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Abstract 

In this thesis, we study the neurocomputation by implementing two different neuron 

models. One is a semi magnetic micro p-n wire that emulates nerve fibres and supports the 

electrical propagation and regeneration. The other is a silicon neuron based on Hodgkin-

Huxley conductance model that can generate spatiotemporal spiking patterns. The former 

model focuses on the spatial propagation of electrical pulses along a transmission line and 

presents the thesis that action potentials may be represented by solitary waves. The later 

model focuses on the dynamical properties such as how the output patterns of the active 

networks adapt to external stimulus. To demonstrate the dynamical properties of spiking 

networks, we present a central pattern generator (CPG) network with winnerless 

competition architecture. The CPG consists of three silicon neurons which are connected 

via reciprocally inhibitory synapses. The network of three neurons was stimulated with 

current steps possessing different time delays and that the voltage oscillations of the three 

neurons were recorded as a function of the strengths of inhibitory synaptic interconnections 

and internal parameters of neurons, such as voltage thresholds, time delays, etc.  The 

architecture of the network is robust and sensitively depends on the stimulus. Stimulus 

dependent rhythms can be generated by the CPG network. The stimulus-dependent 

sequential switching between collective modes of oscillations in the network can explain 

the fundamental contradiction between sensitivity and robustness to external stimulus and 

the mechanism of pattern memorization.  

We successfully apply the CPG in modulating the heart rate of animal models (rats). The 

CPG was stimulated with respiratory signals and generated tri-phasic patterns 

corresponding to the respiratory cycles. The tri-phasic stimulus from the CPG was used to 

synchronize the heart rate with respiration. In this way, we artificially induce the 

respiratory sinus arrhythmia (RSA), which refers to the heart rate fluctuation in synchrony 

with respiration. RSA is lost in heart failure. Our CPG paves to way to novel medical 

devices that can provide a therapy for heart failure. 
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Chapter 1 Introduction 

1.1 Motivation  of the Thesis 

Biological nervous system receives information from the outside world and computes and 

communicates in the form of electrical impulses, also known as spikes. Computational 

neuroscience [1, 2] aims at describing and expressing information process in nervous 

system, such as how information is encoded in spikes, how these spikes travel along 

specific pathways in the nervous system and how the central nervous system makes 

decisions based on the incoming signals, etc. 

One primary reason for studying the neurocomputation is that in comparison with 

traditional digital computation, biological neurons are shown to be extremely effective in 

information process. For example, processing speed of human brain is about 10 fold 

greater than the computers’ for face recognition [3]. Moreover, brains can perform tasks 

which are too complex to be processed by digital computers in any length of time, such as 

motor control during locomotion [4], pattern recognition based on incomplete information 

[5, 6], associative memory [7], etc.  

Computation in neural systems is a dynamical process [8]. One aspect of research on 

neurocomputation is to study the dynamical properties in particular neuron models. The 

study can carry out either in software [9, 10] or in hardware [11]. A software simulation is 

suitable for performing neurocomputation in small networks or developing new algorithms. 

However, if large networks with learning ability are to be used, a software simulation 

would not be a good choice any more due to the high time consuming. Instead, hardware is 

in need for building efficient adaptive systems. 

Choosing neuron models is an issue on keeping a balance between incorporating sufficient 

details to demonstrate selected features of neural dynamics and reducing the complexity to 

make a model tractable [12].  The aim of this thesis is to study the propagation of electrical 

pulses along artificial nerve fibres as well as the neuron adaptability. The spatial aspect of 

neurons is important because nerve fibres operate as transmission delay lines to phase the 

timing of spikes[13], which is essential for neural computation[14]. Neuron adaptability is 

related to brain functions such as memory storage, temporal pattern recognition [8], etc.   
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For the former goal, we emphasize the spatial structure of the neuron model. On way to 

achieve the spatially delocalised nervous system is using synaptic connections to construct 

neural networks with particular architecture [8]. Besides, a new medium, which is p-n 

wires, for channelling electrical pulses has been proposed [15]. Here we use a p-n wire to 

demonstrate that it can support soliton-like electrical pulses propagating through it. 

For the latter goal, we start from building a single neuron which can replicate the temporal 

response of a nerve fibre to an excitatory current [20]. And we go further and use these 

silicon neurons to construct a small neural network which can generate spatiotemporal 

patterns. We study the adaptability of the network by recording the stimulus dependent 

spike patterns. Besides, we use it as a new medical appliance to modulate the heart rate of 

rats during which physiologically realistic signals are in need. Bearing these aims in mind 

we choose to implement Hodgkin-Huxley (HH) neuron model [16, 17]. This is bottom up 

dynamical neuron model which can describe individual neurons in details. On one side, it 

is a sufficiently realistic neuron model as a suitable tool for exploring the dynamics in the 

biological nervous systems. Using this model will be faster and more convenient than 

using animals. On the other side, it is a biophysically meaningful model that can precisely 

match the known physiological parameters thus the output of it can satisfy the standard for 

medical experiments. Also the interaction between it and the real neurons is possible.  

And we implemented HH neuron using analogue components because of the benefits from 

advantages of analogue techniques. First, analogue neurons can compute the complex 

nonlinear equations of the HH models for large systems more quickly and flexibly than 

software does. Secondly, operation of analogue computation is accurate and in real time. 

Thirdly, analogue chips can be miniaturized. All these advantages will be beneficial for the 

study of the dynamical properties in neural network as well as in implant of artificial 

neurons in animals. 

As set forth, the dynamic property of the neural network that we are interested in is how 

the network adapts to external stimulus. And we study it by recording the spatiotemporal 

patterns generated by the network. The spatiotemporal pattern will be shown as an attractor 

in the phase space when the oscillations of the neural network are steady and periodic. The 

adaptability will result in the evolution from initial conditions to the common attractor 

along different trajectories. This evolution can happen while the parameters of the system, 

such as intrinsic properties of individual neurons, connection strengths, etc. are all fixed. 
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And a neural system can possess several attractors. The attraction dynamics can be a 

mechanism of inaccurate pattern recognition in living neurons as the inaccurate input will 

lead to trajectories within the basin of attraction converging towards the attractor. The 

existence of multi-attractors can stand different memory states. 

The dynamical mechanism underlying the neural network is winnerless competition 

principle (WLC) [18]. In a winnerless competition neural network, neurons compete with 

each other for firing and the firing sequence is stimulus-dependent. This paradigm explains 

why a neural system can be sensitive to incoming stimulus as well as robust against noise. 

What more, WLC network possesses remarkable capacity of producing a big number of 

different patterns. For example, for a network with N neurons, the number of 

distinguishable patterns could be of order e (N-1)![18]. This number is corresponding to 

the possible number of memory states. Furthermore, WLC network possesses rich 

dynamical features such as multi-attractors, transient dynamics, etc. Therefore, inducing 

WLC dynamics into our neural network is crucial for us to study the stimulus dependent 

rhythms in the networks. 

1.2 Background Information 

1.2.1 The Functional Parts and Electrical Properties of Neurons   

The neuron is a fundamental structure of the nervous system that receives incoming 

information and computes and transmits information through chemical or electrical signals. 

An idealized neuron can typically be divided into three functional parts: the dendrites, the 

soma, and the axon, as shown in figure 1.1(a) [19]. The dendrites are ‘input devices’ that 

collect signals from other neurons and transmit them to the soma. The soma integrates 

inputs. If the total inputs exceed a certain threshold, then an output signal is generated and 

transmitted over the axon. The axon terminates at a variable distance from the soma. The 

distance ranges from less than one millimetre to more than one meter [20].  

The junctions that connect the terminal region of the axon of one neuron to dendrites of 

another neuron are called synapses [21]. They are shown in figure 1.1(a). Synapses allow 

signals transmitted from one neuron to another. Commonly the neuron which sends signals 

is called a presynaptic cell and the neuron which receives signal is called a postsynaptic 

cell. According to the influence, synapses fall into two categories: one is excitatory 

synapses and the other is inhibitory synapses. An excitatory synapse is a synapse in which 
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the signal from the presynaptic cell increases the probability of activation of the 

postsynaptic cell. An inhibitory synapse is a synapse in which the signal from the 

presynaptic cell decreases the probability of activation the postsynaptic cell [22]. 

According to the operation mechanism, there are two types of synapses in neurons: one is 

chemical synapses and the other is electrical synapses. Chemical synapses transmit signals 

by releasing chemicals through the junction between neurons or from neuron cells to non-

neuronal cells such as muscle or glands. Electrical synapses function as Ohmic electrical 

connections between the membranes of two neuron cells. In this thesis, we choose the 

electrical synapse to model for two reasons. First, electrical synapses are faster than 

chemical synapses. Second, electrical synapses are bidirectional while chemical synapses 

are unidirectional [22]. The influence of bidirectional synaptic signal can be from either 

neuron to the other. We take the advantage of bidirectional operation of electrical synapses 

to switch them between ‘being excitatory’ and ‘being inhibitory’. Details about the design 

of the artificial synapses are demonstrated in 3.3.    

The elementary unit of electrical neuronal signalling is spikes consisting of electrical 

pulses as shown in figure 1.1(b). They are also called action potentials. A spike has 

amplitude of about 100mV and typically duration of 1-2ms [8].  

A spike is carried by ions, such as Na
+
, K

+
, Ca

2+
, Cl

-
, etc. It results from the movement of 

ions across the neuron cell membrane through ion channels, which are embedded in 

membranes and gated by the membrane voltage [19].  At rest, the ion channels are shut. 

There is no ionic current flowing across the neuron cell membrane. Concentrations of ions 

maintain steady values inside and outside the neuron. For example, potassium ions have 

higher concentration inside the neuron while sodium ions have higher concentrations 

outside.  Although no ion can move through the ion channels, there is potassium current 

because the membrane is selectively permeable to potassium. This leads to the imbalance 

distribution of charges inside and outside the neuron and eventually results in the 

polarization of the neuron cell membrane. The potential of inside the neuron is about 

60mV less than that of outside the neuron. Based on the physiologists’ sign convention, the 

potential in the exterior of the neuron cell is defined to be zero and inward is negative. 

Thus the resting membrane potential of a neuron is about -60mV. The resting potential is 

also called equilibrium potential. It can be calculated by the Nernst equation, which relates 

the concentration of ions to the electric gradient that balance it. The equation is shown as 

below [23]: 
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𝑉𝑟 =

𝑅𝑇

𝑧𝐹
ln⁡(

𝐶𝑜𝑢𝑡
𝐶𝑖𝑛

) 
(1. 1) 

Where Vr is the resting potential, R is the ideal gas constant, T is the temperature of 

solution in Kelvin, z is the valence of the ion, Cout is the concentration of the ion outside 

the neuron, and Cout is the concentration of the ion inside the neuron. 

A spike is initiated when the neuron cell membrane is depolarized [19]. The voltage at 

which the depolarization is sufficient to trigger a spike is called the threshold. Usually we 

say a neuron is fired when the neuron is triggered to generate a spike. A neuron can be 

fired by injecting a current stimulus. And the value of the injected current which is 

sufficient to fire a neuron is called the threshold of the stimulus. The dynamic process of 

generating a spike is associated with the dynamics of ion channels and the movements of 

ions across the neuron cell membrane [8]. This is quite complex process.  Here we only 

take into account the sodium and potassium ions to demonstrate the simplified process of 

initiating a spike.  When a current stimulus which is above the threshold is injected into the 

neuron, first the sodium channels open such that sodium ions move from outside to inside. 

The neuron is therefore depolarized and become more positive. The potassium channels 

start to open when the sodium channels start to close. When potassium channels open, 

potassium ions move from inside to outside of the neuron, the neuron goes back to the 

negative state. If the membrane is charged more negatively than its resting potential, it is 

said to be hyperpolarized, in which case the generation of the next spike is inhibited. The 

hyperpolarization ends up when potassium channels close. Then the neuron goes back to 

the rest state and another spike can be generated.  

Information in the nervous system is encoded by spiking patterns. In spiking patterns, both 

the rate and the timing of spikes are crucial for encoding information [21]. The nervous 

system processes and transmits information by generating and propagating spiking patterns 

[8]. The flow of information starts from the sensory systems, where it is captured and 

encoded, and then it is transmitted to central nervous systems. In central nervous system, 

response spiking patterns are generated. After that, spiking patterns are transported to the 

muscles to produce behaviours (dynamical principles).  Neurocomputation is a subject that 

studies how the information is processed in all the stage. One generalization of studying 

neurocomputation is analysing the spatial, temporal and spatial-temporal aspects of 

neurocomputation. The spatial aspect concerns the transmission of spikes in space, such as 

how the spikes propagating along the neuron nerve fibres, etc. The temporal aspect 
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concerns how the information is processed by the rate and timing of spikes. The spatial-

temporal aspect is the combination of the former two. 

 

Figure 1.1 Illustration of the functional parts and electrical properties of neurons. (a) A schematic 

figure of neurons. A single neuron consists of dendrites, a soma and axons. The neurons are 

connected together by synapses. (b) An example of neuronal action potentials, which is commonly 

called spikes. A spike is a short voltage pulse of 1-2 ms duration and amplitude of about 100mV. It 

is generated when the depolarization of the membrane is above the threshold. A spike is followed 

by a hyperpolarization period during which the generation of the next spike is inhibited. This plot is 

the courtesy of Dr. Daniel Meliza. It is the electrophysiological recording of a neuron from the 

songbird high vocal centre in response to a current stimulus of 0.75nA. 

1.2.2 Modelling Propagation Delays Using Semiconductor P-N Wires 

The spatial propagation of spikes and propagation delays along the neuron nerves are 

important for the neurocomputation.  For example, dendrites transmit signals from many 

neurons to the soma or central processing unit. The soma only integrates inputs that arrive 

within a particular time window [24, 25]. In this way, the soma acts as a coincidence 

detector for incoming pulses to indicate if spikes are synchronized as well as generate 

outputs according to the correlations in the input patterns. This function is crucial for 

neurocomputation based on timing of spikes, such as Hebbian learning rule based on spike 

timing dependent plasticity [26], azimuthal sound localization based on spike arrival times 

in the auditory system of barn owls [27, 28], etc.  

P-n wires are proposed to be a proper medium for spatially propagating spikes analogue to 

signalling in neuron nerve fibres [15].  

The first reason for choosing p-n wires as the medium is that p-n junctions share many 

common physical properties with nerve fibres [15]. The key elements in a neuron that 

perform electric properties include the membrane, the charge carriers and the resting 
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potential. The membrane is an insulator that can separate and accumulate electrical charges. 

The charge carriers are crucial for the generation of spikes. And the resting potential is a 

parameter associated with the charge distribution across the neuron cell membrane and it 

can be calculated by the Nernst equation as shown in the equation 1.1. In p-n junctions, the 

depletion region is an insulating region that spatially separates the p type and n type 

electrode. Charge carriers are the majority and minority carriers such as electrons and holes. 

As a result of the imbalance of charge carriers across the depletion region, a potential 

barrier is established and it can also be defined by the Nernst equation. This potential is 

generally called the built in potential.  

Secondly, electrical characteristics of p-n wires can model the characteristics of electrical 

signalling along the biological nerve fibre. The electrical signalling depends on the axial 

resistance along the membrane, the radial conductivity through the membrane and the 

capacitance of the nerve membrane. The axial resistance is due to the resistance of 

capillary to movements of electric charge [29]. For a neuron surrounded by a large volume 

of conducting fluid, the internal resistance is larger than the external one. For a 

semiconductor like GaAs, the n type mobility is bigger than the p type. Therefore we can 

model the internal resistance by the resistance between p type electrodes along GaAs based 

p-n wires and model the external resistance by the resistance between n type electrodes 

along GaAs based p-n wires [15]. Regarding the radial conductivity, the ion conductance is 

nonlinear because the ion channels are voltage controlled and only open when the 

membrane potential crosses the threshold [16]. The exponential conductivity of the p-n 

junction exhibits equivalent nonlinearity. Regarding the capacitance of the neuron 

membrane, it can be modelled by the capacitance of the depletion layer of the p-n wire. 

The charging and discharging rate of capacitors determine the speed of signals. 

Thirdly, it has been demonstrated in experiments that p-n wires can functionally model the 

nerve fibres. P-n wires possess the capability of integrating multiple inputs in space and 

time and regenerating pulses exceeding the voltage threshold [24, 30, 31]. Moreover, they 

are able to demonstrate stochastic phenomena like stochastic resonance [32], which was 

observed in biological neurons [33]. 

Lastly, a p-n wire is a monolithic neuron model for studying the spatial aspect of 

neurocomputation[15] and the structure of it is simple. Another way of emulating the 

spatial aspects of neurocomputation of single neurons, such as multiple inputs integration, 
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is introducing coupling between multiple compartments [12]. Each compartment is a 

neuron model that has only temporal parameters in it.  By contrast, p-n wires provide with 

a straightforward way of studying the pulse propagation in space.  

1.2.3 Computation in a Single Neuron: Hodgkin-Huxley Model  

Hodgkin-Huxley (HH) neuron is neuron model that neglects the neuron’s spatial structure 

and focus on how various ionic currents contribute to the generation of spikes [12, 17]. 

They transfer the effects of different ionic channels to the capacity and resistance of the 

membrane and build an equivalent circuit. They use a set of nonlinear equations to 

describe ionic mechanisms underlying the initiation and propagation of neural spikes in 

detail. The Hodgkin and Huxley neuron offers an accurate model of the physiological data. 

And it provides a quantitative description of the neural behaviour.  

According to HH approach, the electrical properties of a neuron are modelled by an 

electrical equivalent circuit similar to that shown in figure 1.1 [17]. In the figure, 

capacitors represent the charge storage capacity of the cell membrane, resistors represent 

the various types of ion channels embedded in membrane, and batteries represent the 

electrochemical potentials established by differing intra- and extracellular ion 

concentrations. Current flow across the membrane has two major components, one is from 

charging the membrane capacitor, and the other is from specific ions across flowing across 

the membrane. 
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Figure 1.2 The electrical circuit proposed by Hodgkin and Huxley [17]. It is an equivalent circuit of 

bio-membrane. The capacitor represents the capacitance of the cell membrane. Two variable 

resistors represent sodium and potassium conductance respectively, which varies with time and 

membrane potential. The fixed resistor represents a constant leakage conductance, which represents 

channel types that are not described explicitly. The three batteries represent the electrochemical 

potentials for the corresponding conductance. The potentials are generated by the difference in ion 

concentrations between the outside and inside nerve membrane.   

 

Applying the Kirchhoff’s current law to figure 1.2, the behaviour of the electrical circuit 

can be described by a differential equation as below: 

 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝐼𝑖𝑜𝑛 = 𝐼                                                                                                              (1. 2) 

Where Cm is membrane conductance, Vm is membrane potential, I is the total membrane 

current. The ionic current Iion is further subdivided into three distinct components, a 

sodium current INa, a potassium current Ik, and a small leakage current IL which is primarily 

carried by chloride ions. Thus 

 𝐼𝑖𝑜𝑛 = 𝐼𝑁𝑎 + 𝐼𝐾 + 𝐼𝐿                                                                                                          (1. 3) 

The ionic current Iion is assumed to be related to the membrane voltage through an Ohm’s 

law relationship of the form V=IR. And this relationship is expressed in terms of 

conductance rather the resistance for the convenience, in which case Ohm’s law becomes 
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I=GV, where G is the conductance of an ion channel and it is the inverse of resistance, 

G=1/R. In applying this relationship and the Kirchhoff’s voltage law to ion channels, 

equation (1.3) can be expanded to the following expression: 

 𝐼𝑖𝑜𝑛 = 𝐺𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) + 𝐺𝐾(𝑉𝑚 − 𝐸𝐾) + 𝐺𝐿(𝑉𝑚 − 𝐸𝐿)                                                  (1. 4) 

Where ENa, EK and EL is equilibrium potential for each ion type. They are empirical 

parameters. Applying equation (1.4) to equation (1.2), we will obtain the fundamental 

equation relating the change in membrane potential to the currents flowing across the 

membrane [17]: 

 𝐼 = 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝐺𝑁𝑎(𝑉𝑚 − 𝐸𝑁𝑎) + 𝐺𝐾(𝑉𝑚 − 𝐸𝐾) + 𝐺𝐿(𝑉𝑚 − 𝐸𝐿)⁡                                        (1. 5) 

In order to explain the experimental data, Hodgkin and Huxley proposed that GNa and GK 

were voltage-dependent quantities, whereas the leakage current GL was taken as constant. 

Thus in figure 1.2, GNa and GK is represented by variable resistors and GL is represented by 

a fixed resistor. Today we know that the conductance in HH model can be considered to 

arise from the combined effects of a large number of microscopic ion channels embedded 

in the membrane. Each type of ion channels contains physical gates that regulate the flow 

of ions through the channel. An individual gate can either be in ‘open ’ state or in ‘close’ 

state independently of one antoher. The total membrane conductance of a particular ion is 

the sum of the conductances from all the open gates corresponding to the ion. In HH 

neurons, the satistical model is used to calculate the channel conductance. We define pi as 

the probability of an individual gate being in the open state. i represents the tye of the gate. 

Pi is a dimensionless variable which can vary between 0 and 1. If we consider a large 

number of channels, pi then denotes the fraction of gates that are in the open state. 𝑝𝑖(𝑡) 

denotes the fraction of gates that in the open state at time t. Since there are only two 

possibilities for the states of the gates, 1 − 𝑝𝑖(𝑡) denotes the the fraction of gates that are in 

close state.  

