104 research outputs found

    Supporting automatic recovery in offloaded distributed programming models through MPI-3 techniques

    Get PDF
    In this paper we describe the design of fault tolerance capabilities for general-purpose offload semantics, based on the OmpSs programming model. Using ParaStation MPI, a production MPI-3.1 implementation, we explore the features that, being standard compliant, an MPI stack must support to provide the necessary fault tolerance guarantees, based on MPI's dynamic process management. Our results, including synthetic benchmarks and applications, reveal low runtime overhead and efficient recovery, demonstrating that the existing MPI standard provided us with sufficient mechanisms to implement an effective and efficient fault-tolerant solution.This research received funding from the European Community’s 7th Framework Programme via the DEEP-ER project under Grant Agreement no. 610476. This work has also been supported by the Spanish Ministry of Science and Innovation (contract TIN2012-34557) and by Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014-SGR-1272). Antonio J. Peña is cofinanced by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva fellowship number IJCI-2015-23266. The authors thank Jorge Bell´on, from BSC, for his technical support with the Nanos++ internals.Peer ReviewedPostprint (author's final draft

    A Portable and Adaptable Fault Tolerance Solution for Heterogeneous Applications

    Get PDF
    [Abstract] Heterogeneous systems have increased their popularity in recent years due to the high performance and reduced energy consumption capabilities provided by using devices such as GPUs or Xeon Phi accelerators. This paper proposes a checkpoint-based fault tolerance solution for heterogeneous applications, allowing them to survive fail-stop failures in the host CPU or in any of the accelerators used. Besides, applications can be restarted changing the host CPU and/or the accelerator device architecture, and adapting the computation to the number of devices available during recovery. The proposed solution is built combining CPPC (ComPiler for Portable Checkpointing), an application-level checkpointing tool, and HPL (Heterogeneous Programming Library), a library that facilitates the development of OpenCL-based applications. Experimental results show the low overhead introduced by the proposal and prove its portability and adaptability benefits.This research was supported by the Ministry of Economy and Competitiveness of Spain and FEDER funds of the EU (Projects TIN2013-42148-P, TIN2016-75845-P and the predoctoral Grant of Nuria Losada Ref. BES-2014-068066), by EU under the COST Program Action IC1305, Network for Sustainable Ultrascale Computing (NESUS), and by the Galician Government (Xunta de Galicia) and FEDER funds of the EU under the Consolidation Program of Competitive Research (Ref. GRC2013/055)Xunta de Galicia; GRC 2013/05

    A checkpointing mechanism for GPU intensive HPC applications

    Get PDF
    Please refer to pdf.James Watt ScholarshipEngineering and Physical Sciences Research Council (EPSRC) grants EP/N028201/1 and EP/L00058X/

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores

    Checkpoint restart support for heterogeneous HPC applications

    Get PDF
    As we approach the era of exa-scale computing, fault tolerance is of growing importance. The increasing number of cores as well as the increased complexity of modern heterogenous systems result in substantial decrease of the expected mean time between failures. Among the different fault tolerance techniques, checkpoint/restart is vastly adopted in supercomputing systems. Although many supercomputers in the TOP 500 list use GPUs, only a few checkpoint restart mechanism support GPUs.In this paper, we extend an application level checkpoint library, called fault tolerance interface (FTI), to support multi-node/multi-GPU checkpoints. In contrast to previous work, our library includes a memory manager, which upon a checkpoint invocation tracks the actual location of the data to be stored and handles the data accordingly. We analyze the overhead of the checkpoint/restart procedure and we present a series of optimization steps to massively decrease the checkpoint and recovery time of our implementation. To further reduce the checkpoint time we present a differential checkpoint approach which writes only the updated data to the checkpoint file. Our approach is evaluated and, in the best case scenario, the execution time of a normal checkpoint is reduced by 15x in contrast with a non-optimized version, in the case of differential checkpoint the overhead can drop to 2.6% when checkpointing every 30s.The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the LEGaTO Project (www.legato-project.eu), grant agreement #780681.Peer ReviewedPostprint (author's final draft

