportano brevemente le conseguenze che porterebbe in campo medico e clinico una piena comprensione del fenomeno del resting state e la possibilità di virtualizzare l’attività cerebrale

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and Fundación BBVA

    Adaptive neurocomputation with spiking semiconductor neurons

    Get PDF

    Emergence of Spatio-Temporal Pattern Formation and Information Processing in the Brain.

    Full text link
    The spatio-temporal patterns of neuronal activity are thought to underlie cognitive functions, such as our thoughts, perceptions, and emotions. Neurons and glial cells, specifically astrocytes, are interconnected in complex networks, where large-scale dynamical patterns emerge from local chemical and electrical signaling between individual network components. How these emergent patterns form and encode for information is the focus of this dissertation. I investigate how various mechanisms that can coordinate collections of neurons in their patterns of activity can potentially cause the interactions across spatial and temporal scales, which are necessary for emergent macroscopic phenomena to arise. My work explores the coordination of network dynamics through pattern formation and synchrony in both experiments and simulations. I concentrate on two potential mechanisms: astrocyte signaling and neuronal resonance properties. Due to their ability to modulate neurons, we investigate the role of astrocytic networks as a potential source for coordinating neuronal assemblies. In cultured networks, I image patterns of calcium signaling between astrocytes, and reproduce observed properties of the network calcium patterning and perturbations with a simple model that incorporates the mechanisms of astrocyte communication. Understanding the modes of communication in astrocyte networks and how they form spatial temporal patterns of their calcium dynamics is important to understanding their interaction with neuronal networks. We investigate this interaction between networks and how glial cells modulate neuronal dynamics through microelectrode array measurements of neuronal network dynamics. We quantify the spontaneous electrical activity patterns of neurons and show the effect of glia on the neuronal dynamics and synchrony. Through a computational approach I investigate an entirely different theoretical mechanism for coordinating ensembles of neurons. I show in a computational model how biophysical resonance shifts in individual neurons can interact with the network topology to influence pattern formation and separation. I show that sub-threshold neuronal depolarization, potentially from astrocytic modulation among other sources, can shift neurons into and out of resonance with specific bands of existing extracellular oscillations. This can act as a dynamic readout mechanism during information storage and retrieval. Exploring these mechanisms that facilitate emergence are necessary for understanding information processing in the brain.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111493/1/lshtrah_1.pd

    Nonlinear Dynamics, Synchronisation and Chaos in Coupled FHN Cardiac and Neural Cells

    Get PDF
    Physiological systems are amongst the most challenging systems to investigate from a mathematically based approach. The eld of mathematical biology is a relatively recent one when compared to physics. In this thesis I present an introduction to the physiological aspects needed to gain access to both cardiac and neural systems for a researcher trained in a mathematically based discipline. By using techniques from nonlinear dynamical systems theory I show a number of results that have implications for both neural and cardiac cells. Examining a reduced model of an excitable biological oscillator I show how rich the dynamical behaviour of such systems can be when coupled together. Quantifying the dynamics of coupled cells in terms of synchronisation measures is treated at length. Most notably it is shown that for cells that themselves cannot admit chaotic solutions, communication between cells be it through electrical coupling or synaptic like coupling, can lead to the emergence of chaotic behaviour. I also show that in the presence of emergent chaos one nds great variability in intervals of activity between the constituent cells. This implies that chaos in both cardiac and neural systems can be a direct result of interactions between the constituent cells rather than intrinsic to the cells themselves. Furthermore the ubiquity of chaotic solutions in the coupled systems may be a means of information production and signaling in neural systems
    • …
    corecore