The rate at which close gates transition to an a open state is governed by a variable 𝛼𝑖(𝑉), 

which has units of 1/time. Here V is the displacement the membrane potential from its 

resting values. 𝛼𝑖(𝑉) is known as ‘rate constant’. Actually it is a function of membrane 

voltage but not of time. Similary, there is another rate constant 𝛽𝑖(𝑉) describing the rate at 

which open gates transition to an close state.Transitions between open and close states in 

the HH model can be described mathematically by using first-order kinetics: 
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 𝑑𝑝𝑖

𝑑𝑡
=∝𝑖 (𝑉)(1 − 𝑝𝑖) − 𝛽𝑖(𝑉)𝑝𝑖                                                                                         (1. 6) 

When the membrane voltage Vm is held at some fixed value V, then the fraction of gates in 

the open state will eventually reach a steady state value as 𝑡 → ∞. This is given by: 

 𝑝𝑖→∞ =
∝𝑖(𝑉)

∝𝑖(𝑉)+𝛽𝑖(𝑉)
                                                                                                           (1. 7) 

The time costant 𝜏𝑖(𝑉) for approaching the steady state is given by [17]: 

 𝜏𝑖(𝑉) =
1

∝𝑖(𝑉)+𝛽𝑖(𝑉)
                                                                                                             (1. 8) 

We say a channel is open when all the gates for the particular channel are open. When the 

particular channel is open, it contributes a fixed value to the total conductance . Otherwise 

it contributes zero. Therefore the conductance for a large population of chanels is 

proportional to the number of channels in the open state, which is in turn proportional to 

the probability that the associated gates are in the open state.  

In HH model, the potassium channel is assumed to have only one type of gates based on 

experimental data. It is the activation gate. We lable it by the letter n. The rate constants for 

the activation gate of potassium channel are identified as 𝛼𝑛(𝑉) and 𝛽𝑛(𝑉). Let 𝑔𝑘̅̅ ̅ denote 

the maximum value of potassium channel conductance which corresponds to the state that 

all the gates are open, the potassium channel conductance can be expressed as the 

following equation [17]: 

 𝐺𝑘 = 𝑔𝑘̅̅ ̅𝑝𝑛
4 = 𝑔𝑘̅̅ ̅𝑛

4                                                                                          (1. 9) 

The sodium channel is assumed to have two types of gates according to experimental data, 

which are activation and inactivation gates. The activationi gate is identified by the letter m. 

The rate constants for the activation gate of sodium channel thus can be identified as 

𝛼𝑚(𝑉) and 𝛽𝑚(𝑉). The inactivation gate is labeled by the letter h. The rate constants for 

the activation gate of sodium channel thus can be identified as 𝛼ℎ(𝑉) and 𝛽ℎ(𝑉). The 

conductance of sodium conductance is a function of both m and h. Let 𝑔𝑁𝑎̅̅ ̅̅ ̅ denote the 

maxium value of sodium conductance, the empirical expression of the sodium channel 

conductance is [17]: 



18 
 

                                                                                                        𝐺𝑁𝑎 = 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑝𝑚
3𝑝ℎ = 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3h         (1. 10) 

Summarizing euqations (1.2)-(1.10), a complete HH model consisting of the differential 

equation for the circuit of figure 1.2 and three differential equations describing the rate 

processes have been obtained [17]: 

 𝐼 = 𝐶𝑚
𝑑𝑉𝑚

𝑑𝑡
+ 𝑔𝑁𝑎̅̅ ̅̅ ̅𝑚3h(𝑉𝑚 − 𝐸𝑁𝑎) + 𝑔𝑘̅̅ ̅𝑛

4(𝑉𝑚 − 𝐸𝐾) + 𝑔𝑙̅(𝑉𝑚 − 𝐸𝐿)⁡⁡                        (1. 11) 

Where  

 𝑑𝑛

𝑑𝑡
=∝𝑛 (𝑉)(1 − 𝑛) − 𝛽𝑛(𝑉)𝑛                                                                                        (1. 12) 

 𝑑𝑚

𝑑𝑡
=∝𝑚 (𝑉)(1 − 𝑚) − 𝛽𝑚(𝑉)𝑚                                                                                   (1. 13) 

 𝑑ℎ

𝑑𝑡
=∝ℎ (𝑉)(1 − ℎ) − 𝛽ℎ(𝑉)ℎ                                                                                        (1. 14) 

Equations (1.11)-(1.14) give the membrane current I as a function of time and membrane 

voltage. And Hodgkin and Huxley were able to experimentally determine the rate 

constants for potassium activation gate and sodium activation and inactivation gates as a 

function of membrane voltage. We summarize equations as follows [17]: 

 

𝛼𝑛(𝑉) =
0.01(10−𝑉)

𝑒𝑥𝑝(
10−𝑉

10
)−1

                                                        (1. 15) 

 

𝛽𝑛(𝑉) = 0.125𝑒𝑥𝑝⁡(−
𝑉

80
)                                                    (1. 16) 

 

𝛼𝑚(𝑉) =
0.1(25−𝑉)

exp(
25−𝑉

10
−1)

                                                    (1. 17) 

 

𝛽𝑚(𝑉) = 4𝑒𝑥𝑝⁡(−
𝑉

18
)                                                       (1. 18) 

 

𝛼ℎ(𝑉) = 0.07𝑒𝑥𝑝⁡(−
𝑉

20
)                                                     (1. 19) 

 

𝛽ℎ(𝑉) =
1

𝑒𝑥𝑝(
30−𝑉

10
)+1

                                                        (1. 20)  

The units of the numbers in above equations are the same with the membrane voltage. 
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However, because of its complexity, HH model has difficulties in analysing and 

computation because they consume a lot of time when networks of two or three neurons 

need to be modelled [34]. For this reason, several simplification of the Hodgkin-Huxley 

equations have been proposed, such as series of integration and fire (IF) models [35-37], 

Fitzhugh-Nagumo model [38], Morris-Lecar models [39], etc. These models differ in their 

capability to reproduce firing patterns qualitatively and computational efficiency [40]. 

Usually the simpler model has better computational efficiency but provides poorer 

biological plausibility. For example, IF model with only one variable can be the simplest to 

implement. And it is the most efficient. Yet it lacks many fundamental properties of 

cortical spiking neurons, such as can only produce tonic spikes with constant frequency, 

etc.[40]. Thus it is suitable for the cases that require analytical results but do not need to 

realistically capture the spike generating mechanisms.  

Neuron models are discussed and compared in papers [34, 40, 41] . Table 1.1 from 

Izhikevich [40] is provided for showing the comparison of the neurocomputational 

properties of spiking and bursting models. 

 

Table 1.1 Comparison of the neurocomputational properties of spiking and bursting models. This 

table is from ref. [40]. 
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As the goal of our work in the thesis is to build a neural network which can generate 

physiologically realistic signals for medical applications, the HH model is well suited to 

this application. Implementing this scheme in analogue form frees computation from the 

prohibitive cost of integrating the Hodgkin-Huxley equations [17], which mathematically 

describe electrical properties of biological neurons, and realizes the real-time operation. 

Therefore the HH neuron model is the best choice for us. We will compute three coupled 

neuron together. This network is small enough to avoid the computational difficulty from 

the HH model. 

1.2.4 Computation in a Neural Network: Dynamics of a Central Pattern Generator 

One neural network whose dynamical properties are intensively studied is central pattern 

generators (CPGs) [42, 43].  The function of them are controlling rhythmic activities such 

as locomotion, breathing, heartbeat etc. [44]. Experiments have shown that CPG is a 

nonlinear network made of multiple coupled neurons whose output is spatiotemporal 

oscillations [8, 45]. A spatiotemporal oscillation is called a rhythmic pattern, or a rhythm. 

On one side, CPGs can functionally switch to generate spatiotemporal patterns with 

different rhythms in response to different sensory inputs, which are usually called initial 

conditions during experiments. This function allows animals to adapt their behaviour 

according to the environment. On the other side, CPGs display stable and reproducible 

rhythms that are robust against noise [46, 47].  

A rhythm generated by a CPG corresponds to a limit cycle in the state space of the CPG 

output. In neuroscience, a limit cycle is a set of states toward which the outputs of the 

neural network will evolve. It is shown as a closed trajectory in the three dimensional 

projection of oscillation states of the neural network that other trajectories in the portrait 

will spiral into it as time approaches infinite [8]. An example of a limit cycle is given in 

figure 1.3 (a) [8, 48]. In the plot, x, y and z axis represents the oscillation state of LP, 

PD/AB, and VD neurons in pyloric CPG of lobster. Green trajectories indicate the irregular 

oscillation states of the CPG. And the blue limit cycle indicates the steady and periodic 

oscillation state of the CPG. The dynamic process that green trajectories eventually evolve 

into the blue limit cycle with time demonstrates how the CPG outputs evolve from 

irregular patterns into rhythmic patterns. 
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Figure 1.3 An example of a limit cycle. Axes in the plot are oscillation states of LP, PD/AB, VD 

neurons in pyloric CPG of lobster. Green trajectories correspond to irregular and aperiodic 

oscillation states of neurons. The blue trajectory is the limit cycle. It corresponds to steady and 

periodic oscillation states of neurons. This plot is from ref. [8]. 

 

A rhythm generated by a CPG also corresponds to an attractor in the phase space of the 

CPG output. In neuroscience, an attractor is a set of numerical properties toward which the 

neural system tends to evolve from various initial conditions [8, 49]. Attractors mentioned 

in the thesis specifically refer to fixed point attractors. An example of fixed point attractors 

is shown in figure 1.4. This plot is from a CPG consisting of three neurons. Axes in the 

plot are normalized time delays between oscillations from the three neurons. One of the 

neurons is chosen as the reference. During experiments, the CPG is stimulated by various 

initial conditions. Each initial condition leads to a specific orbit in the plot. Although orbits 

start from different coordinate points, they eventually converge to five fixed points, which 

are called attractors. Attractors are shown by red, green, blue, black and purple dots. These 

five attractors correspond to 5 different states when time delays between outputs of 

neurons are fixed such that the 5 attractors indicate 5 steady and periodic rhythmic patterns. 

An area in which all the orbits would converge to a common attractor is called an attractor 

basin. An attractor basin includes all the initial conditions that would lead to the common 

attractor. Plotting attractors tells which initial condition corresponds to which fixed 

attractor. Thus by reading this plot, we know how to switch between attractors by 

switching initial conditions. In other words, this plot tells how to switch between CPG 

output rhythms by switching initial conditions.   
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Artificial CPGs share the same dynamic properties with living CPGs, such as limit cycle 

dynamics, attractor dynamics, etc. Therefore they are often studied as models of neural 

network functions [50-52]. Depending on the aim of the study, CPG models have been 

designed at different levels of abstraction from biophysical models. To study the 

generation of rhythmic activity, usually networks with detailed neuron models like HH 

neurons are constructed [53, 54]. And numerical models have been used as tools for the 

study. The theories of dynamical systems have been proposed which can help in predicting 

dynamic behaviours, such as identifying when rhythms [55, 56] occur in the system 

depending on parameters such as coupling weights and intrinsic frequencies. In this thesis, 

we are going to construct CPG hardware with HH neurons and study the rhythmic patterns 

in it by studying limit cycle and attractor dynamics.  

Structures of the CPGs have been studied for revealing the mechanism of regulating 

rhythms. Effect of different aspects, such as synaptic connections [57], sensory feedback 

[58, 59], etc. has been discussed. Of all the studies, the most common mechanism for 

generating rhythmic control is known as reciprocal inhibition, which will lead to a pair of 

neurons approximately firing out of phase with each other. Based on the previous theory 

and simulation work, we are going to construct CPG hardware by interacting HH neurons 

via inhibitory synaptic connections. 

 

Figure 1.4 An example of fixed point attractors generated by a CPG consisting of 3 oscillating 

neurons. Axes in the plot are normalized time delays between oscillations from the 3 neurons. One 
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of the neurons, say neuron 1, is chosen as the reference. ΔΦ31  is the normalized time delays 

between oscillations from neuron 3 and neuron 1.  ΔΦ21 is the normalized time delays between 

oscillations from neuron 2 and neuron 1.In the plot, there are 5 attractors. They are the red fixed 

point attractor at (ΔΦ31 ≈
1

2
, ∆Φ21 ≈ 0), the green fixed point attractor at (ΔΦ31 ≈ 0, ∆Φ21 ≈

1

2
) , 

the blue fixed point attractor at (ΔΦ31 ≈
1

2
, ∆Φ21 ≈

1

2
), the black fixed point attractor at (ΔΦ31 ≈

2

3
, ∆Φ21 ≈

1

3
), and the purple fixed point attractor at (ΔΦ31 ≈

1

3
, ∆Φ21 ≈

2

3
). The five attractors 

correspond to five rhythmic patterns of the CPG.  The area in which all the orbits would 

converge to a common attractor is called an attractor basin. There are 5 attractor basins in 

this plot: the red basin, the green basin, the blue basin, the black basin and the purple basin. 

An attractor basin includes all the initial conditions that would lead to the common 

attractor. This plot tells how to control the attractor of the CPG by switching initial 

conditions. This plot is from ref. [55].  

1.3 Outline of the Thesis 

Chapter 1 is the introduction. We demonstrate the motivation of the thesis, introduce 

information background, and outline the structure of the thesis.  

In chapter 2, we are going to demonstrate spatially extended neuron based on magnetic 

semiconductor p-n wires. The wire mimics the action potentials of biological nerve fibres 

and supports the propagation of soliton. We also report on the different modes of soliton 

propagation as the temperature is varied through the Curie temperature of the material. 

Results from it will be compared to theoretical simulations.  

In chapter 3, we are going to demonstrate how Hodgkin Huxley neuron and inhibitory 

synapses are constructed by silicon components. Response of a single neuron to current 

stimulus will be tested. We will show the intrinsic properties of a single silicon neuron, 

such as the amplitude of spikes, firing frequency, etc. Also, we will show spiking patterns 

from coupled neurons which are interacting with each other via either excitatory or 

inhibitory synapses.  

In chapter 4, we go further by interconnecting these neurons via inhibitory synapses in 

networks of winnerless architectures. In this way, we built universal central pattern 

generator (CPG) hardware to demonstrate its adaptive behaviour by producing stimulus 

dependent rhythmic patterns. We are going to investigate the dynamics of neuron 

oscillations as a function of the time delay between current steps applied to individual 
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neurons. We demonstrate stimulus dependent switching between spiking rhythms and map 

the phase portraits of the neuron oscillations to reveal the basins of attraction of the system. 

We experimentally study the dependence of the attraction basins on the network 

parameters: the neuron response time and the strength of inhibitory connections.  

In chapter 5, we demonstrate that the CPG hardware is potentially a new therapy for 

restoring the respiratory sinus arrhythmia in patients.  

Chapter 6 is the conclusion. We will summarize the work in this thesis and discuss the 

future work. 

  



25 
 

Chapter 2 Modelling Propagation Delays Using GaMnAs/GaAs 

Solitonic Transmission Lines 

2.1 Introduction 

In this chapter, we will focus on the spatial aspect of neurocomputation by studying the 

propagation of soliton signals in a p-GaMnAs/n-GaAs wire.  

It has been demonstrated in the subsection 1.2.1 that p-n wires can model biological neuron 

nerves. First of all, p-n wires can replicate physical properties of neuron membranes [15]. 

Secondly, analogue similarities exist between electrical properties of p-n wires and 

signalling characteristics of neuron nerves [15]. Thirdly, previous work on p-n wires has 

demonstrated experimentally that p-n wires can model functions of neuron nerves, such as 

integrating and regenerating electrical pulses in real time [24, 31], showing noise-

controlled signal transmission [32], etc. 

In this chapter, we carry on the study in GaAs based p-n wires. We aim to demonstrate that 

they support soliton propagation. Solitons are stationary pulses or wave packets which 

propagate in nonlinear dispersive media. They propagate without distortion of their forms. 

The stable waveforms result from a dynamical balance between the nonlinear and the 

dispersive effects. The possibility of soliton propagation in bio-membranes and nerves was 

proposed by Heimburg and Jackson in 2005 [60].  

Our idea of modelling the soliton propagation in p-n wires is inspired by the proposal from 

T Kuusela et al in 1987 [61]. They showed propagation of solitons in LC transmission lines 

containing constant inductors and voltage-dependent capacitors. The nonlinearity in the 

system arises from the voltage-dependent capacitance. The inductance transformed the 

expression equations of the system from diffusion equation to wave equation. Nonlinearity 

together with the wave equation leads to Korteweg-de Vries (KDV) equation [62] which 

has soliton solutions. Then nonlinearity in the traditional GaAs based p-n wires arises from 

the voltage-dependent conductance of the p-n junction. We then improved the traditional 

GaAs based p-n wires by doping with Mn in order to induce inductance into the system. In 

this way, the p-GaMnAs/n-GaAs wires are equivalent to ladder type LC transmission line 

that supports soliton propagation.  
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We will report on how we fabricate the p-n wire and measure the wave propagation along 

the wire. We also report on the different modes of wave propagation as the GaMnAs/GaAs 

micro wires are magnetized. Results will be compared with theoretical results of KDV 

solitons. 

2.2 Trials in an Electrical Transmission Line  

In this subsection, we start with the equivalent circuit of the p-n wire that can model 

neuron nerves [15]. By combining it with the electrical transmission line that can support 

soliton propagation [63], we propose an improved electronic transmission line that can 

model neuron nerves as well as support soliton propagation. We also demonstrate the 

experimental results from the novel electronic transmission line.  

2.2.1 Modelling the Nerve Fibres Using Electrical Transmission Line 

In order to model pulse propagating along neuron nerves, a p-n wire was proposed in 2004 

by A. Nogaret, et al [15]. An equivalent circuit of the p-n wire is shown in figure 2.1. In 

the circuit, resistors represent the axial resistivity along the nerve cell, diodes represent the 

nonlinear conductance across the membrane and capacitors mimic the membrane 

capacitance. In the figure, r is the resistance per unit length, c is the capacitance per unit 

length, and g is the conductance per unit length. The propagation of the pulse along the 

transmission line can be described mathematically by using Kirchhoff law.  

 

Figure 2.1 A transmission line circuit that represents the key electrical characteristics of the nerve 

fibre. In the circuit, the resistor mimics the axial resistivity of the capillary, the capacitor mimics 

the membrane capacitance, and the diode mimics the nonlinear conductance across the membrane 

[15]. 

 

The Kirchhoff voltage law shows that: 
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 𝑉(𝑥) = 𝑟𝑑𝑥𝐼(𝑥) + 𝑉(𝑥 + 𝑑𝑥) (2. 1) 

The Kirchhoff current law gives: 

 𝐼(𝑥 + 𝑑𝑥) = 𝐼(𝑥) − 𝑔𝑑𝑥𝑉(𝑥 + 𝑑𝑥) − 𝑐𝑑𝑥
𝑑𝑉(𝑥+𝑑𝑥)

𝑑𝑡
  (2. 2) 

Since the length of each node is small, the distance x is small. We can deduce the equation 

(2.3) and (2.4) below 

 𝑟𝐼(𝑥) =
𝑉(𝑥)−𝑉(𝑥+𝑑𝑥)

𝑑𝑥
= −

𝜕𝑉

𝜕𝑥
  (2. 3) 

 𝐼(𝑥+𝑑𝑥)−𝐼(𝑥)

𝑑𝑥
= −𝑔𝑉(𝑥 + 𝑑𝑥) − 𝑐

𝜕𝑉(𝑥+𝑑𝑥)

𝜕𝑡
   (2. 4) 

Combining the equation (2.3) and (2.4) gives: 

 −
1

𝑟

𝜕2𝑉

𝜕𝑥2
= −𝑔𝑉(𝑥 + 𝑑𝑥) − 𝑐

𝜕𝑉(𝑥+𝑑𝑥)

𝜕𝑡
                                                                               (2. 5) 

Thus rearranging shows that the equation governing the transmission line is: 

                                                                                                      𝜕2𝑉

𝜕𝑥2
− 𝑟𝑔𝑉 = 𝑟𝑐

𝜕𝑉

𝜕𝑡
        (2. 6) 

This result can be compared directly to the one dimensional diffusion equation with decay, 

given below in equation (2.7): 

 𝐷
𝜕2𝑐

𝜕𝑥2
− 𝐾𝑐 =

𝜕𝑐

𝜕𝑡
                                                                                                                 (2. 7) 

Where both D and K are constants, D is the diffusion coefficient, and K is the decay 

constant.  

The comparison between the equation (2.6) and (2.7) indicates that the transmission line 

should show diffusive behaviour. The pulse propagation along it will decay due to the 

resistance of the circuit. Therefore the transmission line in figure 2.1 shows only diffusive 

behaviours that can be described by a linear function. To induce the soliton propagation, 

we will need a nonlinear wave function which possesses soliton solutions [62, 64].  

2.2.2 Soliton Propagation along a Nonlinear Electrical Transmission Line 

In order to demonstrate KDV solitons, a transmission line as shown in figure 2.2 was built 

by Kuusela et al [61]. Electrical solitons were found in it. This is a ladder type LC circuits 

containing constant inductors and voltage-dependent capacitors. In the figure, L denotes 

the constant inductance. C(V) denotes the nonlinear capacitance. Vn-1 and Vn denote the 
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voltage propagating along the transmission line. In and In+1 denote the current flowing 

along the transmission line.  

 

Figure 2.2 A discrete transmission line with constant inductions and voltage dependent 

capacitances [63]. The electrical solitons have been found in this transmission line. In the figure, L 

is the inductance. C (V) is the nonlinear capacitance. Vn-1 and Vn denote the voltage across the 

transmission line. In and In+1 denote the current flowing along the transmission line.   