    Application-level Fault Tolerance and Resilience in HPC Applications

    Get PDF
    Programa Oficial de Doutoramento en Investigación en Tecnoloxías da Información. 524V01[Resumo] As necesidades computacionais das distintas ramas da ciencia medraron enormemente nos últimos anos, o que provocou un gran crecemento no rendemento proporcionado polos supercomputadores. Cada vez constrúense sistemas de computación de altas prestacións de maior tamaño, con máis recursos hardware de distintos tipos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires que os programas científicos poidan completar a súa execución, evitando ademais que se dispare o consumo de enerxía. O checkpoint/restart é unha das técnicas máis populares. Sen embargo, a maioría da investigación levada a cabo nas últimas décadas céntrase en estratexias stop-and-restart para aplicacións de memoria distribuída tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart a nivel de aplicación para os modelos de programación paralela roáis populares en supercomputación. Implementáronse protocolos de checkpointing para aplicacións híbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos dous casos prestando especial coidado á portabilidade e maleabilidade da solución. En canto a aplicacións de memoria distribuída, proponse unha solución de resiliencia que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás global. A maiores, esta solución de resiliencia optimizouse implementando unha volta atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de almacenaxe de mensaxes para garantires a consistencia e o progreso da execución. Por último, propónse a extensión dunha librería de checkpointing para facilitares a implementación de estratexias de recuperación ad hoc ante conupcións de memoria. En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando desencadear un fallo-parada e permitindo unha recuperación máis eficiente.[Resumen] El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia ha provocado un gran crecimiento en el rendimiento ofrecido por los supercomputadores. Cada vez se construyen sistemas de computación de altas prestaciones mayores, con más recursos hardware de distintos tipos, lo que hace que las tasas de fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos eficientes resulta indispensable para garantizar que los programas científicos puedan completar su ejecución, evitando además que se dispare el consumo de energía. La técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor parte de la investigación en este campo se ha centrado en estrategias stop-and-restart para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de programación paralela más populares en supercomputación. Se han implementado protocolos de checkpointing para aplicaciones híbridas MPI-OpenMP y aplicaciones heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memoria distribuida, se propone una solución de resiliencia que puede ser usada de forma genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallosparada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almacenaje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por último, se propone una extensión de una librería de checkpointing para facilitar la implementación de estrategias de recuperación ad hoc ante corrupciones de memoria. Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando desencadenar un fallo-parada y permitiendo una recuperación más eficiente.[Abstract] The rapid increase in the computational demands of science has lead to a pronounced growth in the performance offered by supercomputers. As High Performance Computing (HPC) systems grow larger, including more hardware components of different types, the system's failure rate becomes higher. Efficient fault tolerance techniques are essential not only to ensure the execution completion but also to save energy. Checkpoint/restart is one of the most popular fault tolerance techniques. However, most of the research in this field is focused on stop-and-restart strategies for distributed-memory applications in the event of fail-stop failures. Thís thesis focuses on the implementation of application-level checkpoint/restart solutions for the most popular parallel programming models used in HPC. Hence, we have implemented checkpointing solutions to cope with fail-stop failures in hybrid MPI-OpenMP applications and OpenCL-based programs. Both strategies maximize the restart portability and malleability, ie., the recovery can take place on machines with different CPU / accelerator architectures, and/ or operating systems, and can be adapted to the available resources (number of cores/accelerators). Regarding distributed-memory applications, we propose a resilience solution that can be generally applied to SPMD MPI programs. Resilient applications can detect and react to failures without aborting their execution upon fail-stop failures. Instead, failed processes are re-spawned, and the application state is recovered through a global rollback. Moreover, we have optimized this resilience proposal by implementing a local rollback protocol, in which only failed processes rollback to a previous state, while message logging enables global consistency and further progress of the computation. Finally, we have extended a checkpointing library to facilitate the implementation of ad hoc recovery strategies in the event of soft errors) caused by memory corruptions. Many times, these errors can be handled at the software-Ievel, tIms, avoiding fail-stop failures and enabling a more efficient recovery

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Optimising the Termofluids CFD code for petascale simulations

    Get PDF
    This paper presents some recent efforts carried out on the expansion of the scalability of TermoFluids multi-physics Computational Fluid Dynamics (CFD) code, aiming to achieve petascale capacity for a single simulation. We describe different aspects that we have improved in our code in order to efficiently run it on 131,072 CPU-cores. This work has been developed using the BlueGene/Q Mira supercomputer of the Argonne Leadership Computing Facility, where we have obtained feedback at the targeted scale. In summary, this is a practical paper showing our experience at reaching the petascale paradigm for a single simulation with TermoFluids.Peer ReviewedPostprint (author's final draft

