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ABSTRACT

This paper presents some recent e!orts carried out on the expansion of the scalability of TermoFluids
multi-physics CFD code, aiming to achieve petascale capacity for a single simulation. We describe
di!erent aspects that we have improved in our code in order to e"ciently run it on 131,072 CPU-cores.
This work has been developed using the BlueGene/Q Mira supercomputer of the Argonne Leadership
Computing Facility, where we have obtained feedback at the targeted scale. In summary, this is a
practical paper showing our experience at reaching the petascale paradigm for a single simulation
with TermoFluids.

1. Introduction

Since about 10 years, when the clock speed of CPUs

Q1

Q2

stalled due to physical constraints, improvements in com-

puting power of supercomputers have been based on

increasing the level of concurrency, i.e. multiplying the5

number of cores engaged on job executions. Nowadays,

we are in a technology disruptivemoment with the objec-

tive of reaching the exascale paradigm (1018  oating

point operations per second) with a!ordable power con-

sumptions. This challenge has driven the hybridisation10

of the computing systems with the introduction of mas-

sively parallel accelerators, which are increasingly tightly

coupled with host CPUs at nodes and provide a great

concentrated computing power. The hybrid model has

been explored for the CFD kernels of TermoFluids (TF)15

(Oyarzun et al., 2014), but are not the focus of this paper.

Here, we focus in the "rst level of parallelisation, the inter-

node connection based on MPI, which remains essen-

tial and also requires much higher "gures to reach the

exascale paradigm. Note that while the intra-node per-Q320

formance aspects, that may bring the most disruptive

changes, can be deeply studied even in a single node or on

a few of them, deepening on the inter-node parallelisation

aspects requires access to supercomputers at the targeted

scale. It is also worth noting that despite supercomput-25

ers have reached the petascale level since 2008, and the

focus is now on the exascale realm (whichmay be reached

in the next decade), nowadays the largest supercomputer

(Tianhe-2 from China’s National University of Defense

Technology) has a peak performance of 33.86 peta op/s.30

Moreover, beyond scalability tests, petascale production

CONTACT R. Borrell ricardb@cttc.upc.edu

simulations (i.e. complete simulations engaging a piece

of hardware that delivers at least one peta op/s) are

quite rare. Considering that supercomputers are generally

shared by many users, we may expect that petascale sim- 35

ulations will be more frequent on leading edge systems

when thosewill be closer to 100 peta op/s, i.e. on the next

generation of pre-exascale systems.

The numerical experiments carried out for the present

study were performed on the Mira supercomputer of 40

the Argonne Leadership Computing Facility (ALCF),

this is a BlueGene/Q supercomputer which provides a

peak performance of 10.07 peta op/s at running LIN-

PACK benchmark, and is ranked 5th in the current

Top500 list (list of June 2015). Mira supercomputer gath- 45

ers 786,432 CPU-cores by connecting 16-core PowerPC

CPUs. Therefore, this is an ideal platform to test and fur-

ther develop the MPI scalability of our code.

TF is a general purposemulti-physics CFD code based

on symmetry preserving "nite volume discretisations on 50

unstructured meshes (Lehmkuhl et al., 2007). The tur-

bulence modelisation is based on LES and regularisation

models (Lehmkuhl et al., 2012), and the expansion to

multi-physics includes, among other phenomena, radi-

ation, combustion, particles, multi- uid  ows or  uid 55

structure interactions (Colomer et al., 2013; Jofre et al.,

2015). In terms of parallelism, the largest production Q4

simulations performed with TF (engaging up to 5120

CPU-cores) have been simulations of  ows with one

periodic direction, such as the simulation of blu! bod- 60

ies (Lehmkuhl et al., 2012) or NACA pro"les (Rodríguez

et al., 2013), for which a speci"c direct Poisson solver

©  Informa UK Limited, trading as Taylor & Francis Group
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sumptions. This challenge has driven the hybridis

Here, we focus in the "rst level of parallelisation, the inter-

Q3

a few of them, deepening on the inter-node parallelis

TF

on symmetry preserving "nite volume discretis

bulence modelisation is based on LES and regulariation is based on LES and regularis

Q4
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was developed, showing good parallel e$ciency up to

104 CPU-cores (Borrell et al., 2011). The objective of

the work presented in this paper is jumping an order of65

magnitude on the MPI-scalability of our general purpose

code. Our goal is to prepare the code to run at such

level of parallelisation, thus we have included in our

study important aspects such as the pre-processing or

checkpointing stages. The description of these issues and70

the corresponding numerical experiments attesting the

performance of the new implementations is the main

contribution of this paper.