 

Each block in the transmission line can be described by the following equations: 

 𝑉𝑛−1 − 𝑉𝑛 = 𝐿
𝜕𝐼𝑛

𝜕𝑡
  (2. 8) 

and 

 𝐼𝑛 − 𝐼𝑛−1 =
𝜕𝑄𝑛

𝜕𝑡
  (2. 9) 

Where Qn is the charge stored in the nth capacitor.  

Then we assume that over a given voltage range (𝑉0, 𝑉0 + 𝑉𝑛) the differential capacitance 

𝐶(𝑉𝑛) can be approximated by 

 𝐶(𝑉𝑛) =
𝑄(𝑉0)

𝐹(𝑉0)−𝑉0+𝑉
 , (2. 10) 

Where Q (V0) and F (V0) are parameters depending on V.  

The equations (2.8)-(2.10) result in the following equation in terms of V[63], 

 𝐿𝑄(𝑉)
𝜕2

𝜕𝑡2
log (1 +

𝑉𝑛

𝐹(𝑉0)
) = (𝑉𝑛+1 + 𝑉𝑛−1 − 2𝑉𝑛)  

(2. 11) 

The equation (2.11) is equivalent to the equation for the one dimensional Toda lattice [65], 

which is known that it has a stable travelling wave solution. For the present transmission 

line, the solution can be written as [61] 
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 𝑉𝑛(𝑡) = 𝐹(𝑉0)𝛺
2𝑠𝑒𝑐ℎ2(𝛺𝑣0𝑡 − 𝑃𝑛)  (2. 12) 

With the velocity of the propagating wave 

 𝑣0 =
1

√𝐿𝑐(𝑉0)
                                                                                                                       (2. 13) 

The solution to equation (2.11) has the same form with the solution of KDV equation, 

which is considered as the prototype of nonlinear differential equations having solitons. 

KDV can be written in the form of nonlinear equation  

                                                                                                     𝜕𝑢

𝜕𝑡
− 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3
= 0  (2. 14) 

With boundary conditions 𝑙𝑖𝑚𝑧→±∞𝑢(𝑧) = 0, the equation has a solution as shown below 

[63]: 

                                                                                
𝑢1(𝑥, 𝑡) = −

1

2
𝑎2𝑠𝑒𝑐ℎ2(

𝑎(𝑥 − 𝑥0 − 𝑎2𝑡)

2
) 

(2. 15) 

The solution (2.15) is a pulse shaped solitary wave with a velocity a
2
 proportional to the 

amplitude and a width a
-1

 inversely proportional to the square root of the amplitude [61]. It 

suggests that in this system, larger amplitude solitons travel faster and are narrower than 

the smaller amplitude ones.  This is the basic property of the KDV soliton. Another 

important property is that initial pulse decomposes into a set of solitons and a decaying 

background tail. 

Comparing the equation (2.12) with (2.15), the equation (2.12) is a soliton solution. It 

indicates that the soliton wave can propagate through the LC transmission line. 

In the ladder type LC transmission line shown in figure 2.2, the nonlinearity arises from 

the voltage dependent capacitance and the dispersion is related to both inductance and 

capacitance. If there is a particular waveform that causes the nonlinearity and dispersion in 

the system to exactly counteract each other, then the waveform will be able to propagate 

through the transmission line without changing shape. This is how the electrical soliton 

acquires a stable shape.  

2.2.3 The Improved Electrical Transmission Line and Experimental Results from the 

Transmission Line 

By combining ideas in circuits of figure 2.1 and figure 2.2, we propose an improved 

transmission line by incorporating inductance in the circuit of figure 2.1. In this way, we 

expect to obtain a transmission line that can model biological nerve fibres as well as 
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support the propagation of soliton. The improved transmission line is shown in figure 2.3. 

The capacitor represents the membrane capacitance. The conductor represents the 

conductance across the membrane. The resistor represents the axial resistivity along the 

nerve fibre. The inductor is for inducing inductance into the system. The inductance 

together with the nonlinear conductance provides the possibility of the propagating soliton 

wave through the line.   

We built the improved transmission line on a prototype board. It is a repeated RLCG 

circuit consisting of twenty nodes. To keep the measurement easy, we do not want the 

travelling speed of the pulses too fast. According to the equation (2.13), big values of 

inductance and capacitance result in small speed. We then use capacitors of 1µF and 

inductors of 1mH because they have relative bigger values. We use BAT48 diode to 

provide nonlinear conductance because it has small leakage current.  

 

Figure 2.3 Schematic diagram of the transmission line for modelling the electrical characters of the 

nerve fibres as well as propagating the soliton wave. In each node, the conductor (1µF) mimics the 

membrane conductance (1mF), and the diode mimics the nonlinear conductance across the 

membrane. The resistors in figure 2.1 were removed for reducing the pulse decay along the line. 

The inductor together with the nonlinear conductance results in the dispersion and nonlinearity in 

the system. The balance between nonlinearity and dispersion will lead to the propagation of soliton 

waves. A rectangle pulses is fed into the circuit as the initial pulse.  

 

After building the improved electrical transmission line, we measured pulse propagating 

along the line in order to find out if soliton can propagate along the line as proposed. 

Square pulses were fed into the first node of the circuit by a data acquisition (DAQ) card 
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controlled by the LabVIEW program. The electrical measurements from every other node 

were collected by the DAQ card. 

The widths of input pulses have a significant impact on the morphologies of the output 

pulses. Figure 2.4 shows how the profiles of the propagated pulses vary as the widths of 

the input pulses are changed. Pulses in (a), (b) and (c) are collected from the first node of 

the transmission line and correspond to the input pulses with widths of 250µs, 10µs and 

5µs. When an input pulse as wide as 250µs is used, the propagated wave displays a pulse 

profile very similar to that of the square input pulse and the pulse packet does not 

demonstrates the characteristic shape of a soliton. As the widths of the input pulse are 

decreased, profiles of the output pulses look more like a soliton. This is because in the 

circuit, the impulse response time is determined by the RC time constant. The width of the 

input pulse should be comparable to the time constant. 𝑐 = 10−6𝐹, R is provided by the 

intrinsic resistance of inductors. The estimated value of the time constant is several µs.  

According to the experiment results, the best output profile result from the input of 5µs. 

Therefore all experiments described later in this chapter use input pulses with 5μs pulse 

widths. 

 

Figure 2.4 A plot to show the measured wave profiles of propagating waves created by input pulses 

with widths a) 250µs, b) 10 µs and c) 5 µs. The amplitude of the input pulse is 2V. All the 

measured wave profiles are all collected from node 1 of the transmission line shown in figure 2.3. 
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Figure 2.5 plots profiles of the propagated pulses, which shows soliton-like characteristics:  

the input square wave decomposes into a large pulse shaped soliton wave before further 

decomposing into a set of smaller pulse shaped waves and a decaying background ‘tail’. 

Also, it can be observed that the propagating waves show decay in amplitude, 

demonstrating the diffusive behaviour discussed in equation (2.6). This could be attributed 

to the intrinsic resistance of the inductors in the circuit. At node 20, a pulse that is bigger 

than the pulse from node 19 is observed. It could be due to the interference of the incoming 

pulse with the pulse reflected at the end of the transmission line. The amount of reflection 

can be tuned using a shut resistor at the end of the line. 

 

Figure 2.5 The measured wave profiles of wave propagating through the transmission line shown in 

figure 2.3. The amplitude of the input signal is 2V and the width of the input signal is 5µs. 

 

To further test for the propagation of solitons in the transmission line, the speed of the 

propagating waves is measured. As indicated in the equation (2.13), the speed of the 

propagating soliton wave should be equal to 
1

√𝐿𝐶
 node/s, where L is the inductance and C is 

the capacitance in each node. Since we are using the capacitor of 1µF and the inductor of 

1mH, thus 

 𝑣0 = 3.2 × 104𝑛𝑜𝑑𝑒/𝑠 (2. 16) 
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The real speed of the waves propagating through the transmission line can be calculated by 

measuring the time it takes for the wave to travel from the measurement point of one node 

to that of an adjacent node. The gradient of the curve would be equal to the average speed. 

This is shown in figure 2.6 below. For these measurements, the time of reaching each node 

is obtained from wave propagation plots as shown in figure 2.5. We varied the amplitudes 

of inputs in order to vary the amplitudes of output waves. For KDV solitons, usually bigger 

amplitudes correspond to bigger velocity. However, the linear trend lines shown in figure 

2.6 indicate that all of the measured pulses propagate along the transmission line with a 

constant velocity. The average velocity of each pulse was calculated and is always 

3.05×10
4
 nodes/s. This value matches the theoretical value obtained in (2.16), showing 

only a small deviation from the theoretical value. 

 

Figure 2.6 Plot of the time taken to reach each node for input pulses of varying amplitudes. All the 

data points in this plot are obtained from peak values of pulses in figure 2.5. The gradient of the 

curves plotted indicate the speed of the propagating waves, which is 3.05 × 104 node/s. 
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As indicated by the equation (2.15), there should be a strong link between the height and 

the width of the propagated pulses. Waves with larger amplitudes are narrower than waves 

with smaller amplitudes. In order to test this relationship, the full width at half maximum 

of propagating waves of amplitude V along the transmission line was calculated from 

figure 2.5. Results are shown in figure 2.7. We take the data point from node 1 as an 

example to explain how it is obtained. The value of y axis is obtained by measuring the 

pulse width at which the pulse amplitude is equal to half of its maximum value. The value 

of x axis is obtained by calculating the inverse square of the maximum amplitude. It can be 

observed in the figure that low amplitude waves have a higher full width at half maximum, 

and are therefore broader than the high amplitude pulses. Conversely, the plot indicates 

that high amplitude wave has a narrower wave profile. This is a key aspect of soliton 

behaviour.  

 

Figure 2.7 The full width at half maximum of amplitude of propagating waves plotted as a function 

of the inverse square root of the pulse amplitude. All the data points are obtained from pulses 

shown in figure 2.5. The curve in this plot indicates that low amplitude waves are broader than the 

high amplitude waves. 
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Results obtained from the electrical transmission line support the theory of soliton 

propagation. After the success in the circuit, we fabricated a micro transmission line 

according to the electrical properties of the circuit.  

2.3 Micro Transmission Line Based on p-GaMnAs/n-GaAs Magnetic Semiconductor 

In this subsection, we will demonstrate how we designed and fabricated the micro 

transmission line based on GaMnAs/GaAs p-n layers. The equivalent circuit of the p-

GaMnAs/n-GaAs wire is the same with the improved transmission line shown in figure 2.3. 

Thus magnetic p-n wire can model neuron nerves and we expect to see soliton propagating 

along the wire. 

2.3.1 The Design and Basic Parameters of GaMnAs/GaAs p-n Wires  

The design diagram of the p-n wire is shown in figure 2.8. Structurally, the transmission 

line is designed to possess three function parts: dendrites, a soma and an axon because of 

previous research on spike regeneration [24]. The length of the transmission line is 

5905.5µs. Pairs of p type and n type electrodes are coupled across the line for us to feed 

signals into the line and measure the propagating signals along the line. In figure 2.8, the p 

type electrodes are marked by pi (i=1, 2, 3…12) while the n-type electrodes are marked by 

ni (i=1, 2, 3…12). Generally we use the first p-n pair p1-n1 to receive external signals. The 

distances from the first p-n pair to the nth pair are shown in table 2.1. 



36 
 

 

Figure 2.8 The designed structural patterns of the p-n wire. N type and p-type electrodes are 

coupled across the line. The contacts represented by pi (i=1, 2, … 12) are p-type. The contacts 

represented by ni (i=1, 2, …12)  are n-type. The p-n wire has three dendrites terminated by contact 

pairs p1-n1, p2-n2, p3-n3, a soma connected with the contact n4-p4 and an axon showing eight contact 

pairs: p5-n5, p6-n6, … p12-n12. The length of the transmission line is 5905.5 µm. The width of the 

transmission line is 1.5 µm. 

D1


n( the first and the nth p-n pair) Distances (µm) 

D1


2 635.7 

D1


4 310 

D1


5 721 

D1


6 1118 

D1


7 1518 

D1


8 3017 

D1


9 4516 

D1


10 5815.5 

D1


11 5860.5 

D1


12 5905.5 

 

Table 2.1 Distances between the first p-n pair and the nth p-n pair. 
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A transmission line is made from the depletion region of a p-n junction. P-n junctions for 

fabricating the p-n wire were grown by a molecular beam epitaxy (MBE) in the group of 

Prof. Daniel Park at Seoul National University. We used two pieces of samples: sample A 

and sample B. They are grown under the same conditions. The layer structures of them are 

shown in figure 2.9. The figure show that the layer of (Ga, Mn)As is p-type and the 

thickness of this layer is 60 nm. The layer of Ga(As, Si) is n-type and the thickness of it is 

50nm. To fabricate the n-type electrode, 80 nm of layers above the n-type layer will need 

to be removed in order to reach the n -type layer. 

 

Figure 2.9 The layer structure of p-n junctions grown by MBE.  

 

Important parameters of p-n junctions include the I-V curves and capacitance. I-V curves 

indicate the onset voltages of p-n junctions. And based on the equation 2.13, the 

capacitance is related with the propagation speed of waves along the p-n wire.  

I-V curves of the p-n junction sample A and sample B are shown in figure 2.10. They 

indicate the onset voltages. For sample A, the onset voltage is about 0.7V. For sample B, 

the onset voltage is about 1V. After the fabrication, IV curves of p-n pairs on p-n wire 

samples will be measured again. We do this for two reasons. First, the measurement of IV 

curves can exam the quality of p-n pairs. We need to separate p-n pairs which possess 
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exponential conductance from the ones which have linear conductance because of the 

unsuccessful fabrication. Second, we need to obtain an accurate onset voltage of an 

individual p-n wire sample. The amplitude of the voltage we apply on the p-n wire should 

be around the onset value to assure that the conductive channel is open but the current 

flowing across it is not too big to cause leakage. If there is current leakage across the 

transmission line, electrical pulses will not be able to propagate along the line.  

 

Figure 2.10 The I-V curves of p-n junction samples. They indicate the onset voltages of the 

junctions. The onset voltage of sample A is about 0.7V. And the onset voltage of sample B is about 

1V.  

 

In order to calculate the capacitance, we need to know some basic parameters, such as the 

carrier concentrations, etc. Based on the data sheets of samples, the values of carrier 

concentrations are shown in table 2.3.  

Acceptor concentration NA 1 × 1018⁡𝑐𝑚−3 

Donor concentration ND 6 × 1020𝑐𝑚−3 

Intrinsic carrier concentration Ni 2.1 × 106⁡𝑐𝑚−3 

 

Table 2.2 Values of carrier concentrations. 
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According to these parameters, we now start with calculating the built in potential[66] 

 𝑉𝑏𝑖 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝑁𝐴𝑁𝐷

𝑁𝑖
2 ) = 1.56𝑉                        (2. 17) 

The width of the depletion region is[66]: 

   
𝑑 = √

2𝜀𝑟𝜀0

𝑞

𝑁𝐴+𝑁𝐷

𝑁𝐴𝑁𝐷
𝑉𝑏𝑖 = 47.2𝑛𝑚  

(2. 18) 

Then the capacitance of the wire per unit length is[66]: 

 𝑐 =
𝜀𝑟𝜀0𝑤

𝑑
= 3.62 × 10−9𝐹/𝑚  (2. 19) 

Where w is the width of the p-n wire, 𝜀0 is the permittivity in free space, and 𝜀𝑟 is the 

permittivity in GaAs. 

2.3.2 The Fabrication Process of the p-n Wire 

All the fabrication work in this subsection was done by me in David Bullet nanofabrication 

laboratory in university of bath. 

The aim of the fabrication is to make p-n wires with structures shown in figure 2.8 by 

using p-n layer samples shown in figure 2.9. The processes of the fabrication include 

photolithography, etching, thin film deposition and lift off. First lithographic steps are 

carried to make proper patterns on p-n layer samples. After that, Zn (30nm)/Au (150nm) 

will be deposited on p-type mesas in order to form p-type Ohmic electrodes while n-type 

mesas need to be etched to an appropriate depth of 90nm to reach the n type layer. Then Ti 

(30nm)/Au (150nm) will be deposited on the n- type mesa to form the n-type electrodes. 

Finally it is the lift off process. During this process, the rest of the resist will be washed 

away with the metallic layer attaching to it while the metallic layer bonded to the sample 

directly will stay. All the fabrication processes are performed in the David Bullet 

Nanofabrication Lab. 

The process of photolithography consists of the following steps: firstly, the samples are 

cleaned with acetone and isopropanol. Any particle that lies on top of sample may result in 

failure of the photolithography process. Secondly, s1813, which is a positive photoresist, is 

spin coated uniformly on the sample surface. With spinning speed of 4000 rpm, a resist 

with the thickness of 1.4µm can be achieved. Thirdly, if samples are going to be etched, 

they will be moved to a 90℃⁡ oven⁡ and⁡ baked⁡ for⁡ 30⁡ minutes⁡ after⁡ spin⁡ coating;⁡ if⁡

samples are going to be prepared for metal deposition, they will then be moved to a 
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90℃⁡oven⁡ for⁡ fifteen⁡minutes,⁡ dipped⁡ in⁡ chlorobenzene for three minutes and then 

baked for further fifteen minutes in order to harden the top surface of the resist and 

help with the lift off. The fourth step is placing samples into mask aligner for UV light 

exposure for roughly nine seconds. In this step, a chrome photo mask possessing the 

patters as shown in Fig. 8 is designed and used. The resolution of the mask is 0.1µm. It is 

far better than the resolution of the mask aligner which is limited by diffraction of light, 

contact of the mask and the wafer, size of the pattern, etc. The fifth step is dipping 

exposed substrates in photoresist developer in order to remove the unnecessary 

resist. We use 351 solution (351: water=1:3.5) as the photoresist developed.  The 

proper developing time is important. Insufficient developing time will leave 

unwanted resist on the sample. A longer development time will damage the resist 

structure. Various development times were tried and 40 seconds developing time 

provided the best pattern. 

The process after the photolithography is wet etching for exposing the n-type mesa. The 

acid solution (NH3OH: H2O2: H2O=50:1:1) are used as etchants. A test sample will be 

needed for testing the etching rate. Profiles of the test sample before and after it is dipped 

into the acid solution for ten seconds are measured by stylus profiler. Thus the removed 

depth is obtained. The etching rate equals to the etching depth divided by the etching time. 

Theoretically, n type mesas can be reached after 80 nm is removed. However, it is difficult 

to get homogeneous as well as accurate etching depth by wet etching. If the removed 

thickness of some parts of the samples is less than 80nm, p-type and n-type electrodes can 

contact each other and result in short circuit. Therefore, we set 90 nm as the target 

thickness that is going to be removed to avoid this problem. After being etched, photoresist 

is washed away by acetone. Profiles of the samples are measured by stylus profiler. It is 

shown that the real etching depths range is 90-100 nm. 

The process after etching is metal evaporation for depositing thin metallic films on the p-

type and n-type mesas in order to form the p-type and n-type Ohmic electrodes. Ti 

(30nm)/Au (150nm) and Zn (30nm)/Au (150nm) layers are deposited on the n- type and p- 

type mesas respectively. Here Zn/Au layers play the key rode in forming high quality 

Ohmic contacts because they can reduce the mismatch between the Fermi energy of the 

metal and semiconductor. Ti is a glue allowing Au to stick to GaAs. The thickness of the 

metallic layer is decided by calculating the deposition rate. 
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After the metal evaporation process, the sample was fully covered by a thin layer of metal 

film. Therefore the process of ‘lift off’ is needed in order to remove the unwanted metal 

and create structures on the sample surface. To perform the lift off process, the samples are 

put into a solvent that can wash away the metal film which has the sacrificial photoresist 

layer underneath. The selection of the solvent mainly depends on the type of photoresist. 

Acetone is used for the s1813. The samples are dipped into acetone at room temperature 

overnight.   

Fabrication work is done after lift-off. As each sample contains numbers of cells, they were 

cut into small pieces. Each piece has only one cell. A micrograph of one cell from p-n 

junction sample A is shown in figure 2.11. The dark yellow colour of p type electrodes is 

due to the oxidization during deposition.  

 

 

 

Figure 2.11 The micrograph of a fabricated p-n wire. The width of the wire is 1.5µm. The length 

from p1-n1 to p12-n12 is 5905.5µm. In the later measurements, we say each p-n pair is a contact.   
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The last process before measurements is the bonding work. Selected cells will be glued on 

chip package by epoxy. Bonding is used for connecting the electrodes of the cells with 

metal strips on the chip package. A corner of a well bonded sample is shown in figure 2.12. 

 

 

 

Figure 2.12 A corner of a well bonded sample. 

 

2.4 Characterization of the Micro Transmission Line 

Soliton-like wave propagation is supposed to be the main function of our devices. In the 

experiments, we measure the pulse propagation along the p-n wire by feeding square 

pulses into the first p-n pair and collecting outputs from other p-n pairs. The process is 

carried out by using a programmed DAQ card. The card can generate a single rectangular 

pulse with set pulse width and amplitude.  

All the results shown in subsections 2.4 and 2.5 are from the p-n wire sample A1, which is 

made from the p-n junction sample A, because it is the most successful sample.  