    멀티 태스킹 환경에서 GPU를 사용한 범용적 계산 응용의 효율적인 시스템 자원 활용을 위한 GPU 시스템 최적화

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 염헌영.Recently, General Purpose GPU (GPGPU) applications are playing key roles in many different research fields, such as high-performance computing (HPC) and deep learning (DL). The common feature exists in these applications is that all of them require massive computation power, which follows the high parallelism characteristics of the graphics processing unit (GPU). However, because of the resource usage pattern of each GPGPU application varies, a single application cannot fully exploit the GPU systems resources to achieve the best performance of the GPU since the GPU system is designed to provide system-level fairness to all applications instead of optimizing for a specific type. GPU multitasking can address the issue by co-locating multiple kernels with diverse resource usage patterns to share the GPU resource in parallel. However, the current GPU mul- titasking scheme focuses just on co-launching the kernels rather than making them execute more efficiently. Besides, the current GPU multitasking scheme is not open-sourced, which makes it more difficult to be optimized, since the GPGPU applications and the GPU system are unaware of the feature of each other. In this dissertation, we claim that using the support from framework between the GPU system and the GPGPU applications without modifying the application can yield better performance. We design and implement the frame- work while addressing two issues in GPGPU applications. First, we introduce a GPU memory checkpointing approach between the host memory and the device memory to address the problem that GPU memory cannot be over-subscripted in a multitasking environment. Second, we present a fine-grained GPU kernel management scheme to avoid the GPU resource under-utilization problem in a i multitasking environment. We implement and evaluate our schemes on a real GPU system. The experimental results show that our proposed approaches can solve the problems related to GPGPU applications than the existing approaches while delivering better performance.최근 범용 GPU (GPGPU) 응용 프로그램은 고성능 컴퓨팅 (HPC) 및 딥 러닝 (DL)과 같은 다양한 연구 분야에서 핵심적인 역할을 수행하고 있다. 이러한 응 용 분야의 공통적인 특성은 거대한 계산 성능이 필요한 것이며 그래픽 처리 장치 (GPU)의 높은 병렬 처리 특성과 매우 적합하다. 그러나 GPU 시스템은 특정 유 형의 응용 프로그램에 최저화하는 대신 모든 응용 프로그램에 시스템 수준의 공정 성을 제공하도록 설계되어 있으며 각 GPGPU 응용 프로그램의 자원 사용 패턴이 다양하기 때문에 단일 응용 프로그램이 GPU 시스템의 리소스를 완전히 활용하여 GPU의 최고 성능을 달성 할 수는 없다. 따라서 GPU 멀티 태스킹은 다양한 리소스 사용 패턴을 가진 여러 응용 프로그 램을 함께 배치하여 GPU 리소스를 공유함으로써 GPU 자원 사용률 저하 문제를 해결할 수 있다. 그러나 기존 GPU 멀티 태스킹 기술은 자원 사용률 관점에서 응 용 프로그램의 효율적인 실행보다 공동으로 실행하는 데 중점을 둔다. 또한 현재 GPU 멀티 태스킹 기술은 오픈 소스가 아니므로 응용 프로그램과 GPU 시스템이 서로의 기능을 인식하지 못하기 때문에 최적화하기가 더 어려울 수도 있다. 본 논문에서는 응용 프로그램을 수정 없이 GPU 시스템과 GPGPU 응용 사 이의 프레임워크를 통해 사용하면 보다 높은 응용성능과 자원 사용을 보일 수 있음을 증명하고자 한다. 그러기 위해 GPU 태스크 관리 프레임워크를 개발하여 GPU 멀티 태스킹 환경에서 발생하는 두 가지 문제를 해결하였다. 첫째, 멀티 태 스킹 환경에서 GPU 메모리 초과 할당할 수 없는 문제를 해결하기 위해 호스트 메모리와 디바이스 메모리에 체크포인트 방식을 도입하였다. 둘째, 멀티 태스킹 환 경에서 GPU 자원 사용율 저하 문제를 해결하기 위해 더욱 세분화 된 GPU 커널 관리 시스템을 제시하였다. 본 논문에서는 제안한 방법들의 효과를 증명하기 위해 실제 GPU 시스템에 92 구현하고 그 성능을 평가하였다. 제안한 접근방식이 기존 접근 방식보다 GPGPU 응용 프로그램과 관련된 문제를 해결할 수 있으며 더 높은 성능을 제공할 수 있음을 확인할 수 있었다.Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Contribution . 7 1.3 Outline 8 Chapter 2 Background 10 2.1 GraphicsProcessingUnit(GPU) and CUDA 10 2.2 CheckpointandRestart . 11 2.3 ResourceSharingModel. 11 2.4 CUDAContext 12 2.5 GPUThreadBlockScheduling . 13 2.6 Multi-ProcessServicewithHyper-Q 13 Chapter 3 Checkpoint based solution for GPU memory over- subscription problem 16 3.1 Motivation 16 3.2 RelatedWork. 18 3.3 DesignandImplementation . 20 3.3.1 System Design 21 3.3.2 CUDAAPIwrappingmodule 22 3.3.3 Scheduler . 28 3.4 Evaluation. 31 3.4.1 Evaluationsetup . 31 3.4.2 OverheadofFlexGPU 32 3.4.3 Performance with GPU Benchmark Suits 34 3.4.4 Performance with Real-world Workloads 36 3.4.5 Performance of workloads composed of multiple applications 39 3.5 Summary 42 Chapter 4 A Workload-aware Fine-grained Resource Manage- ment Framework for GPGPUs 43 4.1 Motivation 43 4.2 RelatedWork. 45 4.2.1 GPUresourcesharing 45 4.2.2 GPUscheduling . 46 4.3 DesignandImplementation . 47 4.3.1 SystemArchitecture . 47 4.3.2 CUDAAPIWrappingModule . 49 4.3.3 smCompactorRuntime . 50 4.3.4 ImplementationDetails . 57 4.4 Analysis on the relation between performance and workload usage pattern 60 4.4.1 WorkloadDefinition . 60 4.4.2 Analysisonperformancesaturation 60 4.4.3 Predict the necessary SMs and thread blocks for best performance . 64 4.5 Evaluation. 69 4.5.1 EvaluationMethodology. 70 4.5.2 OverheadofsmCompactor . 71 4.5.3 Performance with Different Thread Block Counts on Dif- ferentNumberofSMs 72 4.5.4 Performance with Concurrent Kernel and Resource Sharing 74 4.6 Summary . 79 Chapter 5 Conclusion. 81 요약. 92Docto
    corecore