The rest of the paper is arranged as follows. In

Section 2, the discretisation method implemented in TF75

for the Navier Stokes equations is brie y presented. Com-

putational aspects are discussed in Section 3. In Section 4

are presented the numerical experiments performed on

Mira supercomputer. Finally, relevant results are sum-

marised and conclusions are given in Section 5.80

2. Numerical methods

TFincludes di!erent physical phenomena such as radia-

tion, particles,  uid-structure interactions or interfacial

 ows. However, in this paper we have focused on the  ow

solver, which is the core of any simulation performedwith85

TF. The principal set of equations for the simulation of

turbulent incompressible  ows of Newtonian  uids are

the Navier–Stokes (NS) and continuity equations. In an

operator-based formulation, the "nite volume spatial dis-

cretisation of these equations reads90

Ä
duh

dt
+C (uh) uh + Duh + ÄGph = 0h, (1)

Muh = 0h, (2)

where uh and ph are the velocity and pressure "elds

de"ned at the nodes of the mesh, Ä is a diagonal matrix

with the size of the control volumes, C(uh) and D are

the convective and di!usive operators and, "nally, M

and G are the divergence and gradient operators, respec-95

tively. TF is based on a ‘symmetry-preserving’/‘energy

conserving’ discretisation. Namely, the convective opera-

tor is skew-symmetric (C(uh)+C(uh)
∗
= 0, whereC(uh)

∗

refers to the adjoint of the convective operator), the dif-

fusive operator is symmetric positive-de"nite and the100

integral of the gradient operator is minus the adjoint of

the divergence operator (ÄG = −M∗). Preserving the

symmetries of the continuous di!erential operators has

shown to be a very suitable approach for time-accurate

simulations (Lehmkuhl et al., 2012; Rodríguez et al.,105

2013).

For the temporal discretisation, a second-order

explicit one-leg scheme is used. Then, assuming ÄG =

−M∗, the resulting fully-discretised problem reads

Ä
un+1
h − unh

δt
= R

(

3

2
unh −

1

2
un−1
h

)

+ M∗pn+1
h , (3)

Mun+1
h = 0h, (4)

where R(uh) = −C(uh)uh − Duh. The pressure-velocity 110

coupling is solved by means of a classical fractional

step projection method (Yanenko et al., 1971). In short,

reordering Equation (3), an expression for un+1
h is

obtained,

un+1
h = unh + δtÄ−1

(

R

(

3

2
unh −

1

2
un−1
h

)

+ M∗pn+1
h

)

,

(5)

then, substituting this into (4) leads to a Poisson equation 115

for pn+1
h ,

− MÄ−1M∗pn+1
h = M

(

unh
δt

+ Ä−1R

(

3

2
unh −

1

2
un−1
h

))

,

(6)

that must be solved once per time-step.

3. Computing approach

Exploiting the potential of any supercomputer depends

on two factors: "rst, on the sequential performance of 120

the code under consideration, i.e. the performance that

can be obtained separately from the di!erent computing

units composing the supercomputer; second, on the par-

allel performance of the code, i.e. on the performance of

the parallel implementation that includes inter-CPU data 125

communications and synchronisation points.

In our application context, the "rst issue is mainly

limited by the low arithmetic intensity of the kernels com-

posing our implementation. Considering, for instance,

the BlueGene/Q system, it has a peak performance per 130

node of 204.8 G op/s and a bandwidth per node of 42.6

Gbytes/s. This means that in order to keep the CPUs busy

all the time, for each double precision variable fetched

to the cache, 38,5  oating point operations should

be performed. Considering, for example, the sparse 135

matrix vector product (SpMV) for a Laplacian matrix

discretised over an unstructured mesh, the arithmetic

intensity achieved is about 1  op/double: for each matrix

coe$cient and its corresponding component of themulti-

plying vector, a product and a summation are performed. 140

Consequently, no more than 3% of the potential per-

formance of the Mira nodes can be achieved. The same

situation repeats on the other operations of the code.

This is an underlying limitation of CFD and many other

level of parallelisation, thus we have included in our

is

, the discretisation method implemented ination method implemented in TF

marised and conclusions are given in Section

TF

TF

the Navier

cretisation of these equations reads

TF is based on a ‘symmetry-preserving’/‘energyis based on a ‘symmetry-preserving’/‘energyis based on a ‘symmetry-preserving’/‘energyis based on a ‘symmetry-preserving’/‘energy

conserving’ discreticonserving’ discretisation. Namely, the convective opera-

For the temporal discretisation, a second-order

, the resulting fully-discretised problem reads

E

) leads to a Poisson equation) leads to a Poisson equation

Computing approach

,

units composing the supercomputer; second, on the par-

communications and synchronisation points.

discretised over an unstructured mesh, the arithmetic
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scienti"c applications at exploiting the performance of145

current HPC systems, which are evaluated and ranked

by the LINPACK benchmark, which is a benchmark

based on dense linear solvers, and as such deals with

a completely di!erent computing pattern. In any case,

being the CFD a clearly memory bounded application,150

performance relies on minimising memory transfers

and exploiting in the best possible way the intra-node

memory hierarchy.