As demonstrated in the subsection 2.2.3, in order to obtain the soliton like wave, the width 

of the input pulse should be comparable to the time constant of RC. The capacitance of the 

p-n wire has been deduced from the equation (2.17)-(2.19). The value of it is 3.62 ×
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10−9𝐹/𝑀. The resistance per unit length is estimated by measuring the resistance along p 

type and n type metal strip lines, which are shown in figure 2.13. The resistance along the 

p-type strip line is higher than that along the n-type strip line. This can be explained by that 

in the semiconductor like GaAs, the n-type mobility is much higher than the p-type and 

therefore, p-type lines have higher resistance. Ideally, the resistance should increase with 

increasing distance. However, the real measured resistance is a combination of intrinsic 

resistance and contact resistance. The big contact resistance can lead to the linear negative 

correlation between the resistance and the distance. According to figure 2.13, we make a 

small estimated value and assume the intrinsic resistance is several tens of kΩ. Then the 

RC time constant should be several tens of µs. According to this estimation, we decide to 

use the input with pulse width of 50µs.  

 

Figure 2.13 The resistance along p type electrodes and n type electrodes of sample A1. 

 

The amplitude of the input pulse also matters. It should be big enough to be above the 

onset value of p-n pairs as well as small enough to avoid leakage current. In other words, 
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the amplitude of the input pulse should be around the threshold of the knee voltage of p-n 

junctions. Also, by measuring the I-V curves, we can know if samples have been damaged 

from the fabrication. Figure 2.14 shows the IV curve from a p-n pair of sample A1, which 

possesses the best quality. It indicates the onset voltage of the p-n pair is about 0.55V. 

According to the experiment design in 2.3.1, we need the value of the input voltage to be 

just above the onset voltage. We arbitrarily chose the value of 0.7V as the amplitude of the 

input pulse.  

In comparison to the onset voltage of p-n junctions, the onset voltage of p-n pairs on the p-

n wire is smaller. This is due to the diffusion of Mn induced by heat during the fabrication. 

The diffusion of Mn leads to the increase of conductivity.   

 

Figure 2.14 The I-V curve from the sixth p-n pair of sample A1. 

 

2.5 Results from the Micro Transmission Line 

In this subsection, we will show the wave propagation along the p-n wire at room 

temperature without and with applied magnetic field. We will characterize the propagating 

wave by calculating the propagating velocity, full width of the propagating pulse at half 

maximum as a function of propagating distance, etc. to demonstrate that it possesses 
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soliton properties. We will also demonstrate the influence of the magnetic field on the 

wave propagation by changing the tilt angle of the magnetic field. 

We start with discussing the pulse propagation along the GaMnAs/GaAs micro p-n wire 

when there is no external magnetic field. The wave propagation is shown in figure 2.15. In 

the figure, the first rectangular pulse is the initial pulse. It is fed into the wire at the first p-

n pair, say contact 1. Outputs are collected from the contact 2, 5, 6, 7, 8, 9 and 10. Along 

the wire, the initial pulse is transformed into an oscillatory wave train of gradually 

increasing width and decreasing amplitude. The decreasing amplitude is due to the 

resistivity to the pulse propagating along the transmission line. And the spreading out 

behaviour indicates that the system is dispersive. 

 

Figure 2.15 Pulse propagation along the micro p-n wire sample A1. There is no magnetic field 

applied to the sample. A square input pulse is fed into the first contact pair. The width of the input 

pulse is 50µs. The amplitude of the input pulse is 0.7V. And pulses propagating along the wire are 

collected from contact pair 2, 5, 6, 7, 8, 9 and 10. 

 

The travelling distance of the wave as a function of time is shown in figure 2.16. The 

points are obtained from figure 2.15 by recording at what time the propagating pulse 

arrives at each contact. The trend is nearly like linear and it is shown by the dash line in the 
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figure. It indicates that the wave is travelling at a constant velocity of 16.8 m/s. We tried 

initial pulse with various amplitudes and various pulse widths. They have influence on the 

amplitude and pulse widths of the travelling wave but lead to the same travelling speed.     

 

Figure 2.16 Pulse time delay plotted as a function of the distance from the first contact. The black 

symbols are measured results. The dashed line indicates the linear trend of the black trace. 

 

The full width at half maximum of propagating waves of amplitude V along the 

transmission line is calculated from figure 2.15. Results are shown in figure 2.17. It can be 

observed in the figure that during the propagation, low amplitude pulses have a higher full 

width at half maximum, and are therefore broader than the high amplitude pulses. 

Conversely, the figure indicates that high amplitude pulse has a narrower pulse profile.  
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Figure 2.17 The full width at half maximum of amplitude of propagating waves as a function of the 

inverse square root of the pulse amplitude. The contact from which the data point was obtained is 

marked in the plot. 

 

Then magnetic field of 0.06T is then applied to the sample to test the influence of 

magnetization on the pulse propagation.  

In figure 2.18, the micro p-n wire is magnetized perpendicular to the long axis. In this plot, 

pulse propagation can be detected on contact 2 and contact 5. The pulses totally disappear 

after that. This indicates a stronger decay during the propagation. At room temperature, the 

magnetic moments from Mn in GaMnAs lie in random directions and the material is 

paramagnetic. The external magnetic field is supposed to align the magnetic moments 

perpendicularly and increase the dispersion of the system. A stronger dispersion can break 

the balance between nonlinearity and dispersion in the system and lead to propagation 

pulses which are decaying quickly.  
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Figure 2.18 Pulse propagation along the transmission line when the micro wire is magnetized 

perpendicular to the long axis. The magnetic field applied on the sample is about 0.06T. 

 

In figure 2.19, the tilt angle of the external magnetic field is changed from 90 degree to 45 

degree to weaken the magnetization. It comes out that in this case, the pulse can propagate 

a longer distance comparing to that in figure 2.18.  
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Figure 2.19 Pulse propagation along the transmission line when the magnetic field is tilted by 45 

degrees to the normal. 

 

2.6 Discussion and Conclusion 

We have fabricated a p-GaMnAs/n-GaAs micro wire. The magnetic p-n wire can emulate 

physical properties of neuron membranes as well as model characteristics of electrical 

signalling along biological nerve fibres. Thus the p-n wire can be regarded as an artificial 

nerve fibre. Besides, there is both nonlinearity and dispersion existing in the magnetic p-n 

wire. The balance between them can lead to soliton propagation, which is a hypothesis in 

bio-membranes and nerves. 

Experiments with the equivalent circuit of the magnetic p-n wire show two evidences on 

soliton propagating in the system. One is that the experimental value of propagating speed 

agrees to the theoretical value. And this value is determined by both the capacitance and 

inductance in the transmission line. The other is that during the propagation, larger 

amplitude pulses are narrower than the smaller amplitude ones. 

We have also observed electrical wave propagating along the artificial nerve fibre at room 

temperature. During the propagation, pulses with larger amplitudes are narrower than 
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pulses with smaller amplitudes. This agrees to the key characteristic of a soliton wave. We 

have also obtained the experimental value of the propagating speed of waves through the 

wire. However, we did not manage to obtain the theoretical value because it is hard to 

calculate the value of inductance in the magnetic p-n wire.  

In both the micro magnetic p-n wire and its equivalent circuit, the amplitude of 

propagating pulses decay along the transmission line. It does not agree to the common 

knowledge that soliton does not change its shape during propagation. This can be 

explained as two reasons. One is that we cannot avoid resistance in a real transmission line. 

Due to the resistance, the soliton measured in experiment differs from the idealized 

solitons and it decays. The other reason is that in the system, the balance between 

nonlinearity and dispersion is not perfect. If the dispersion is a bit stronger, it is reasonable 

that the wave decays and broadens while propagating.  

External magnetic field is applied on the magnetic p-n wire and it leads to a strong decay 

of the propagating pulses. This is because the external magnetic field can align the 

magnetic moments perpendicularly and increase the dispersion of the system.  
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Chapter 3 Electronic Implementation of the Hodgkin-Huxley 

Model and Synaptic Links  

3.1 Introduction 

We produced an analogue neural network by interconnecting HH neurons with reciprocally 

inhibitory synapses. In this chapter we talk about how we implement the analogue neurons 

and electrical gap junction synapses.  

As demonstrated in chapter 1, we choose the HH neuron model [17] because it is a suitable 

tool for quantitatively studying neural behaviours. This is a single compartment model that 

neglects the neuron’s spatial structure and focus on how various ionic currents contribute 

to spike generation [12]. On one side, comparing with other spiking neuron models, it is 

accurate enough for replicating the spike generation in biological neurons in details [40]. 

On the other side, a network consisting of only six neurons is small enough for avoiding 

the complicated computation resulted from the accuracies of HH models. Also, a small 

neural network can keep the study simple and fabrication price low. 

And analogue implementations are primary attractive to neural hardware developers 

because advantages of analogue devices, such as real-time operation, high processing 

speed, low power consumption, small size and easy incorporation, etc. can be incorporated 

into neural hardware [67].  

The first successful analogue hardware of HH neurons is implemented by Mahowald and 

Douglas in 1991 [11]. They exploited the similarities of sigmoidal conductance-voltage 

relation between biological membranes and Metal-oxide-semiconductor field effect 

transistors (MOSFETs) [68] and built conductance-based single neuron circuits which are 

analogue approximations of HH neuron models. These circuits accurately reproduce the 

process of generating spikes with detailed control parameters by replicating the dynamics 

of ion channels. Benefits from this analogue neurons include: they are the most 

physiological meaningful which is important for neurostimulation [69]; moreover, these 

neurons are versatile in dynamic behaviours that it is possible to include additional ion 

channels to accurately describe the complex dynamics associated with the Calcium (L, T) 

currents or currents in real neurons, which gives rebound pulses and spike bursts not 

accounted for by the HH model. Finally, the parameters space of these neurons is quite 
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large which is important to ‘program’ them to replicate to the identical the dynamics of 

biological CPGs.  

Because of the above benefits, we employed Mahowald and Douglas’s neuron to build our 

neural network. However, here we only consider ion currents related to the nerve impulse 

itself, such as sodium current and potassium current. We do not consider ion currents for 

controlling impulse rate because we only need tonic spiking. 

After building individual neurons, we then constructed circuits that are equivalent to 

synapses to link neurons together and form the neural network.  

Synapses are gap junctions that enable a nerve neuron to be connected with another nerve 

neuron or effector cells. They allow neurons to form interconnected circuit networks 

within the nervous system. Functionally, they are dynamical nonlinear devices like neurons. 

They release the electrical or chemical transmitters from pre-synaptic membrane and act on 

the post- synaptic membrane. Pre-synaptic signals that drive the post- synaptic membrane 

toward threshold are said to be excitatory. Pre-synaptic signals that hold the post- 

membrane below the threshold are said to be inhibitory[70].   

We connected the analogue neurons by electrical gap junction synapses. Compared with 

chemical synapses, the electrical ones are faster and support bidirectional transmission [71]. 

The electrical synapse works on the neurons by injecting currents into neurons. 

Determined by the current direction, a synaptic can either be excitatory or inhibitory. Here 

we use inhibitory synapse to achieve the winnerless competition architecture in the neural 

network because winnerless competition dynamic is crucial for our study of stimulus 

dependent spiking patterns in chapter 4. It can result from inhibitory connections between 

neurons [72, 73].     

Single neurons linked by analogue synapses together allow the implementation of 

electronic spiking neural networks.  

3.2 Electronic Implementation of the Hodgkin-Huxley Model 

3.2.1 The Time Course of Biological Membranes 

In this subsection, we show the voltage dependence of rate constants and the time course of 

potassium and sodium channels in HH neuron model [17]. This is crucial because we will 

need to model the correlation when implementing the neuron model in hardware. 



53 
 

Rate constants for potassium activation gate and sodium activation and inactivation gates 

as a function of membrane voltage have been shown in equations (1.15)-(1.20). We denote 

the steady-state open probabilities for the activation gate of potassium channel, the 

activation gate of sodium channel and inactivation gate of sodium channel by 𝑛∞, 𝑚∞, and 

ℎ∞. The steady state values as a function of relative membrane potential is shown in figure 

3.1 below. All the lines are calculated from equations (1.15)-(1.20) and converted by the 

equation (1.7).  

In figure 3.1, a positive V means the membrane is depolarized and a negative value means 

the membrane is hyperpolarized. The voltage dependence of rate constants of activation 

gate of both sodium channel and potassium channel is an exponentially increasing curve. 

This indicates the possibility of modelling the conductance by silicon components as 

transistors possess exponential IV curves.  

 

 

Figure 3.1 Steady-state gate probabilities of channels being open as a function of V. The resting 

potential is at 𝑉 = 0𝑚𝑉 . (a) Potassium channel gate probabilities; (b) Sodium channel gate 

probabilities. In this figure, all the line are calculated from equations (1.15)-(1.20) and (1.7). The 

equations are proposed by Hudgkin and Huxley in ref. [17] . 

 

Besides the rate constants, the time constants of the gates of potassium and sodium 

channels that approch the steady state are also important parameters for us to model. The 

values of them are calculated from equations (1.15)-(1.20) and converted by the equation 

(1.8). They are shown in figure 3.2. At rest, τm is much smaller han the other other time 
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constants, approaximately 0.2ms compared to roughly 5.5 ms for τn and roughly 8.5 ms for 

τh. This means the sodium activation gate opens rapidly in response to depolarization 

compared to the other two gates. In addition, the time constants show the process of 

generating an action potential: when a sufficiently large stimulus is applied, the sodium 

activation gates will rapidly open and depolarize the membrane potential. This leads to the 

generation of an action potential. The potassium activation gate and the sodium 

inactivation gate lag behind this process by a few milliseconds. And when 𝑉 > 15𝑚𝑉,  τh 

drops below τn. Thus for depolarization greater than 15mV, 𝜏𝑛 > 𝜏ℎ > 𝜏𝑚. This correlation 

is what we need to obtain in hardware.  

 

Figure 3.2 Time constants for the potassium activation gate and sodium activation and inactivation 

gates. The resting potential is at  𝑉 = 0𝑚𝑉. (a) Time constants; (b) A scale enlargement of the 

sodium activation gate time constant. In this figure, all the lines are calculated from equations 

(1.15)-(1.20) and (1.8). The equations are proposed by Hodgkin and Huxley in ref. [17] . 

 

3.2.2 Implementing Neural Architectures 

After describing the voltage dependence of rate constants and time course of ion channels 

in HH mode [17], We now demonstrate that how we implement them in the analogue 

neuron.  

The design of the analogue neuron is based on the circuit of HH neuron shown in figure 

1.2. When implementing, a fixed capacitor of 10nF is used to represent the cell membrane; 

a resistor of 10KΩ is used to represent the constant leak conductance; and two MOSFET 

circuits to represent the potassium and sodium ion currents respectively. Together they 
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produce pulses which oscillate between the equilibrium potentials of the sodium and 

potassium ions. The MOSFET circuits mainly consist of two basic building blocks. One is 

a transconductance amplifier circuit which provides the sigmoid voltage dependence of the 

ion conductance. The other is a RC delay circuit which provides the time constant 𝜏(𝑉). 

We begin with building a transconductance amplifier circuit. It is used to control 

conductance transistors which represent the conductance of the ion concerned. The circuit 

is shown in Figure 3.3(a). This circuit consists of a differential pair Q1-Q2 and a single 

current mirror Q3-Q4. According to the basic information of operating a differential 

pair[68], in the differential pair,  the bottom transistor Qb is used as a current source and Ib 

sets the total current. Transistors Q1 and Q2 compete for a fraction of Ib. The current 1I

drawn out of Q3 is reflected as an equal current out of Q4. Thus Iout equals to the 

difference between the two drain currents from Q1- Q2 pair [68]: 

 𝐼𝑜𝑢𝑡(∆𝑉) = 𝐼1(𝑉1) − 𝐼2(𝑉2)                                                                                     (3. 1) 

Where ΔV is the differential input voltage. ∆𝑉 = 𝑉1 − 𝑉2. 

Iout as a function of ΔV was measured and shown in figure 3.3(b). According to the plot, Iout 

is activated when ΔV=0.The transconductance Gm of the amplifier can be calculated from 

the slope of the curves in the plot. And it can be expressed by the following equation [68]:   

 𝐺𝑚 =
𝜕(𝐼1−𝐼2)

𝜕(𝑉1−𝑉2)
∝ 𝐼𝑏                                                                                                           (3. 2) 

Thus in the circuit, both the maximum value of the activation current and the 

transconductance Gm can be set by the transistor Qb.  

Technically, transistors in the differential pair Q1-Q2 and the current mirror Q3-Q4 should 

be matched to avoid offset voltage and provide precise reflection. Therefore we use 

ALD1107/ALD1106, which are monolithic P-channel/N-channel matched MOSFET 

transistor pairs.  

The form of the current voltage relation of the differential pair shown in figure 3.3(b) can 

be regarded as an analogue to the conductance-voltage relation of an ionic conductance. 

When applying the transconductance amplifier circuit to generating sigmoid voltage 

dependence of the ion conductance, we fix values of gate voltage of Qb and Q2, and use the 

gate voltage of Q1 as the input voltage. We regard Q2 as the knee transistor. It determines 

the analogue membrane voltage at which the conductance is activated. We regard Q1 as the 
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activation transistor for both potassium channel and activation conductance of sodium 

channel. The activation current increases sigmoidally towards its maximum value as the 

analogue membrane voltage applied to the activation transistor increases with respect to 

the knee voltage.  

The transconductance amplifier circuit will be finally connected with a conductance 

transistor, which regulates the flow of ion current oscillating between equilibrium potential 

of sodium channel (set as 5V) and potassium channel (0V).   

 

Figure 3.3 Schematic diagrams of the transconductance amplifier circuit and IV curves from the 

circuit. (a) the transconductance amplifiere circuit. It provides volatege dependent analogue ion 

current. The circuit consists of a bias transistor Qb, a differential pair Q1-Q2 and a current mirror 

Q3-Q4. Vdd is the power supply trial (+5V). In the differential pair, V1 represents the analogue 

membrane voltage VMEM. V2 represents the knee voltage VKNEE at which the membrane is activated. 

The bias transistor Qb sets the maxium current Ib through the differential amplifier and controls the 

transconductance Gm. The output current Iout increases sigmoidaly towards the maximum bias 

current Ib set by Vb. (b) The sigmoid voltage dependence of the output current from the 

transconductance amplifier. The form of current-voltage relation of the differnetial pair is analogue 

to the conductance volatge relation of a real ionic conductance. We use the current from the 

differential pair to control the conductance transistor, which represents the potassium or sodium 

conductance.  

 

Besides the transconductance amplifier circuit, the other important building block is a RC 

delay circuit shown in figure 3.4. It provides time-dependent behaviour. This circuit 
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consists of a transconductance amplifier and a capacitor. Together they work as a low pass 

filter for the membrane voltage. The filtered outputs with possesses a time constant 𝜏𝑖 then 

control the activation or inactivation transistors. Unlike the real 𝜏𝑖  shown in figure 3.2 

which are functions of V, the analogue 𝜏𝑖 is a constant. The analogue time constants setup 

is: 𝜏𝑛 = 0.10𝑚𝑠; 𝜏𝑚 = 0; 𝜏ℎ = 0.02ms. It is not necessary to set them as these specific 

values. The key thing is the correlation between them. We set these values according to the 

analysis of figure 3.3, which suggests that  𝜏𝑛 > 𝜏ℎ > 𝜏𝑚. 

 

Figure 3.4 Schematic diagram of the RC delay circuit. It acts as a low-pass filter for the membrane 

voltage. The filtered output controls the activation or inactivation transistors and provides the time 

constant 𝜏⁡(𝑉). 𝜏 =
𝐶

𝐺
, where G is the tranconductance of the amplifier. 

 

So far, by using CMOS transistors, we have built basic circuit blocks such as the 

transconductance amplifier, which provides voltage dependence, and the RC delay circuit, 

which provides time dependence. Now we combine these ideas in the circuits of figure 3.3 

and figure 3.4 to construct ion current generation circuits proposed in 1991 [11]. 

Figure 3.5 is the circuit that generates the potassium current IK. The circuit represents the 

conductance of potassium channel. It mainly consists of a low pass filter, a 
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transconductance amplifier and a conductance transistor, which represents the potassium 

conductance. In this analogy, the activation of the potassium conductance is represented by 

the time- and voltage- dependent output currents of the differential pair. The knee 

transistor of the pair determines the threshold value of the membrane voltage for activating 

the conductance. The membrane voltage VMEM is low pass filtered by a RC delay circuit. 

These implement the time dependence. The time constant of filtering determines the time 

delay of the activation gate variable 𝜏𝑛. It can be tuned by tuning the KDTAUM parameter. 

The output current of the RC delay circuit KDM controls the activation transistor of the 

differential pair. This implements the voltage dependence. KDM is then reflected by a 

current mirror and transformed into the gate voltage KDVG that controls the conductance 

transistor. EK represents the potassium equilibrium potential. Here we set it as 0V.      

 

Figure 3.5 The analogue circuit that can model the potassium channel in biological membranes. It 

consists of a RC delay circuit, a transconductance amplifer and a conductance transistor. The RC 

delay circuit is marked as activation circuit in the figure. The transconductance amplifier is marked 

as 𝜏𝑛 in the figure. Vdd: the power supply rial (+5V). VMEM: The membrane voltage; KDTUM: 

acivation time constant; KDM: the output current of the low pass filter; KDMAX: maximum 

activation; KDKNEE: half-activation membrane voltage; KDVG: gate voltage that controls the 

conductance transistor; Ek: the potassium equilibrium potential. KDVG: gate voltage of the 

potasium conductance conductance transistor; IK: analogue potassium current. Initial setup: 

KDTAUM=4.16V, Ck=100nF; KDMAX=2.97V, KDKNEE=1.26V. 𝛕𝐧 = 𝟎. 𝟏𝟎𝐦𝐬. 
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Figure 3.6 is the circuit that generates the sodium current INa. The circuit represents the 

conductance of sodium channel. Unlike the potassium conductance which doesn’t have the 

inactivation channel, the sodium conductance is the combination of both the activation and 

inactivation channels. As the activation channel responses rapidly, we directly apply VMEM 

to the differential pair of the activation sub circuit rather than connecting it with a RC 

delay circuit. In this case, there will be no time delay for opening the activation gate of 

sodium channel. NaONMAX is the maximum activation voltage. NaONKNEE is the half 

maximum activation voltage. The output of the sub circuit is the sodium activation current. 

VMEM for the inactivation sub circuit is low-pass filtered by a RC delay circuit. NaTAUH 

controls the time constant of filtering, which is the time delay of the inactivation gate 

variable for sodium channel 𝜏ℎ . The output current NAH controls the inactivation 

differential pair. NaOFFMAX is the maximum inactivation voltage. NaOFFKNEE is the 

half maximum inactivation voltage. The output current of the inactivation differential 

amplifier is reflected by a current mirror and then combined with the output current of the 

activation differential pair. 𝐼𝑁𝑎 = 𝐼𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐼𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 . The combination current is 

transformed into gate voltage NaVG and controls the sodium conductance transistor. ENA 

represents the sodium equilibrium potential. Here we set it as 5V.   

Without considering the time constant, VMEM will vary between the 0V and the 5V levels 

which are the analogue of the sodium action potential (+55mV) and the potassium action 

potential (-72mV) in real neurons.  However, limited by the time constants, VMEM actually 

oscillates between 0V and 3.7V. Spikes generated by silicon neurons will be shown in 

3.5.2.   
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Figure 3.6 The analogue circuit that can model the sodium channel in biological membranes. It 

consists of an inactivation subcircuit and an activation subcircuit. Both of the subcircuits are 

implemented by using transconductance amplifieres. 𝝉𝒉 is implemented by using a RC delay 

circuit. Vdd: the power supply rial (+5V). ENa: sodium equilibrium potential; VMEM: the membrane 

voltage; NaONMAX: the maximum activation voltage; NaONKNEE: the half maximum activtion 

voltage; NAOFFMAX: the maximum inactivation voltage; NaOFFMAX: the half maximum 

inactivation voltage; NaTAUH: inactivation time constant; NaVG: gate voltage of the sodium 

conductance; INa: analogue sodium curent. ⁡𝐼𝑁𝑎 = 𝐼𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 − 𝐼𝑖𝑛𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 . Initial setup: 

NaONMAX=3.74V, NaONKNEE=1.52V; NaOFFKNEE=4.76V, NaOFFMAX=2.84V, 

NaTAUH=1.72V, CNa=10nF, 𝜏ℎ = 0.02𝑚𝑠 

 

We summarize all the parameters we used for the analogue ion in table 3.2. The activation 

and inactivation knee voltages of the sodium and potassium ion channels are set by scaling 

the known biological thresholds to the 0-3.7V interval [18]. Ideally, VMEM will oscillate 

between the 0V and the 5V levels which are the analogue of the sodium action potential 

(+55mV) and the potassium action potential (-72mV) in real neurons. The real amplitude 

of spikes is affected by time constants and values of them are obtained experimentally in 

subsection 3.5.2. The frequency of the spiking patterns is determined by the time constants 

of the sodium and potassium gates, τh and τn, together with the membrane charging time 

τmembrane which is determined by the value of membrane capacitance. During experiments 

we tune the frequency of spikes by tuning the values of capacitance CNa, CK and Cm. 
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 Analogue Neuron Real Neuron 

𝑔𝑚̅̅ ̅̅  0.40mS 80mS/cm
2 
[17] 

NAONKNEE 1.52V -64mV [74]  

τm 0 0-0.5ms [17] 

𝑔ℎ̅̅ ̅ 0.97mS 160mS/cm
2 
[17] 

NAOFFKNEE 4.76V -26mV [74]  

τh 0.02ms 0-9ms [17] 

𝑔𝑛̅̅ ̅ 0.32mS 36mS/cm
2
 [17] 

τn 0.10ms 0-6ms [17] 

KDNEE 1.26V -78mV [75] 

Table 3.1 Parameters for an analogue neuron and bio-membranes. All the analogue parameters are 

obtained in my lab. All the parameters from bio-membranes are from references mentioned in the 

table. Analogue parameters should agree to the correlation of parameters in bio-membranes, such 

as 𝜏𝑛 > 𝜏ℎ > 𝜏𝑚, NAOFFKNEE>NAONKNEE>KDNEE. 

3.3 Synapses 

Our synaptic circuits are actually variable coupling conductance rather than realistic 

synapses. They translate the voltage differences between membranes of two isolated 

analogue neurons into synaptic current with a gain typically referred to as the synaptic 

conductance or synaptic weight g. This is implemented using the VLSI differential current 

amplifiers.  

 We take synapse which provides the synaptic weight g12 as an example. The circuit is 

shown in figure 3.7. It consists of a differential amplifier that supplies a current 𝐼12 = 𝐼1 −

𝐼2 = 𝑔12(𝑉1 − 𝑉2) . V1 and V2 represent the presynaptic and post synaptic voltages 

respectively. We switch the state of the synapse between ‘excitatory’ or ‘inhibitory’ by 

switching the direct of I12. If neuron 2 is inhibited by neuron 1, then the synaptic current 

will be injected from neuron 2 into neuron 1 (𝐼1←2); if neuron 2 is excited by neuron 1, then 

the synaptic current will be injected from neuron 1 to neuron 2 (𝐼1→2).  
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In the thesis we focus on inhibitory coupling between neurons. We define inhibitory 

synaptic current I12 is originally from neuron 1 and acts on neuron 2. The related synaptic 

conductance is denoted by 𝑔12. 

 

Figure 3.7 The circuit of an analogue gap junction synapse. V1 and V2 are the pre- and post- 

synaptic neuron membrane voltages. Vmax determines the gain between Iout and (V1-V2).    

 

The operation of the differential pair in figure 3.7 is the same with the operation of the 

differential pair in figure 3.3 (a). The synaptic conductance can be expressed by the 

equation below: 

                                                                                                            𝑔12(𝑉𝑚𝑎𝑥) =
𝜕(𝐼1−𝐼2)

𝜕(𝑉1−𝑉2)
=

𝐼𝑜𝑢𝑡

∆𝑉
  (3. 3) 

Where Iout is the output current of the circuit in figure 3.7 and ΔV is the differential voltage. 

The strength of the synaptic conductance g12 can be controlled by tuning Vmax. The value of 

it can be obtained by measuring the output current and differential voltage. Iout as a 

function of ΔV is shown in figure 3.8 (a). g12 equals to the slope coefficient of curves in 

figure 3.8 (a). Synaptic conductance as a function of Vmax is shown in figure 3.8 (b). It 

gives the range of the value of g12. The minimum value of g12 is 16µS, which results from 

Vmax of 0.8V. 0.8V is the minimum gate to source voltage of ALD1106/1107 transistor 

pairs that is needed to create conducting paths. 0.9V is the maximum value of Vmax that we 

used for experiments in this thesis.  
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Figure 3.8 (a) Output current of the synaptic conductance amplifier as a function of differential 

input voltage. ∆𝑉 = (𝑉1 − 𝑉2). Vmax is the gate voltage that determines the maximum value of Iout 

and the synaptic conductance. The synaptic conductance equals to the slope coefficient of the 

curves. (b) Synaptic conductance as a function of Vmax. 

 

Finally, we summarize the design of the neural network that has been demonstrated in 

subsections 3.2 and 3.3. In order to construct a silicon neuron, an analogue membrane 

capacitor of 10nF, a resistor of 10KΩ which represents constant leak conductance, a circuit 

block which represents the potassium conductance as shown in figure 3.5 and a circuit 

block which represents the sodium conductance as shown in figure 3.6 are connected in 

parallel according to the circuit shown in figure 1.2. In order to inhibitory connected 

silicon neurons, circuits that represent electrical synapses as shown in figure 3.7 are 

inserted between neurons. In this way, an analogue neural network is constructed. 

 

3.4 Fabrication of the PCB board 

We manufactured the electronic circuits though the use of printed circuit boards (PCBs).  

The manufacture begins with making the PCB mask. We designed the circuit by the 

software ‘destools’. The designed circuits were then exported to the PCB layouts. As we 

were going to manufacture a double sided PCB, there were two layouts: one is for the 

soldering side and the other is for the component side. The layouts were printed on 

transparent films and become PCB masks.  
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The next stage is the manufacture of a printed circuit board. We placed the PCB mask 

underneath the photo-resist board. Both sides of the photo-resist board are copper clad the 

copper has a photosensitive coating, which touched the PCB masks. The PCB masks and 

board are then transferred to the UV light box and exposed for 3 minutes. After the UV 

exposure, the photo-resist board is placed in a tank filled with solution of sodium 

hydroxide photo developer (NaOH: H2O=1:200). After the board is taken out of the 

developer, it is washed in clean water and then transferred to the etching tank. Ferric 

chloride is used for etching. In this step, the unwanted copper is slowly etched away, 

leaving the copper tracks only. The etching process lasts about 5 minutes. It is important to 

keep checking to prevent the board from over etching. If the board is over etched, the 

copper tracks will be damaged. When removed from the etching solution, the PCB board is 

washed under tap water. The cleaning work must be done carefully to make sure that any 

film has been removed from the tracks because the film will prevent good soldering to the 

PCB. The tracks are checked. If there are gaps in the tracks, they can be repaired by using 

soft solders.  

The last stage is fixing all the components on the PCB board. Holes are drilled through the 

board by using a small PCB drill. Components are located and soldered in position. A 

photo of the prepared PCB board is shown in figure 3.9. Six analogue neurons are 

constructed on the board. 30 inhibitory synapses are inserted in-between the neurons. A 

block diagram for explaining the construction of each analogue neuron is shown in figure 

3.10. A block diagram for explaining the configuration of the neural network is shown in 

figure 3.11.  
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Figure 3.9 The photo of the prepared board. It shows 6 analogue neurons and 30 analogue synapses 

on the board. It also shows where we inject current stimulus into each neuron and where we 

measure the membrane voltage of each analogue neuron. 

 

Figure 3.10 A block diagram for explaining the construction of an analogue neuron. In the diagram, 

GNa and ENa are achieved by the circuit shown in figure 3.6. GK and EK are achieved by the circuit 

shown in figure 3.5. Cm is the analogue membrane capacitor and is achieved by a capacitor of 10nF. 

GL is the constant leak conductance and is achieved by a resistor of 10KΩ. All of the elements, 

including the capacitor, the sodium conductance, the potassium conductance and the leak 

conductance, are attached to the horizontal wire such that they are connected in parallel. Stimulus 

current is injected into the horizontal wire. The potential of the horizontal wire relative to the 

ground is measured as the analogue membrane voltage VMEM. When stimulus current injection 

drives membrane potential above NaONKNEE, the activation current part of Ina drives VMEM to 

near ENa. After τh, the inactivation current part of Ina turns on and VMEM starts to decrease. And 

After τn, IK turns on and pulls VMEM back down toward EK.  NaONKNEE, τh and τn has been 

explained in figure 3.5 and figure 3.6. 
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Figure 3.11 A block diagram for explaining the configuration of the neural network. In the diagram, 

large circles marked by N1-6 represent 6 analogue neurons. In order to active the analogue neuron, 

direct current is injected into each neuron respectively. I1-6 represents the stimulus current.  During 

experiments, analogue membrane voltage of each neuron is measured. V1-6 represents the 

analogue membrane voltage. Curves with solid dots at one end represent the 30 analogue synapses. 

They are inserted in between analogue neurons. There are two synapses between every two neurons. 

They carry synaptic current with opposite directions. We use black dots at the end of curves to 

indicate that neurons are inhibitory connected as well as indicate the direction of the synaptic 

current. The synaptic current is flowing from the end without the black dot to the other end of the 

curve. Every single neuron is inhibited by the other five neurons in the network.  

 

3.5 Dynamics of Silicon Neurons 

In this subsection, we study the dynamics of the HH model neuron by examining the 

response of its membrane voltage to external direct current with different values. Also, we 

study the inhibitory interaction between neurons via gap junction synapse by producing 

antiphase spiking trains. 

3.5.1 Experimental Setup 

We used depolarizing current to activate the analogue neurons. In order to generate 

stimulus current, voltage to current converter circuits shown in figure 3.12 are built for 

operating ion conductance circuits. The function of this circuit is controlling the output 

current by the small input voltage Vin. The output current is equal to the current through R. 
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The voltage drops in the circuit can be neglected because the currents through R1 and R2 

are essentially zero. The op-amp’s negative feedback adjusts the current thought the 

MOSFET until the voltage across R is equal to the control voltage. C provides some low 

pass filtering of the feedback. Therefore, the voltage across R is equal to the input voltage 

Vin.  

                                                                                                                     

R

V
I in          

(3. 4) 

The conductance circuits can be operated like this: the DC voltage Vin is converted to the 

input current Iin by the voltage to current converter. Iin is set by tuning Vin. Then Iin is 

injected into to the silicon neuron circuits and leads to the oscillations of the analogue 

neurons. The silicon neurons are driven by a power supply. 

 

Figure 3.12 The voltage to current converter circuit. This circuit allows the the output current to be 

controlled with a small input voltage Vin. R1=100Ω; R2=10KΩ; C=10nF. 

 

A block diagram for explaining the whole setup is shown in figure 3.13. Voltage supply is 

from a power supply and converted into current by voltage-to-current converter circuits. 

The current stimulus is injected into the analogue neural network and analogue membrane 
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voltages are measured. Both the current injection and voltage measurement is controlled by 

LabVIEW programs wrote by me.  

 

 

 

Figure 3.13 A block diagram for explaining the experimental setup. The whole setup includes a 

power supply, a voltage to current converter circuit, a PCB board on which the analogue neural 

network is constructed and LabVIEW programs for controlling the current injection and voltage 

measurement.  

 

3.5.2 Dynamic Properties of an Individual Neuron 

In this subsection, we check the dynamic properties of a single silicon neuron, such as 

firing threshold, firing frequency, etc.  

The current threshold for firing the silicon neuron is 86µA. Figure 3.14 shows that sub-

threshold current can only evoke a passive charging response. Spikes arise when the 

injected current is 86 µA, which is just on the threshold. Spikes generated by the silicon 

neuron oscillate between 0 and 3.7V.  
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Figure 3.14 Response of a silicon neuron to direct current stimulus with different values. The trace 

represented by dash lines results from the stimulus of 70µA; the trace represented by solid lines 

results from the stimulus of 86µA. Spikes arise only when the input current is above the threshold 

of 86 µA. The amplitude of the spikes is 3.7 V.  

 

As indicated in figure 3.4, we can use the time constant in RC delay circuits in VMEM, 

NAOFFKNEE and KNEE to control the spiking rate. They correspond to 𝜏𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒, 𝜏ℎ, and 𝜏𝑛 

respectively. The time constant is proportional to the capacitance. Therefore we can control the 

spiking rate by varying the values of the capacitance CNa, CK and Cm. Figure 3.15 shows that the 

firing rate can be reduced when increasing the value of the capacitance. For all the measurements, 

the magnitude of stimulus current is fixed at 100µA. For obtaining the firing rate of 654Hz in 

bottom trace, Cm=CNa=10nF, CK=100nF. We then increase Cm and CNa to 20nF, and increased CK to 

200nF. In this way, the time constant was doubled by doubling the value of capacitors Cm, CNa and 

CK. The firing rate is then reduced by about half to 326Hz. The full width at half maximum of 

spikes is doubled. This is because that increasing the time constant can slow down the process of 

charging the membrane and allows the conductance to slowly inactivate. Table 3.2 summarizes 

values of capacitance and the corresponding frequencies.  
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Figure 3.15 Firing frequency can be tuned by changing the time constant of 𝜏𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒, 𝜏ℎ, and 𝜏𝑛 

in individual neurons. To eliminate the influence of current, the magnitude of current stimulus is 

fixed at 100µA. From bottom trace to top trace, the time constant is doubled by doubling values of 

capacitors Cm, CNa and CK. In the bottom trace, Cm=CNa=10nF, CK=100nF; in the top trace, 

Cm=CNa=20nF, CK=200nF. The frequency is decreased from 654Hz to 326Hz. Besides, the full 

width at half maximum of spikes is doubled. 

 

Cm/CNa/CK (nF) Frequency (Hz) 

10/10/100 667 

20/20/200 323 

30/30/300 217 

40/40/400 161 

Table 3.2 Values of capacitors and corresponding firing frequencies. Cm is the membrane 

capacitance related to membrane charging time τmembrane. CNa is related to τn. CK is related to τh. 

Figure 3.16 shows that the firing frequency of an analogue neuron is increased when 

increasing the magnitude of the external current. For all the points in this plot, 

Cm=CNa=20nF, CK=200nF. We choose results resulted from this set of capacitance to show 

here because it is related to the experiments in chapter 4. Starting from 0µA, the stimulus 
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current is gradually increased by an increment of 2µA/step until we find the threshold of 

86µA. Then starting from 90µA, the stimulus current is increased by an increment of 10 

µA to plot the firing frequency vs. current. The plot shows that no spike is generated when 

current is lower than the threshold. The spiking frequency is a nonlinear increasing 

function with respect to the current. From current of 86µA to 180µA, the frequency is 

increased from 233Hz to 505Hz.  

 

Figure 3.16 The firing frequency as a function of current stimulus. Insert: Spiking patterns 

corresponding to current stimulus of 70µA, 86µA and 100µA. 

 

3.5.3 Synchronization of Coupled Neurons 

After checking dynamical properties of individual neurons, we now use a mutually 

excitatory/inhibitory synapse to couple two neurons together and check the firing sequence 

of coupled neurons. 
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Figure 3.17 shows the firing sequence of two decoupled neurons as a comparison of results 

from coupled neurons later. The parameters of the two neurons are the same. 

Cm=CNa=20nF, CK=200nF. One neuron is excited by a direct current of 100µA and the 

other is excited by a direct current of 105 µA. We use stimulus current with different 

values such that the two neurons have slightly different firing frequency. In this way, it is 

easier to see the time difference of spikes from the two neurons. Each neuron is oscillating 

at its own natural frequency. We name the two neurons neuron 1 (N1) and neuron 2 (N2). 

The spikes from an individual neuron are continuous and even distributed. The time delay 

between spikes of the two neurons, which has been marked in the plot, is changing 

gradually and irregular thus the two neurons are not synchronized.   

 

Figure 3.17 Firing sequence of two decoupled neurons. Each neuron is excited by a direct current 

of 100µA and oscillates at its own natural frequency. Time delays between spikes of the two 

neurons have been marked in the plot. 

 

Figure 3.18 shows the spiking pattern produced by neurons coupled via mutually 

excitatory synapses. In this case, when N1 is firing, it injects current into N2 via the 

excitatory synapse. The injected synaptic current will be added on the stimulus current for 

N2 and increase its probability of firing and vice versa. In this way, the two neurons are 

synchronized and firing with no phase lag. However, in this research, we do not study the 

excitatory synapse because it induces the synchronized stage. Instead we focus on the 
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inhibitory synapse, which is the key to produce winnerless dynamics and flexible rhythmic 

pattern generation.  

 

Figure 3.18 In phase synchronization of neurons coupled via mutually excitatory synapses. The 

synaptic strengths are arbitrarily set as g12=23.5µS, g21=37.2µS. 

 

Figure 3.19 shows the out-of-phase spiking patterns from three neurons which are 

interconnected by mutually inhibitory synapses. Each neuron is excited by a direct current 

of 100µA. The synaptic strengths are arbitrarily set as g12 =23.5µS, g21=37.2µS. Time 

delays between spikes of the two neurons are marked in the plot. At the beginning, there is 

a transient time during which the time delay is varying. This indicates the spiking pattern 

produced by the coupled neurons is not periodic. After the transient time, time delay 

between spikes from the two neurons is fixed. The two neurons acquire identical 

frequencies. In this way, they generate periodic spiking patterns with a certain rhythm. The 

dependence of properties of rhythmic patterns on parameters such as synaptic conductance, 

current stimulus, etc. will be discussed in details in chapter 4.   
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Figure 3.19 Out-of-phase synchronization of neurons coupled via mutually inhibitory synapses. 

Stimulus current for each neuron: 100µA. synaptic conductance is changed. The synaptic strengths 

are arbitrarily set as g12=23.5µS, g21=37.2µS. 

 

3.6 Summary 

We have fabricated six silicon neurons based on HH neuron model by replicating ion 

channels in hardware. The neurons are operated in real time and show realistic neuronal 

behaviours such as producing action potentials. We have tested the intrinsic dynamic 

properties of the neurons, such as the firing threshold, frequency, etc.  

Besides, we have also fabricated electrical synapses in order to connect the six silicon 

neurons together and build a neuron network. The synaptic current can induce either 

excitatory or inhibitory behaviours in the network. We focus on the inhibited effect of the 

synapses and the resulting rhythmic patterns generated by the neural network. This will be 

further discussed in details in chapter 4.   
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Chapter 4 Stimulus-dependent Rhythms in Central Pattern 

Generator Hardware 

4.1 Introduction 

4.1.1 Multifunctional Central Pattern Generators (CPGs) 

A multifunctional (CPG) is able to produce multi-stable rhythmic patterns [79]. In neural 

dynamics, each stable rhythmic pattern generated by a neural network is called an attractor 

and it can be a fixed point in the phase space because many choices of initial conditions 

will evolve toward it. Each attractor is conjectured to be associated with a particular 

locomotive activity of the CPG [80]. The coexistence of attractors as well as the switching 

between them have been intensively studied in CPG models by simulation [55, 56, 79]. 

The basic building block of many CPGs is a half-center oscillator composed of two 

neurons [44]. The two neurons interact through reciprocal inhibitory synapses and produce 

antiphase or in-phase bursting patterns. Increasing the number of neurons in CPG circuits 

can enrich the dynamical information capacity, such as increasing the number of attractors. 

It has been shown in theory that a system of three neurons possesses five attractors 

corresponding to stable rhythmic patterns resulted from neurons fring in a sequence of two 

neurons firing in phase and out of phase with the third [55]. Whether the system converges 

to one attractor or another depends on the initial conditions defined by the relative timing 

of the current steps stimulating the neurons. In ref [55], basins of attraction of the CPG 

consisting of three neurons have been mapped.  

In this chapter we first study the stimulus dependent rhythms in CPG hardware. The 

hardware consists of three Hodgkin-Huxley silicon neurons [11]. Each can produce tonic 

spiking patterns. Neurons are connected via mutually inhibitory gap juntion synapses with 

asymmetric conductance. We find that maximum three stable rhythmic patterns based on 

magnitude of synaptic conductance are generated by our neural circuit in the steady state. 

Switching between thesee patterns depend on the choice of the initial conditions 

represented by the relative timing of the current stimuli. 

We study the stimulus-dependent dynamics by recording spiking patterns generated by the 

neural system. When individual neurons are stimulated by a current step, a transient 

interval occurs during which the spiking patterns are not periodic. For different initial 
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conditions, we expect the spiking patterns to evolve towards the same steady state regime 

which is an attractor in a phase space and strongly depends on initial conditions. We map 

the transient dynamics of the experimental CPG and show that stable attractors can be 

identified in a phase lag map.  

4.1.2 Dynamics in the CPG: Winnerless Competition Principle 

We employ winnerless competition principle to understand the attraction dynamics of the 

network. 

Winnerless competition (WLC) principle was first proposed to interpret the phenomenon 

that the olfactory neurons can transform odours stimuli into deterministic stimulus-specific 

firing patterns [81]. In their model, a winnerless competition neural system requires many 

neurons constructed in a closed loop and these neurons interact at least partly through 

inhibitory connections. The transformation of incoming stimulus into spatiotemporal 

output patterns can result from the interaction through inhibitory connection among 

neurons. The output spatiotemporal patterns correspond to trajectories of electrical activity 

bouncing through the network from one neuron to the other. The activating sequence of 

neurons is determined by the strength of the inhibitory connections between neurons.  

The WLC dynamics has been studied in neuron models in theory to show how the external 

stimulus can be coded into action generations and discuss the stability of the attractors [82-

85].  And based on the computation study, Rabinovich et al. [18] demonstrated that the key 

features of WLC neural network are robustness and sensitivity. More precisely, a good 

WLC system should be robust under small perturbation and meanwhile, it should be very 

sensitive to input signals. 

We first demonstrate WLC dynamics in the CPG hardware. We use step currents as the 

external stimulus and our CPG network can transform them into deterministic stimulus 

specific spatiotemporal patterns. The patterns are sensitive to stimulus so we can switch 

between attractors by selecting stimulus. Meanwhile, the patterns are insensitive to noise 

because small changes in stimulus which work as noise perturbation can only cause the 

system to gravitate around the attractor. We plot phase lag maps to express this process: in 

the map, trajectories can be swithced by selecting initial conditions and different 

trajectories can converge to the same attractor. In this way, the winnerless competition 

system show sensitivity and robustness. 
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4.2 Experimental Details 

4.2.1 The Configuration of the CPG and Initial Conditions for Stimulation in the 

CPG 

The configuration of our neural network is an inhibitory triangle loop consisting of three 

silicon neurons connected by reciprocal synapses. This is shown in figure 4.1(a). Three 

neurons in the network have the same time constants (Cm=CNa=20nF, CK=200nF). External 

current stimulus (I1, I2 and I3) is injected into the three neurons respectively. The amplitude 

and time delay of the current stimulus is controlled by a LabVIEW program. Gij (i≠j) is 

tuneable synaptic conductance, which represents the coupling strengths between neurons. 

It can be varied by tuning the gate voltage as demonstrated in chapter 3. We use 

asymmetric coupling strength (gij≠gji) in order to prevent the automatic in-phase spiking of 

neurons [8].  

Every single neuron is triggered by a current stimulus of 100 µA, which is just above the 

firing threshold of 86 µA. When the stimulus is 100 µA, the intrinsic firing frequency of an 

individual neuron is 323Hz. However, the firing threshold and frequency of individual 

neurons in the network will be different from that of an isolated neuron due to inhibitory 

connection. We choose current stimulus of 100µA because this value is strong enough to 

make sure that all the neurons in the network can be fired. In the meantime, it is weak 

enough to keep firing frequency of the neurons at its lowest value. The low frequency can 

prolong the evolution towards the attractor and hence permit us to see smooth trjectories 

with details in a phase lag map.  During the experiments, we will increase the frequence by 

increasing magnitude of current stimulus to study the dependence of attraction basins on 

the spiking frequency. 

We use the time delay between the current steps as the parameters that regulate the 

rhythmic patterns of the neural network. This is shown in figure 4.1(b). Step voltage 

stimulus is generated by a NI6259 DAQ card and then converted into direct current 

stimulus by voltage to current converters. Every single neuron is triggered by a particular 

current stimulus at its own timing. The time delay is controlled by the DAQ card. It is 

varied between 0 and the period of oscillations of the independently firing neuron. If tn 

(n=1, 2, 3) is the time when the current step is applied to nth neuron. ∆𝑡1 = 𝑡2 − 𝑡1 , 

∆𝑡2 = 𝑡3 − 𝑡1, where Δt1 and Δt2 are the time delays between applying  current to neuron 2 

or neuron 3 and applying current to neuron 1. We the normalize Δt1 and Δt2 over the period 
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of the steady oscillations. We define ∆T1 =
∆t1

T
; ⁡∆T2 =

∆t2

T
, where T is the period of steady 

patterns.  {Δ𝑇1, Δ𝑇2} represents the initial conditions. 

 

Figure 4.1 (a) Proposed asymmetric inhibitory triangle architecture of network model for 

generation of rhythms. N1, N2 and N3 represent the three neurons. Black dots represent electrical 

inhibitory synapses. g12, g32, g13, g31, g23, g32 is the synaptic conductance. Each neuron is stimulated 

by an independent direct current (I1, I2, and I3 for N1, N2 and N3 respectively). Neurons compete 

with each other for firing due to the inhibitory connection. The firing sequence is determined by 

both coupling strengths and the current stimulus. (b) Input current steps at 100 µA are applied to 

neuron 1, 2 and 3 with offsets of Δt1 (between N1 and N2) and Δt2 (between N2 and N3). These 

delays are varied from 0 to one steady oscillation period to change the initial conditions of 

individual neurons in the CPG.  

 

4.2.2 How to Map the WLC Dynamics 

We use a phase lag map to demonstrate the dynamics of outputs of the CPG hardware and 

identify the stable attractors.  

We plot the phase lag map by calculating the delays between peaks of spikes from neuron 

2 and 3 relative to that from the reference neuron 1. We define ∆𝑇𝑖1
𝑛 (i=2, 3) as the time 

position of the nth peak of neuron i relative to the time position of the nth peak of neuron 1. 

Figure 4.2 shows how we calculate Δ𝑇21
1  and Δ𝑇31

1  as an example. ∆𝑇𝑖1
𝑛 is then normalized 

over the period of oscillations of the independently firing neuron as follows: 

 
Φi1
n =

∆Ti1
n

T
 

 (4. 1) 

Where T is the period of steady oscillations of firing neurons in the network. 
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Figure 4.2 The time delay between the first peaks from different neurons. We use N1 as the 

reference neuron.  

 

{Φ21
𝑛 , Φ31

𝑛 } is the forward trajectory of the firing sequence. The maps are show in figure 

4.4-4.6 and 4.8-4.9. We study the dynamical properties of the maps, including locating 

attractors, identifying corresponding rhythmic patterns, and seeking the possible number of 

attractors under particular coupling strengths, etc.  

4.2.3 Preparation of the LabVIEW Program 

We used a NI6259 DAQ card controlled by the LabVIEW software to generate step 

Voltage stimulus and collect the electrical measurements. The DAQ card had three outputs 

which were programmed to apply step voltage with tuneable amplitudes and different 

timings. The input timing determines the time delay of inputs between neurons. Step 

voltage stimulus is then converted into direct current stimulus by voltage to current 

converter circuits. The circuits were discussed in Chapter 3. Besides the outputs, the DAQ 

card had three inputs for collecting the spiking trains produced by the three neurons. The 

spiking trains were then analysed by a threshold peak detector LabVIEW program. This 

program scanned the input spikes, searched for valid peaks and returned the locations of 

the peaks. Information on peak locations was then sent to the LabVIEW calculator for 

analysing the phase lag of the outputs from different neurons. 
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4.3 Results and Discussion  

4.3.1 From Spiking Patterns to Limit Cycles 

We are going to demonstrate in figure 4.3 that output patterns of the neural network have 

transient state and steady state. Patterns in steady state are corresponding a limit cycle in 

phase space. In this thesis, a limit cycle is a closed trajectory in phase space having the 

property that other trajectories spiral into it as time approaches infinity. And we express 

the dynamic process by showing  {Φ21
𝑛 , Φ31

𝑛 } trajectories. 

Figure 4.3(a) shows a typical set of neuron oscillations from the time at which the current 

stimulus is applied to the time at which the system oscillates in the steady-state. Current 

steps of 100µA are injected into individual neurons at the same time. The initial condition 

is (∆T1=0.6, ∆T2=0.7). The coupling strengths between neurons are g12=g23=g31=16µS, 

g21=g13=g32=45µS. The time course of the plot is 25ms. During the 25ms, there are eight 

periods of spiking patterns. The periods of patterns from N1, the time delay between spikes 

from N2 and N1 and the time delay between spikes from N3 and N1 in each period is 

marked in the plot. The time delays are normalized over the period of steady patterns T. 

We show this set of neuron oscillations as an example because it presents obvious transient 

dynamics. The transient time lasts about 17ms. During the transient time, the frequencies 

of neurons are changing with time and the oscillations are aperiodic. We take N1 as an 

example. The initial period is about 3.3ms. It corresponds to the frequency of 303 Hz. 

Then the frequency gradually increases. In the steady state, the frequency of the periodic 

patterns is about 357 Hz. This is about 10% bigger than the frequency of isolated firing 

neurons, which is 323Hz. In addition, the amplitude of the spikes abruptly jumps at the 

beginning of the transient time. The first spike has amplitude of 3.9V. Then it returns to the 

normal amplitude of 3.7V after the second spike.  

The time delay between spikes from N2 and N1 and time delay between spikes from N3 

and N1 in each period has been marked in the plot and they are normalized by the period of 

steady patterns T. The fluctuation of the time delays during transient time indicates that the 

firing sequence of neurons intends to change. This results from the competition for firing 

between neurons. After transient time, the temporal winner has come up, the firing 

sequence is decided and output pattern of the network becomes regular.  
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Figure 4.3(b) shows the three dimensional projection of the CPG output. Each axis 

represents the oscillation voltage of one of the three neurons. The red dash line shows the 

limit cycle corresponds to the periodic patterns in the steady state in figure 4.3(a). The 

other parts of the projection show the chaos which is corresponding to irregular firing 

pattern in transient state. The whole orbit results from electrical activities bouncing from 

one neuron to another. It shows how the system evolves from transient state towards the 

steady state. The arrows along the trajectory indicate the direction of the evolution. 

Figure 4.3(c) shows the forward trajectory {Φ21
𝑛 , Φ31

𝑛 } according to time delays shown in 

figure 4.3(a). The length of the trajectory indicates the length of the transient time. The 

length of the transient time may vary with initial conditions. This will be demonstrated in 

phase lag maps in figure 4.4-4.6 and 4.8-4.9. The points from n1 to n5 correspond to the 

oscillations with varying periods in figure 4.3(a) and chaotic projection in figure 4.3(b). 

The points from n6-n20 correspond to the oscillations with a constant period in steady state 

in figure 4.3(a) and the limit cycle in figure 4.3(b). 

Some properties of oscillation dynamics, such as the length of transient time, a {Φ21
𝑛 , Φ31

𝑛 } 

trajectory, etc. may vary with initial conditions. However, patterns result from different 

initial conditions may have a common limit cycle and therefore {Φ21
𝑛 , Φ31

𝑛 } trajectories 

result from different initial conditions may fall into the same attraction basin and converge 

at a common point, which is an attractor. We will demonstrate attractor dynamics in figure 

4.4-4.9. 
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(c) 

 

Figure 4.3 (a) Rhythmic patterns generated by the CPG when g12=g23=g31=16µs, g21=g13=g32=45µS.  

The magnitude of the stimulus current is 100µA. The initial condition is (∆T1=0.6, ∆T2=0.7). The 

sequential activity of the neurons results from the competition without winner in the system. There 

is a transient region at the beginning in which the firing sequence is irregular. In the following 

steady region, the firing sequence is cyclic and periodic patterns are generated. (b) The three 

dimensional projection corresponding to the oscillations shown in (a). In the plot, each axis 

represents an oscillation voltage from one individual neuron. The steady patterns in (a) are shown 

as a limit cycle in this phase portrait. It is highlighted by a red dash line. The other part of the orbit 

that looks chaotic corresponds to the transient regime. (c) The forward trajectory of the firing 

sequence {Φ21
𝑛 , Φ31

𝑛 } (n=1, 2, 3…20). It is plotted according to the time delays shown in (a). N1-n5 

indicates the transient time during which the time delays are varying. N6-n20 corresponds to the 

steady patterns which possess constant period and time delays. Spiking patterns in n9-n20 are not 

shown in (a) due to the limited space. 



83 
 

4.3.2 Mapping the Limit Cycle/Attractor Dynamics 

In all the maps in figure 4.4-4.6 and 4.8-4.9, initial conditions are varied from (∆T1=0, 

∆T2=0) to (∆T1=1, ∆T2=1) at the step of 0.05. There are about 20 × 20  trajectories in each 

map. Each trajectory corresponds to a specific initial condition.  

Figure 4.4(a) shows the {Φ21, Φ31}  phase lag map when the coupling strength 

g12=g23=g31=45µS, g21=g13=g32=16µS. The coupling strength indicates that the neuron 

sends a stronger synaptic current in the direction of N1N2N3.  

We highlight four trajectories by green colour in the map to demonstrate that the length of 

trajectories can vary with initial conditions. The number of data points along the trajectory 

indicates the number of periods that the spiking pattern has in transient time. 

There is a phase shift in y-axis values in the map. The range of Φ31  of trajectories is 

between 0.1-1.1 rather than between 0 and 1. Some of the trajectories even possess a value 

of Φ31 that is beyond 1.1. This is because in comparison to spiking patterns in steady state, 

spiking patterns in transient state have longer period. And during transient time, time 

delays between spikes from different neurons can be bigger than one steady period. We 

take a pattern results from the initial condition (∆T1=1, ∆T2=1) as an example to 

demonstrate this. As shown in figure 4.4(b), the first period of spikes of N1 is 3.5ms. It is 

25% bigger than the period of steady patterns. Spikes of N3 also have longer transient 

periods. The time delay between spikes from N1 and N3 in the first oscillation period is 

about  
11

10
𝑇. This is shown as a data point with y-axis value of 1.1 in the right green line in 

the map. The phase shift resulted from longer periods of firing neurons in transient time 

indicates that electrical activation of neurons are delayed. It can be a evidence of inhibitory 

effect in the neural network. 

Totally two attractors are found in the map. One is ‘a1’ at {Φ12 ≈ 0.16,Φ31 ≈ 0.49}, the 

other is ‘a2’ at (0.62, 0.30). They represent activation paths (N1N2N3) and 

(N1N3N2) respectively. The two steady patterns corresponding to the two attractors 

are shown in figure 4.4(c). In the map, (0, 0) is avoided as the neuron cannot fire all in 

phase due to the inhibitory connections. The two attractor basins are divided by a space 

(marked by dash lines in the map) where there are no trajectories. The trajectories are 

repeatable in other quadrants (not shown in the map). The black attractor basin possesses a 
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bigger area than the red one. It indicates that the system prefer generating the rhythmic 

pattern corresponding to attractor a1. 

The geometry of the map demonstrates the sensitivity and robustness of the dynamics of 

the system. The output of the system is sensitive to external stimulus as stimulus with 

different initial conditions will lead to different trajectories. It is robust because small noise 

perturbation will only cause the system to gravitate around the attractor. And every 

trajectory is stimulus deterministic and reproducible. Therefore we are able to select 

rhythmic outcomes by selecting initial conditions. It indicates that we can control the 

rhythm of the neural system by timing the input pulses. 

All these dynamical properties, including the stimulus determined spatiotemporal patterns, 

robustness, sensitivity, suggest that the system is a winnerless competition system [18]. 

Competition between neurons results in the sequential activation of neurons. The activation 

path in the network is unique for every stimulus. In this way, similar stimulus can be 

distinguished as they correspond to different patterns during transient time. However, the 

transient activation paths will fall into an attraction basin and converge at an attractor. This 

process can be applied to explaining the brain functions such as neocognitron [86], 

associated memory [87], etc. 

We then tune the asymmetry of the coupling strength to study the influence of it on the 

characteristics of the map, such as changing in the area of attraction basin, resolution of 

boundaries, and the number of attractors. 
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Figure 4.4 (a) Phase lag map for the synaptic conductance g12=g23=g31=45µS, g13=g32=g21=16µS. 

The magnitude of the current stimulus we used for obtaining this map is 100µA. The frequency of 

the steady pattern is 357Hz.Two attractors are found in the map: a1 (0.16, 0.49), a2 (0.62, 0.30). (b) 

The spiking pattern results from the initial condition (∆T1=1, ∆T2=1). It shows longer period in 

transient state. And the time delay between spikes from N1 and N3 can be bigger than one steady 

period. (c) Rhythmic patterns correspond to the two attractors.  

 

The map in figure 4.5 is obtained by exchanging the values of g13 and g31. The current 

stimulus is the same as in figure. 4.4. For neuron 1, the synaptic current sent out is stronger 

than received. For neuron 3, the synaptic current received is stronger than sent out. Thus 

the activation of neuron 3 is more inhibited. The time delays between spikes from neuron 1 

and neuron 3 in transient time are smaller. In the map, this is demonstrated as trajectories 

intend to start from the locations above the attractors. 

In the map, still two attractors are found. One is ‘a1’ at {Φ12 ≈ 0.16, Φ31 ≈ 0.36}, the 

other is ‘a2’ at (0.64, 0.30).In comparison to the attractors in figure 4.4 (a), the location of 

a1 is slightly lower while the position of a2 moves slightly to the right. Besides, the a1 
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attraction basin seems to grow at the expense of the a2 attraction basin. This means that the 

limit cycle represented by the attractor a2 is becoming increasingly fragile. The firing 

sequence of N1N2N3 represented by attractor a1 may be easier than the firing 

sequence of N1N3N2 represented by attractor a2. 

 

 

Figure 4.5 Phase lag map for the synaptic conductance g12=g23=g13=45µS, g31=g32=g21=16µS. The 

magnitude of the current stimulus we used for obtaining this map is 100µA. The frequency of the 

steady pattern is 357Hz. Two attractors are found in the map: a1 (0.16, 0.49), a2 (0.64, 0.30). The 

locations of them are nearly the same with that in Fig. 6(a). 

 

The map in figure 4.6(a) is obtained by weakening the asymmetry of the synaptic strengths. 

g12=37.2µS, g21=23.5µS, g13=20µS, g31=45µS, g23=39 µS, g32=20µS. This set of synaptic 

values introduces a third attractor in the map. The locations of them are: a1 (0.21, 0.56); a3 

(0.43, 0.61); a2 (0.74, 0.34). Rhythmic patterns corresponding to the three attractors are 

shown in figure 4.6(b). Attractors a1 and a3 suggest that two neurons intend to fire in 

phase while the third one fires out of phase with the other two. The map possesses longer 
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trajectories which demonstrate longer transient regimes associated with more symmetric 

coupling strengths.  

The area of the attraction basin that represents the activation path N1N3N2 possesses 

almost the same shape with that in figure 4.4 and figure 4.5. The attraction basin for the 

activation path N1N2N3 collapses into two areas. The attractor a1 represents a pattern 

in which the N1 and N2 intends to be synchronized. The attractor a2 represents a pattern in 

which the N2 and N3 intends to be synchronized.  There is no space between attraction 

basin a1 and ad although the boundary between them is clear. 

This map suggests the possibility of increasing the number of rhythms of the neural 

network by tuning the asymmetry of coupling strengths.  

In comparison to the map in figure 4.5, the attraction basin for the activation path 

N1N2N3 is obviously growing. And the attraction basin for the activation path 

N1N3N2 is reducing. It indicates that the firing sequence of N1N2N3 is easier 

than the other one when the synaptic strengths are less asymmetric.   
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(a) 

 

(b) 

 

Figure 4.6 (a) The phase lag map resulted from the coupling strength g12=37.2 µS, g21=23.5 µS, 

g13=20µS, g31=45µS, g23=39µS, g32=20µS. The magnitude of the current stimulus we used for 

obtaining this map is 100µA. The frequency of the steady pattern is 357Hz. Three attractors are 

found in the map: a1 (0.21, 0.56); a2 (0.74, 0.34); a3 (0.43, 0.61). (b) Rhythmic patterns correspond 

to the three attractors.  
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The changing in areas of attraction basins and number of attractors have been reported in 

theory in Wojcik’s paper in 2011[55]. The configuration of their three neuron motif, stable 

spiking-bursting patterns generated by the motif and phase-lag maps are shown in figure 

4.7 as a comparison to our experimental results. 

Figure 4.7(a) is the three neuron motif. Wojcik et al proposed three spiking-bursting 

neurons reciprocally coupled by inhibitory synapses. The initial synaptic strengths are 

symmetric and 𝑔𝑠𝑦𝑛 = 5 × 10−3nS. The asymmetry of the motif is governed by another 

bifurcation parameter𝑔↻, which enforces/weakens counter-clockwise/clockwise coupling 

strengths⁡g𝑐
𝑐𝑐 = 5 × 10−4 × (1 ± 𝑔↻)⁡⁡(0 ≤ 𝑔↻ ≪ 1). The initial conditions of the phase-

lag maps are the timing of injecting synaptic currents. 

Figure 4.7(c) shows the phase-lag map for the symmetric bursting motif at 𝑔𝑠𝑦𝑛 = 5 ×

10−3nS. It shows five attractors corresponding to the five stable patterns shown in figure 

4.7(b). The geometry of the map suggests that the five robust rhythms have nearly equal 

odds.  

Figure 4.7(d) shows the phase-lag map for the asymmetric bursting motif at 𝑔↻ = 0.154nS. 

In this map, the attractor corresponding to the rhythm (1 < 2 < 3) expands its attraction 

basin at the expense of the other four. And as 𝑔↻ increases to 0.154nS, the three attraction 

basins related to rhythms (1 ⊥ {2 ∥ 3}), (2 ⊥ {1 ∥ 3}) and (3 ⊥ {1 ∥ 2}) move toward to 

the attraction basin related to the stable pattern (1 < 3 < 2) and therefore narrow its area. 

Figure 4.7(e) shows that increasing 𝑔↻  makes the attraction basin related to rhythm 

(1 < 2 < 3) globally dominant after the three nearby attraction basins collapse onto the 

attraction basin related to rhythm (1 < 3 < 2).  
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Figure 4.7 The configuration of the motif with three inhibitory connected neurons and the results 

showing changing in areas of attraction basins and the number of attractors from Wojcik’s theory 

[55]. (a) The three neuron motif with asymmetric clockwise vs counter clockwise connection 

strengths. The neurons are spiking bursting neurons. (b) Five rhythms in the bursting motif at 

𝑔𝑠𝑦𝑛 = 5 × 10−3nS: (1 ⊥ {2 ∥ 3}) in episode (i), travelling waves (1 < 2 < 3) in (ii), (1 < 3 <

2) in (iii), (2 ⊥ {1 ∥ 3}) in (iv), and (3 ⊥ {1 ∥ 2}) in (v). (c) Phase-lag map for the symmetric 

bursting motif at gsyn = 5 × 10−3nS showing five attractors corresponding to the five patterns in 

(b); (d) Phase-lag map for the asymmetric bursting motif at 𝑔↻ = 0.154 nS; (e) Phase-lag map for 

the asymmetric bursting motif at 𝑔↻ = 0.3 nS. Plots in this figure is from ref. [55]. 

 

After a brief review of Wojcik’s theory work, we carry on with our experimental maps. In 

the maps in figure 4.8, the coupling strengths are the same as in figure 4.6 while the 

magnitude of current stimulus is increased to it influence on the maps.  

The map in figure 4.8 (a) results from current of 1.2µA. The firing frequency of the steady 

pattern is 417Hz. The map in figure 4.8(b) results from current of 1.4µA. The firing 

frequency of the steady pattern is 455Hz. Corresponding to the bigger firing frequency, we 

expect to obtain shorter transient regime, which will be expressed in the form of rapid 

convergence from the edges of the basin to the attractor. However, in both of the maps, 

trajectories become even longer while firing frequency is increasing. Also, the distribution 

of trajectories is more disperse. The possible reason for longer and more dispersed 
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trajectories is that increasing current stimulus can increase the synaptic current and finally 

result in a stronger inhibition effect. Enforcing the inhibition effect can delay the firing of 

neurons and increase time delays between spikes from different neurons and lead to slower 

convergence from the edges of the basin to the attractors. 

Both of the maps in figure 4.8(a) and (b) demonstrate two rhythms: (N1N2N3) and 

(N1N3N2). In comparison to figure 4.6, the attractor that indicates N2 intends to 

firing in phase with N3 has disappeared. Only two attractors are left. Locations of the two 

attractors in figure 4.8(a) are: a1 (0.19, 0.55); a2 (0.68, 0.25). Locations of the two 

attractors in figure 4.8(b) are: a1 (0.20, 0.67); a2 (0.75, 0.27). From figure 4.6 to figure 4.8 

as the synaptic strengths are stronger, the attraction basin a1 seems expanding and annexed 

the nearby attraction basin. And from figure 4.6(a) to (b), as the synaptic strength is even 

stronger, the attraction basins are moving towards the right of the map.  

 

Figure 4.8 The coupling strengths are the same with that in figure 4.6. (a)The frequency of the 

steady pattern is increased from 357Hz to 417Hz as the magnitude of current stimulus is increased 

from 1V to 1.2V. Two attractors are found in the map: a1 (0.19, 0.55); a2 (0.68, 0.25). (b) The 

frequency of the steady pattern is increased from 417Hz to 455Hz as the magnitude of current 

stimulus is increased from 1.2V to 1.4V. Two attractors are found in the map: a1 (0.21, 0.67); a3 

(0.75, 0.27). 

4.4 Summary 

We made a multifunctioal CPG consisting of  three analogue neurons interacting with each 

other via inhibitory synapses in hardware. A maximum of three thythms can be produced 
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by the hardware. The mechanism underlying the producing of rhythmic patters is the  

winnerless competition principle. The capability of producing rhthms is sensitive to the 

coupling strenghs as well as the intensity of current stimulus. Less asymmetry coupling 

strengths can lead to more steady rhythms. Swithing between rhythms can be controlled by 

initial conditions represented by the time delay between input current. 

 Varying the strenghs and asymmetry properties of synaptic strenghs can lead to the 

changing in numbers and areas of attraction basins. This result agrees well with the theory 

propsed by Wojcik et al[55].  
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Chapter 5 Modulation of Respiratory Sinus Arrhythmia in Rats  

5.1 Introduction 

As discussed in chapter 4, CPG can regulate biological rhythms and coordinate motor 

activity [44, 78]. One kind of rhythm generators is a half-centre oscillator [88]. It consists 

of two neurons that are reciprocally inhibitory connected. When one neuron fires, the other 

is hyperpolarized and vice versa. In this way the two neurons burst out of phase with each 

other and generate biphasic rhythm. These neurons regulate behaviours in invertebrate 

such as Clione swimming [89], leech heartbeat [57, 90], etc. We have demonstrated in 

chapter 3 that we have fabricated artificial neurons in hardware, which can produce 

realistic spiking patterns in real time, and reciprocally connected them via inhibitory 

synapses. In this way, the artificial neural network can generate out of phase rhythm 

patterns. As demonstrated in chapter 4, maximum tri-phasic rhythms can be generated by 

an artificial CPG board. The study in chapter 3 and chapter 4 indicates that our CPG can 

potentially model the function of generating rhythms of biological CPGs such as half-

centre oscillators.  

Another example of a biological CPG, which is crucial for our experiment in this chapter, 

is the respiratory CPG located in the lower brain stem [91].  It can generate motor patterns 

during respiratory cycles in mammals. In biology, a part of a respiratory cycle is called a 

phase. A respiratory cycle is considered to consist of three phases: inspiration, post-

inspiration and expiration [92]. These respiratory phases can be recognized in the activities 

of three neurons of the pre-Bötzinger centre in the medulla which are coupled via mutually 

inhibitory synapses [93] as in the CPG shown in chapter 4. One of these neurons control 

respiration by controlling the diaphragm through signals sent via the phrenic nerve. 

Phrenic nerve recordings show activity peaks during inspiration.  

In this chapter, we design an artificial CPG which can generate tri-phasic rhythms [69]. In 

vivo experiments, we use phrenic signal to stimulate the CPG and synchronize motor 

patterns output by the CPG to respiration. The output patterns by the CPG are used to 

modulate the heart rate by stimulating the cardiac vagal moto neurones.   

The aim of the modulation is to restore the coupling between the heart rate (HR) and the 

respiratory cycle. The coupling makes the heart beats faster during inspiration than that in 

expiration. This phenomenon is known as respiratory sinus arrhythmia (RSA). Because of 
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RSA, blood can be pumped faster to facilitate oxygen exchange with the blood during 

inspiratory phase. Therefore RSA is believed to increase blood pumping efficiency and 

improve cardiac function [91, 94-97]. RSA is found in healthy and fit subjects. The loss of 

RSA can lead to cardiovascular diseases, including heart failure [98], hypertension and 

even sudden cardiac death [99]. Research on medical side has revealed that the RSA in 

animals is achieved by synchronizing the cardiovascular and respiratory oscillators through 

phase or frequency locking [100-103]. In this chapter, we will use the artificial CPG to 

generate two and three phase rhythms and assess whether it could control the heart rate of 

rats such that the heart rate could be lowered in each of the three respiratory phases. 

By artificially inducing the RSA, we will demonstrate that the artificial neuron stimulation 

may provide novel therapies aimed at either retraining natural central pattern generators or 

even substituting them with prosthetic CPG implants. The artificial CPG has advantages of 

being easy to program and to modify [104-106], etc.  

All the surgeries on rats were done by Professor Julian Paton’s group, who work in school 

of physiology and pharmacology in university of Bristol and hold the permission for 

animal experiments. 

5.2 Experimental Methods  

5.2.1 Information Background 

RSA is pronounced in fit, healthy subjects: the heart rate (HR) increases during inspiration 

and decreases during expiration. In this way, the HR is coupled to the respiratory cycle. 

RSA is understood to be the modulation of cardiac vagal efferent activity by the respiratory 

rhythm[107]. It can be measured by measuring periodic changes in the HR during the 

respiratory cycle.  

Phrenic nerve (PN) is important for keeping the body breath because it passes motor 

information to the diaphragm and receive sensory signals from it. Phrenic signal is 

synchronized with inspiration phase of a respiratory cycle. Therefore in the experiments 

we use the phrenic signal to stimulate N1 on the CPG board in order to synchronize N1 

with inspiration phase. An example of phrenic signal after being rectified and filtered is 

shown in the top panel in figure 5.1. The figure also demonstrates how we divide a 

respiratory cycle into three phases: inspiration (φ1), early expiration (φ2) and late 

expiration (φ3). This is different from that in medical science as they divide a respiratory 
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cycle into phases of inspiration, post inspiration and expiration. Our dividing method is for 

the technique convenience.   

The heart rate (HR) is controlled by the vagal signals, which are conducted from the 

medulla to the atrioventricular node and have the effect of lowering HR. Therefore we are 

able to modulate HR in the experiments by using output of the CPG to stimulate the vagus 

nerve (VN). Besides, the vagal signal starts at the end of inspiration phase. In this 

experiment, we use vagal signal to determine the duration of early expiration phase. An 

example of vagal signal and its position relative to phrenic signal is shown in the bottom 

panel in figure 5.1. 

 

Figure 5.1 An example of phrenic and vagal signal and the relative positions of them. In our 

experiment, a respiration cycle is divided into three phases: the inspiration phase (φ1), early 

expiration phase (φ2) and the late expiration phase (φ3). The duration of inspiration phase is about 

0.6-0.8s. The duration of early expiration is determined according to the duration of vagal signal. It 

lasts about 0.7s. We use phrenic signal to synchronize N1 on the CPG board with inspiration phase. 

And we use vagal signal to synchronize N1 on the CPG board with the early expiration phase.  

5.2.2 Preparation of the In Vivo Experiments 

The setup of the live experiments is shown in figure 5.2. The artificial CPG receives input 

from the phrenic nerve and produces voltage oscillations that are used to stimulate the cut 
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peripheral end of the vagus nerve. The raw phrenic signal consists of fast voltage 

oscillations with both plus and minus values during the inspiratory phase. This signal will 

be amplification, rectification, smoothing and conversion to a current to stimulate the CPG. 

The processing is done electronically in the series of steps depicted in figure 5.2(a). The 

raw phrenic signal is first amplified 10,000 times by a pre-amplifier and band pass filtered 

(80 Hz to 3 kHz) in order to filter out noise. The signal is then amplified by a second 

amplifier on the CPG board that has a gain tuneable in the 1-20 range. This step is for 

finely adjusting the amplitude of the stimulus relative to the firing the threshold of N1. The 

next stage is injecting amplified phrenic signal into the diode and a second order low pass 

filter circuits which are constructed on the CPG board. The purpose of this stage is to 

rectify and smooth the signal. The phrenic voltage (VPN) is then converted into a current 

(IPN) by a transconductance differential amplifier performing the function 𝐼𝑃𝑁 = 𝐺𝑉𝑃𝑁 

where G=0.1mS. The current IPN is then injected into N1. N1 or N2 then modulates the 

heart rate through stimulation of the cut peripheral end of the vagus nerve (VN).  
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Figure 5.2 (a) A schematic diagram of the in vivo experiment with a decerebrated rat. Suction glass 

electrodes are attached to the thoracic phrenic nerve (PN) and central vagus nerve (VN) to record 

inspiration patterns and vagus activity respectively. Electrocardiogram (ECG) and perfusion 

pressure were also recorded in order to monitor the heart rate and blood pressure. The ECG signal 

is collected by two stainless steel needles. The setup for recording the perfusion pressure is not 

shown in the diagram because it is not my work. It is provided by collaborators who work on the 

medical side of the experiments. A pre-amplifier stage magnifies the phrenic signal by 10,000 and 

produces quasi-rectangular voltage pulses during inspiration. A second amplifier stage rectifies and 

smoothes the pre-amplified signal. And the voltage gain of the second stage is used to fine tune the 

amplitude of phrenic pulses relative to the firing threshold of neuron 1 (N1). The voltage pulses are 

then converted into current pulses which are used to stimulate N1. N1 and N2 are silicon neuros 

that interacted via reciprocally inhibitory synapses. They oscillate out of phase with each other. The 

voltage oscillations of N1 are used to stimulate the vagus nerve in phase. N2 provides the 

stimulation out of phase and third phase. (b) Schematic diagram of structures of a glass suction 

electrode. It consists of a glass micropipette with conducting solution, a positive electrode inside 

the micropipette and a reference electrode round the micropipette. 
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We used two juvenile rats for modulating the heart rate. In situ rats preparation described 

in this paragraph was done by collaborators who work on medical side of the experiment.  

The process can be found in Ref [108]. Rats were deeply anaesthetized by Halothane. The 

evidence of the successful anaesthesia is loss of withdrawal response to noxious pinching 

of the tail and paws. Rats were bisected beneath the diaphragm and exsanguinated. The 

head and thorax were cooled in ice-chilled ringer’s solution. The composition of the 

solution is (in mM): NaCl (125); NaHCO3 (24); KCl (3); CaCl2 (2.5); MgSO4 (1.25); 

KH2PO4 (1.25); dextrose (10). The pH is in the rage of 7.35-7.4 after carbogenation. All 

chemicals were from Sigma (UK) containing 1.25% ficoll, gassed with carbogen, filtered 

by 25 µm screen filter and warmed at 31
o
C. Perfusion pressure was set to around 70-80 

mmHg by increasing flow rate to 25ml.min
-1

 and arginine-vasopressin to the perfusate 

(200-400 pM). The perfusion pressure (PP) is recorded during experiments in order to 

monitor the blood pressure. Electrodes were put on the rat for collecting signals, including 

ECG signal, phrenic signal, and also for stimulating the vagus nerve. Figure 5.2(a) shows 

all the electrodes on the rat. Electrocardiography (ECG) signals were recorded by two 

stainless steel needles sitting on left and right arms respectively. Besides, glass suction 

electrodes were used here. Two suction electrodes were put on the left phrenic nerve and 

the left central end of the vagus nerve respectively to record the centrally generated 

respiratory activity. A third suction electrode was connected to the artificial CPG and used 

to electrically stimulate the cut peripheral end of the right vagus nerve. Ground electrode 

for the ECG signals is a piece of wire that connects to the bottom of the animal. In other 

words, the animal is placed over this wire and ground that goes into the amplifier is clipped 

onto this wire.   

The glass suction electrodes were manufactured in the lab by Dr. Erin O’Callaghan in 

medical science laboratory in University of Bristol. Schematic of the structures are shown 

in figure 5.2(b). A silver positive electrode was dipped in the conducting solution within a 

micropipette. The glass suction holds the nerve up and the electrical signals from the nerve 

reach the silver electrode through the conducting solution. An insulated indifferent 

electrode was wound round the micropipette. Insulation is stripped about 1-2mm from the 

tip of this wire such that the tips of the indifferent electrodes can touch the outside of the 

nerve to provide reference signals.  

All the electrodes have conductive wires attached to them. After electrodes are prepared 

and well attached on the rat, my collaborators who work on medical side finish their work. 
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I connect the wires with my CPG board, monitor the heart rate of the rat, and adjust the 

output of my CPG board according to the situation of the rat. For example, the intensity of 

the signal that is safe for the rat could be very different from rat to rat. Spikes with 

frequency of 30Hz can work well on one rat but kill another rat by reducing the heart rate 

too much. My collaborators who work on the medical side can only tell the situation of the 

rat, such as if the heart rate of the rat looks good, if the rat is dying, etc. They have no idea 

about the range of the firing frequency and amplitude of artificial neurons we can use.         

5.2.3 Preparation of CPG Hardware 

We used two neurons on the CPG board demonstrated in chapter 4 for initial trials. The 

trials provided information on how to modify the CPG board and what spikes are good for 

rats. According to the information, I fabricated a new CPG board specifically for this 

experiment. The new board include the CPG circuit and some auxiliary circuits, such as 

amplifiers, low pass filters, potential dividers, etc.  

The CPG circuit consists of two silicon neurons connected by inhibitory synapses. The 

implementation of individual neurons and electrical synapses on the CPG board has been 

demonstrated in chapter 3.  

Auxiliary circuits constructed on the board include a circuit that rectifies, delays and 

smoothes the phrenic signal (shown in figure 5.3), and a potential divider followed by a 

source follower circuit that can provides with tuneable and steady output voltages. 

Figure 5.3 shows the circuit for rectifying, delaying and smoothing the phrenic signal. The 

diode is for removing the minus values of the phrenic signal. The RC integrator is for 

delaying the out of phase signal by extending the in phase signal. In this way, phase φ3 

signal is obtained. In the RC integrator, R is a variable resistance. The range of its value is 

between 0 and 5kΩ. C=100µF; R1=R2=5kΩ; C1=C2=4.7µF; R1' =R2' =5kΩ. The two 

second low pass filter is for smoothing the phrenic signal.  
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Figure 5.3 A diagram of the auxiliary circuits which reshape the phrenic signal. It consists of a 

diode, RC integrator, and a second order low pass filter. The diode rectifies the signal. The RC 

integrator delays the signal. The second order low pass filters smoothes the signal.   

When connecting the output patterns with vagus nerve, we also need source follower 

circuits, which can keep the output voltages steady. The artificial neurons may be directly 

connected to the vagus nerve as in most experiments the input impedance of the vagus 

nerve is larger than the leakage resistance in our artificial neurons (10KΩ). Changes in 

conductivity of the ringer bath may however cause the impedance of the stimulation 

electrode to drop below 10kΩ decreasing the amplitude of neuron spikes. Therefore we 

need the source follower circuit to guard against attenuation of the output signal.  

The output of the system is spiking patterns. The intensity of the stimulation needs to be 

controlled carefully. If the stimulation is too weak, it shows no effect on the vagus nerve of 

the rat. If it is too strong, a rat could be killed because of the big changing in heart rate. 

During experiments, we usually tune the intensity of the stimulation by tuning the 

amplitude and frequency of the spikes from the CPG. The amplitude can be easily tuned in 

the range of 0 and 3.7V by a potential divider circuit. The method of tuning the frequency 

has been demonstrated in chapter 3: it can be tuned by tuning the time constant of the Na 

and K gates together with the membrane capacitance. The frequency was chosen to fit 

bursts of about 5-10 spikes in the time interval of phrenic duration, which is corresponding 

to the inspiration phase. The inspiration phase lasts 0.6s-0.8s, thus the interval between 
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spikes had to be in the range 50-160ms for firing frequency of 6-20Hz. For the neurons we 

designed for this experiment, these are the typical frequencies obtained for a current 

stimulus of 100µA. As discussed in chapter 3, the neurons have a firing threshold of 86µA 

and the firing frequency increases with increasing stimulation as in real neurons.  

The photo of the prepared CPG board and its block diagram is shown in figure 5.3.The 

CPG board was designed to provide three phase stimulation, namely to selectively excite 

the vagus nerve during inspiration (φ1), early expiration (φ2) and late expiration (φ3) as 

shown in figure 5.1. When excited by the phrenic input, N1 and N2 fires during phase φ1 

and phase φ2+ φ3 respectively. To stimulate phase φ3 only, we introduce a time delay τ by 

building a RC circuit (figure 5.4) to slow the rise of the current stimulating neuron 2. To 

stimulate phase φ2 only, we substitute the phrenic nerve with the input from central vagus 

nerve recording as input to N1. This is because the central vagus nerve activity contains 

not only central inspiratory activity but also post-inspiratory discharge. Since the latter has 

higher amplitude than the former this was used to trigger the firing of N1 at the onset of the 

early expiratory phase. We are able to tune the timing of N2 by controlling the moment at 

which its input current reaches the 86µA firing threshold. 

In order to test the new board, we performed preliminary trials of synchronization to 

respiration by stimulating the artificial CPG with recordings of the phrenic nerve through a 

NI6259DAQ card from National Instruments. After the success with the preliminary trials, 

we then moved to the live experiments.  
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(a) 

 

(b) 

 

Figure 5.4 (a) The photo of the prepared CPG hardware. It consists of two silicon neurons (in the 

blue square) that interact with each other through reciprocally inhibitory synapses (in the black 

square) and auxiliary circuits (in other regions), such as circuits for reshaping the phrenic signal 

(demonstrated in figure 5.3), potential dividers and source followers, etc. (b) A block diagram 

showing the construction of the CPG.   
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5.3 Results 

We show results from two juvenile rats. The natural activity of cardiorespiratory system of 

two rats without external modulation is shown in figure 5.5. The figure shows the ECG 

signals (bottom) and heart rate signals (top). When recording the ECG signals, we do not 

record the full electrical impulses produced by the heart. ECG signals in this chapter 

indicate the state that if there is an electrical impulse or not. If there is an electrical impulse, 

the number ‘1’ would be written into the datasheet. Otherwise the number ‘0’ would be 

recorded. And the ECG signals reflect the position of the peak of each electrical impulses 

produced by the heart. Then HR is calculated by taking the reciprocal of time delays of 

every two heartbeat. The HR shows the heart rate in time thus it is called instantaneous HR. 

According to figure 5.5, the average heartbeat is 4.8 beats /s. This value is similar between 

the two rats. The natural RSA has a period of 4.1s and amplitude of 0.08Hz.  

 

Figure 5.5 Natural respiratory sinus arrhythmia. The instantaneous heart rate (HR) was calculated 

from electrocardiogram (ECG) recordings of Rat 1. The ECG signals here only show information 

on the rate of electrical impulses. We used two rats during the experiments and they had similar 

average heart rate at 4.8 beats/s.  The fluctuation of amplitude of the heart rate indicates the natural 

respiratory sinus.  The natural RSA here has a period of 4.1s and amplitude of 0.08Hz.  
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During the experiments we used the silicon CPG to modulate the heart rate of rats. We 

expect to see Artificial Induced respiratory Sinus Arrhythmia (RIRSA). The evidence of 

that is the instantaneous heart rate oscillates in phase with the rhythm of respiration.  

We then connected the output of artificial neuron 1, which fired in phase with phrenic 

signal to excite the vagus nerve. In other words, we modulated the heart rate during the 

inspiratory phase φ1. Results from rat 1 and rat 2 are shown in figure 5.6(a) and (b) 

respectively. 

In figure 5.6, vertical axis PP represents the perfusion pressure, ECG represents the ECG 

signals, PN represents the phrenic signal, VN represents the vagal signal, N1 represents the 

output of artificial neuron 1, and N2 represents the output of artificial neuron 2. Electrical 

signals, including ECG, phrenic signal, vagal signal, output of artificial neuron 1, and 

output of artificial neuron 2, are collected by me. The perfusion pressure is provided by 

collaborators who work on the medical side of the experiment. We monitor the PP signal 

for two reasons. Firstly, it consists of small oscillations. Every oscillation corresponds to 

an electrical impulse produced by the heart. Therefore when we failed in collecting ECG 

signal, we calculated heart rate by counting the number of oscillations in PP signals. The 

amplitude of the oscillations in PP signal depends on quality of the measurement and it 

does not matter to our experiments. Secondly, the perfusion pressure reflects the blood 

pressure of the rat and it tells us if the rat is suitable for experiments. At the beginning of 

an experiment, the perfusion pressure of the rat is 70-80mmHg. During experiments, the 

perfusion pressure of rats would drop down. We need to finish the experiment when the 

perfusion pressure is above 50mmHg otherwise the rat would start to die.  

 In figure 5.6 (a), big fluctuation happened in the heart rate. The heart beat is slowed down 

from 4.8 beats/s to 2.5 beats/s. This indicates a strong RSA. This AIRSA makes the heart 

rate decrease during stimulation at a rate of -3beats/s
2
. After the stimulation, the heart rate 

recovers and returns to its resting value at a rate of +1beat/s
2
.  In figure 5.6(b), we injected 

sodium cyanide into rat 2 for increasing the phrenic burst rate. As a result, the duty cycle 

of spiking patterns of the artificial CPG increases. The time for the heart rate to recover is 

then reduced.  It leads to the weaker oscillation amplitude at 3beats/s for rat 2. In both rats, 

the spiking patterns from CPG board remain perfectly synchronization with respiration 

rhythm.  
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Figure 5.6 Modulating the heart rate by stimulating the vagus nerve in inspiration phase φ1. The 

stimuli we used were from N1 and are shown here in blue trace. Besides the voltage output of 

artificial neurons, signals from the rats, including electrocardiogram (ECG), perfusion pressure 

(PP), phrenic nerve input (PN), central vagus nerve output (VN) are also shown here. The 

amplitude of the perfusion pressure signals depend on the position of electrodes. It does not matter 

to our data analysis. We only concern about the oscillation frequency of the perfusion pressure 

signals because it indicates the heart rate. (a) shows the modulation for rat 1; (b) shows the 

modulation for rat 2. In (a), the instantaneous heart rate (HR) was calculated from the ECG. In (b), 

we failed in collecting the ECG signal. Thus the instantaneous HR is calculated from the fast 

oscillations of the perfusion pressure. In both rats, vagus nerve stimulation during the inspiration 

phase causes strong decrease in heart rate and an increase in the amplitude of pressure oscillations. 

In panel (b), we artificially induced the varying in the duration of respiration cycle. The outputs of 

the two artificial neurons show very good synchronization with the respiration cycle. 

In figure 5.7, the vagus nerve is now stimulated by N2 over the entire expiration phase 

(φ2+φ3).  N1 is triggered by the PN signal. N2 oscillates out of phase with N1. We used 

the output of N2 as the stimulation. In this way, out of phase synchronization was obtained. 

During the time of applying the stimulation, the heart rate halves and remains constant.  

The heart rate drops to 3beats/s for rat 1 (figure 5.7a) and to 2.5beats/s for rat 2 (figure 

5.7b). The lowest heart rate is the same with that caused by inspiration stimulation. 

Therefore the heart rate appears to have saturated at its lower value of about 2.5beats/s. 

This is found to be the same in both rats.  The expiratory phase lasts 4 times longer than 

the inspiratory phase. As a result, the vagus nerve is modulated 4 times longer than when 

triggered in the inspiratory phase as seen in figure 5.6. In this case, there is little time for 
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recovery in between spike bursts. In this case, the heart rate shows a lone peak (figure 5.7b) 

when N2 stays quiet for an unusually long period of time. Another interesting feature is the 

series of randomly timed phase slips which appear in figure 5.7a. These are especially clear 

in the second derivative of the PP curves where heart beats appear to be missing. 

 

Figure 5.7 Modulating the heart rate by stimulating the vagus nerve in expiration phase φ2 + φ3. 

The vagus nerve is now stimulated by N2 (blue trace) which fires out of phase with N1 and PN. (a) 

Results from rat 1. Neuromodulation applied during the long expiration phase reduces the average 

heart rate from ~4.8 beats/s to ~2.5 beats/s. The heart rate occasionally drops to 2 beats/s during the 

longer bursts (487s). Even during the change of respiration frequency, neurostimulation by N2 

remains synchronized out of phase. (b) Results from rat 2. Here also neuromodulation reduces the 

average heart rate to ~3.2 beat/s. The heart rate increases when N2 falls silent.  

Figure 5.8 shows the effect of stimulating the vagus nerve over a short time interval at the 

early expiration phase (φ2). To achieve this, we used the signal from central vagus (cVN) 

nerve rather than phrenic signal as an input to N1. The peaks of cVN signal happen at the 

beginning of the expiration phase, neuron 1 was made to fire during phase φ2 by tuning the 

amplifier gain so that the cVN signal crosses the N1 threshold near the cVN peak. Figure 

5.8(a) shows the cardiorespiratory activity of Rat 2 when stimulated by short bursts of two 

or three pulses contained in phase φ 2.  Given the narrow time window (<0.4s), AIRSA is 

hardly detectable and the heart keeps beating at its rest pace of 4.8beats/s. When the spike 

bursts become broad enough to overlap the inspiratory phase as shown in figure 5.8(b), the 

strong AIRSA described in figure 5.6 is observed again.   
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Figure 5.8 Modulating the heart rate by stimulating the vagus nerve in early expiration phase φ2. 

The vagus nerve is stimulated by neuron N1 (blue trace) whose firing is triggered by the central 

vagus nerve. (a) Rat 2-The firing threshold is set at the level of the VN peak producing a narrow 

spike burst at the beginning of phase 2. The average heart rate 5 beats /s is the natural heart rate. 

Temporal modulation can be detected. However, it is of the same order as the error on 

measurement. (b) Rat 2- The firing threshold is set at a lower level giving wider spike bursts that 

overlap regions 1 and 2. Neuromodulation strongly reduces the heart rate from 5 to 3 beats /s 

during the spike burst intervals. The PP amplitude triples during the bursts.  

From the above results, it would appear that AIRSA depends mainly on the duration of the 

stimulation, which should be more than 3 consecutive spikes to induce any response.  

However, the timing of the stimulus also matters. This is going to be shown in figure 5.9. 

Figure 5.9 reports the effect of applying spike bursts in the second half of the expiratory 

phase (φ3). This was achieved by delaying the rise of the current stimulating N2. AIRSA is 

observed. However, comparing with that in inspiratory phase in figure 5.6, the modulation 

of the heart rate is weaker despite the spike bursts lasting 2 to 3 times longer than the 

inspiratory phase. In figure 5.9(a), the heart rate decreases to 2.5-4beats/s compared to 

2.5beats/s in figure 5.6. This suggests that it is more difficult to induce AIRSA in the late 

expiration phase than in the inspiration phase.  Further evidence for the reduced sensitivity 

of phase φ3 is provided by reducing the duration of spike bursts which is shown in figure 

5.9(b).  The spike bursts seen after t=5243s have similar width to those applied in the 

inspiration phase in figure 5.6. However, it did not produce any virtually AIRSA at all. 
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Figure 5.9 Modulating the heart rate by stimulating the vagus nerve in expiration phase φ3. The 

vagus nerve is stimulated by output of N2 (blue trace), which is delayed by time constant τ. (a) Rat 

2/small delay τ: the vagus nerve is stimulated over the full duration of the late expiratory phase. 

Strong sinus arrhythmia is induced. The heart rate occasionally dropping from 5 beats /s to little 

less than 3 beats /s. (b) Rat2/long delay τ: the vagus nerve is stimulated at the end of the late 

expiratory phase (φ3). The resulting sinus arrhythmia is weaker but clearly visible at 5231s, 5253s 

and 5348s when the spike bursts consist of 3 or more spikes. 

Lastly, AIRSA increases arterial pressure as seen by the greater magnitude of the PP 

oscillations during the time intervals of stimulation.  For instance, the PP oscillations 

double in amplitude when stimulation is applied during the inspiratory phase (figure 5.6a) 

and triple when it is applied in the late expiratory phase (figure 5.8b). 

5.5 Discussion 

This study has shown that we can improve the cardio-respiratory system by using the 

artificial CPG to produce the artificial modulation of the heart rate. So far, the artificial 

modulation of the heart rate is 16 times greater than the natural one produced by the 

brainstem CPG. In all the experiments we have done the juvenile rats. Vagus nerve 

stimulation consistently decreases the heart rate while increasing vascular pressure. The 

artificial CPG is better than the established pacemaker is that it can induce the natural 

synchronization to the respiration cycle. In this way, AIRSA is induced. 

The competition between neurons in the CPG further allows timing neuron bursts at 

different points of the respiration cycle. So we can study the response of the heart outside 

the dynamic range of the brainstem CPG. Another flexibility of stimulation by artificial 
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neurons is to decrease the heart rate proportionally to the duration of the stimulus.  

However this response is not the same at every point of the respiration cycle. It varies 

according to the timing of stimulation. For instance, vagus stimulation makes the heart rate 

drop at 3Hz/s
2
 in the inspiration phase (figure 5.6, figure 5.8b) but only 1Hz/s

2
 in the late 

expiration phase (figure 5.8a).  This explains the larger heart rate modulation seen in the 

former case. The reduced sensitivity in the late expiration phase might relate to interaction 

within the cardiac ganglion such that there is likely to be less noradrenaline released from 

cardiac sympathetic terminals which fire at end of inspiration and early expiration [109]. 

Since noradrenaline potentiates vagal nerve responses at the level of the cardiac ganglion 

([110, 111]), vagal brachycardia could be reduced. Heart rate recovery during quiescent 

intervals appears to be the same across the respiration cycle with a recovery rate of   

+1Hz/s
2
.   

During the expiration stimulation (figure 5.8a), which has a longer time scale than 

inspiration stimulation, the heart rate does not drop to zero but saturates at 2.5beats/s. This 

is about the half value of natural heart rate. Without any external perturbation, respiration 

and the cardiovascular system form two coupled oscillators whose interaction produces 

RSA (figure 5.5). The effect of constant excitation by the silicon CPG is to introduce a 

third oscillator which competes with the brainstem CPG to synchronize with the 

cardiovascular system.  In this process N1 and N2 which oscillates at its own frequency 

(10-50Hz) can lock to the heart beat (2.5Hz).  The phase slips indicated by the red arrows 

in figure 5.8a are believed to arise from such phase locking.  This behaviour is known to 

occur when the synchronization region between two coupled oscillators is being reduced 

by the action of an external perturbation.  In the present case this perturbation is the 

artificial CPG.  Schäfer et al. [100] have modelled the heart as a noisy van der Pol 

oscillator whose natural oscillation frequency is modulated by respiration. In such system, 

the perturbation (noise) has the effect of narrowing the region of cardio-respiratory 

synchronization allowing phase slips to occur. 

The CPG technology demonstrated here compute by analogue hardware rather than 

software. This is a fundamental difference from previous hybrid-neural systems [104, 106]. 

Our analogue network integrates stimuli in real time. This process has lower power 

consumption than cardiac pacemakers and its circuits can easily be scaled to less than 

1mm
2
 of silicon wafer, all of which are crucial advantages for medical implants.  The two-

phase oscillations are very robust since our experiments have only required adjusting the 
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gain of the second amplifier stage to compensate for small differences in the PN amplitude 

of different rats.  To obtain multiphase phase oscillations slow potassium currents would 

need to be included in the neuron model to deliver spike bursts whose duration is set by 

winnerless competition rather than simply by the duration of the stimulus.   

5.6 Summary  

In summary, our silicon CPG has successfully been coupled to juvenile rat models. I 

fabricated the CPG board and proved that it can induce artificial respiratory sinus 

arrhythmia and modulate the heart rate according to respiratory cycles.  The modulation of 

the heart output is most effective in the inspiratory phase and is less effective in the late 

expiratory phase.  This paves to way to novel medical devices that mimic biological CPGs 

to engineer neuro-modulation synchronized to biological rhythms. 
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Chapter 6 Conclusion 

6.1 Summary and Key Insights 

We have demonstrated two different types of analogue neuron hardware to perform 

neurocomputation. 

One is a micro transmission line made from magnetic GaMnAs/GaAsSi p-n wires. It 

emulates nerve fibres and propagates electrical spikes in space. Therefore, we can use it to 

study the spatial aspect of neurocomputation. The p-n wire integrates inputs in space, times 

and conditionally regenerates pulses [24, 30, 31]. Moreover, the response of the device to a 

square stimulus pulse could be a propagating solitary wave. It indicates that the p-n micro 

wire can transmit information with small power consumption as solitons can propagate 

over long distances without loss of energy [60]. The spatial aspect goes beyond 

conductance model of the Hodgkin Huxley type which only considers temporal aspect. In 

addition, the width of depletion region of a p-n wire can change with temperature. This 

indicates that the p-n wire can be a thermo-dynamical neuron model. It can describe soliton 

propagation in bio membranes that incorporates thermodynamic variables [112]. This 

aspect is superior to that of HH neuron models which do not take into account temperature 

considerations at all. 

The other hardware implementing conductance models is a network consisting of analogue 

neurons which are coupled via inhibitory synapses.  

The conductance model takes into account sodium and potassium ion currents. 

Consequently, tonic spikes are generated by the silicon neurons. We have demonstrated 

how to set up the intrinsic properties of individual neurons, such as the amplitude of spikes, 

firing frequency, etc. These are useful parameters for constructing a neural network. We 

set up all of these parameters according to results from biological experiments. This is an 

advantage of HH neurons as they are realistic neuron models. In addition, these neurons 

respond to stimulus in real time. This is a distinct advantage for medical application. 

Spiking neurons are reciprocally connected via electrical synapses which can be either 

excitatory or inhibitory. We mainly focus on the inhibitory connection. We have 

demonstrated how to control the coupling strength which is significant in rhythm of output 

patterns.  
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Spiking neurons connected via inhibitory synapses make a neural network which can 

function as a central pattern generator. It produces spatiotemporal patterns and performs 

polyrhythm generation. We are the first who study the polyrhythmic patterns in neural 

hardware. We have demonstrated adaptive behaviours of the network by showing stimulus 

dependent outputs. Besides, we have mapped the phase portraits of output spiking patterns 

and revealed the attractor dynamics existing in the system. Attraction dynamics is usually 

associated with functions of brain such as associative memory, pattern recognition, etc. 

Our research provides the potential of modelling these functions. In addition, we have 

shown that we can switch between the polyrhythmic outputs of the system by switching the 

time delay between current inputs. We use winnerless competition principles to explain the 

mechanism underlying polyrhythm generation in this system. The generation and control 

of polyrhythm in a neural network is important because it is associated with rhythmic 

behaviours, such as heart beating, breathing, etc. and locomotive behaviours of animals. 

And winnerless competition system usually is capable of producing rich rhythms. 

The last part of the thesis demonstrated an application of the central pattern generator. We 

have constructed a central pattern generator device that can generate antiphase spiking 

patterns. The output patterns are timed by respiratory cycle of juvenile rats. In this way, 

respiratory phase locking patterns are produced. We have used these patterns modulating 

the heart rate of juvenile rats and artificially induced the respiratory sinus arrhythmia 

which can improve the blood pumping efficient of cardiovascular system. Our device can 

potentially be a novel therapy that mimics the biological CPGs. It could help with restoring 

the biological rhythms and being implanted in animals. 

6.2 Future Directions 

The present work opens several avenues for future research. 

6.2.1 Soliton Propagation along P-n Wires under Low Temperature Conditions 

Firstly, computer modelling of magnetic p-n wires is needed. By calculating the inductance 

in the material in theory, propagating speed of solitary waves can be predicted. The 

comparison of results from simulation and experimental measurement shows that the 

solitary waves propagate does exist in p-n wires. 

Secondly, measuring the soliton propagating along the p-n wire under low temperature 

conditions is in need. One reason for doing this is that the width of depletion region of p-n 
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layers will change with temperatures and thus result in the changing in capacitance of the 

p-n wire. This will lead to the change in properties of solitary waves, such as propagating 

speed, or even break the balance between the nonlinearity and dispersion. Another reason 

for taking the measurement under low temperature is that the GaMnAs/GaAsSi is magnetic 

material. It is paramagnetic at room temperature. It will be ferromagnetic when the 

temperature is under 65K, which is the Curie temperature of this material. In ferromagnetic 

phase, the magnetic moments in the material will be aligned. This can increase the 

magnetic flux and thus increase the inductance. Bigger inductance leads to stronger 

dispersion. It will be interesting to see how the pulses would propagate through the wire in 

this case. 

6.2.2 Carry on with Mapping Attractor Dynamics 

We aim to explore the capability of generating polyrhythms of the CPG board and study 

the stability of attractors.  

One way to achieve this is to let more than three neurons participate the competition and 

see how many different attractors they can generate. And we are also interested in how 

many stable attractors and attraction basins we can find in the system. In addition, we can 

add noise to the input in order to test the robustness of these rhythmic patterns to noise. 

The second way is that we can take advantage of the flexibility of HH neurons. Additional 

ion channels associated with calcium currents can be added on the silicon neurons in order 

to generate spiking-bursting patterns or adaptive spikes. So phase portraits of output 

patterns generated by CPG board consisting of spiking bursting neurons can be plotted. 

They could show richer dynamical properties, such as bifurcation, more rhythms, and 

multi-stabilities, etc. 

The third way is that we can try a bigger range of synaptic conductance. So far, the range 

of the synaptic conductance for us to tune is between 16-45 µS. We can technique improve 

the synapses to obtain a bigger range of synaptic conductance and see if that could lead to 

more rhythms. 

6.2.3 A New Pacemaker for Improving Cardiovascular Functions 

So far our silicon CPG has successfully been coupled to juvenile rat models. 
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During the previous experiments, we chose the parameters of spiking patterns of the CPG 

mainly according to experiment effects. Next we need to limit the parameters, such as 

frequency, pulse width, amplitudes, etc. in the range that satisfies the requirements for 

medical devices. 

We are also trying the CPG board on adult rats and measuring the cardiac output during the 

modulation, which would provide us a direct evidence of increasing blood pumping 

efficacy. 

After the success in adult rats, we will try the CPG board on sheep and pigs as their heart 

rate is closer to humans and their age favours implementation of the CPGs. We will also 

fabricate portable CPG board which can be connected with conscious animals for several 

days in order to collect real time data under various conditions.  
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