Regarding the parallel performance, the main degra-

dation factors are the inter-process data communications.155

So, in this paper we have focused on optimising the parts

of the code related to MPI communications. Those parts

form what can be considered the "rst level of parallelism,

which can be complemented with shared memory par-

allelism and vectorisation within nodes. This "rst paral-160

lelisation level is based on a geometric domain decom-

position. Two types of communications are used in our

code: (i) the global reduction operations used in norms,

dot products and to evaluate global measures such as

the time-step length; (ii) the point-to-point communica-165

tions required for the halo updates, i.e. for transferring

information required to solve the dependencies between

unknowns belonging to di!erent subdomains. For the

communications of the "rst type, we did not introduce

any change on the code with respect to previous ver-170

sions, the corresponding MPI collectives are just called.

On the other hand, the halo updates are performed by

means of the non-blocking functions MPI_Irecv and

MPI_Isend that avoid unnecessary synchronisation,

deferring this synchronisation to a latter call of the func-175

tion MPI_Waitall. Nonetheless, on the halo updates

there was a signi"cant design error that became critical

when using tens of thousands of processes. In the pre-

vious design, for each process we were using a double

pointer (i.e. a pointer of pointers that after its alloca-180

tion becomes an array of arrays) as a bu!er to perform

communications. The "rst array was of dimension equal

to the total number of MPI threads or processes. Then

the components corresponding to processes with whom

communications were required were allocated accord-185

ingly. Finally, on the communication process there was

loop over the bu!er and communications were estab-

lished with the processes corresponding to non-empty

bu!er components. This strategy has unnecessary mem-

ory and computing costs, it has been substituted by a190

sparse scheme where each process stores only the list of

the other processes it needs to communicate with and

then the loop and the bu!er are dimensioned accordingly.

Another relevant aspect that in uences the per-

formance of the time-integration process are the195

checkpointing IO operations . Since simulations are gen-Q5

erally completed by multiple executions, checkpoints are

used to restart simulations form the last point, from a spe-

ci"c point of interest, or from the last point preceding a

failure. In TF, the IO operations are managed bymeans of 200

the HDF5 library (The HDFGroup, 1997–2015). Achiev-

ing performance on the parallel IO operationswithHDF5

library relies on taking advantage of collective operations.

However, there are many intrinsic hardware constraints

such as the bandwidth of the parallel "le system that 205

cannot be overcome. In particular, our layout of data on

the hierarchical data format of the HDF5 library consists

on one collective data-set for each scalar "eld and a con-

tiguous region within it reserved to each parallel process

engaged on the simulation. Our goal regarding the IO 210

operations of the checkpointing process is that those are

fast enough and generate an acceptable overhead.

Finally, the last part of the code that has been

optimised to reach petascale simulations has been

the pre-processing stage. Generally, on the simulation 215

process the pre-processing stage has a residual cost

compared with the overall time integration. However,

this statement is not exactly true since complex simu-

lations are not performed at once, generally is required

an iterative process to "nd a proper mesh, to tune some 220

simulation parameters, or to implement accurate bound-

ary conditions. Therefore, since the pre-processing stage

may be repeated several times until the "nal simulation

runs, it is also important to minimise its cost to avoid a

tedious setting up of the simulation. Here, we consider 225

the pre-processing stage as all the operations performed

from the initiation of a simulation until the time inte-

gration starts. The inputs of the pre-processing are the

mesh "le (in HDF5 format) and a "le describing the

domain decomposition, this can be the output of a mesh 230

partitioner such as METIS (Karypis et al., 2009). Then

each process reads its corresponding information from

the mesh "le and: (i) evaluates all the geometric and

topological properties of the mesh that will be required

for the time integration; (ii) evaluates the topological 235

properties of the domain decomposition in order to set

up the communication scheme for the halo updates;

and (iii) performs the set-up of the linear solver. In the

previous version of our code, there was a sequential mesh

partitioning stage that generated a new HDF5 "le with a 240

separated data-set for each parallel process. This strategy

was ine$cient when engaging O(104) parallel processes

and "nally unworkable on the targeted petascale simula-

tion level. In the present implementation, all the phases

of the pre-processing stage are performed in parallel. 245

4. Numerical experiments

In order to test the performance of TF, we have run its

CFD solver under the conditions of the driven cavity case,

performance relies on minimising memory transfers

So, in this paper we have focused on optimising the parts

allelism and vectorisation within nodes. This "rst paral-

lelisation level is based on a geometric domain decom-

the time step length; ii) the point point communica-

that avoid unnecessary synchronisation,

deferring this synchronis

Q5

TF,

cannot be overcome. In particular, our layout of data oncannot be overcome. In particular, our layout of data on

optimised to reach petascale simulations has been

runs, it s also important to minimis

Numerical experiments

In order to test the performance of TF,
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Figure . Strong scaling. Left: speedup of the full time-step using two meshes (M and M nodes, respectively). Right: speedup of
the full time-step and speedup of the SpMV kernel for the largest mesh.

i.e. a box with a horizontal velocity boundary condition

at the top. The purpose has not been the completion of250

any simulation but running along enough time-step iter-

ations to properly measure the average performance of

the code per iteration. The meshes have been generated

by the extrusion of two-dimensional (2D) unstructured

grids, however they are addressed by the code as general255

three-dimensional (3D) unstructuredmeshes. The Jacobi

preconditioned conjugate gradientmethod has been used

to deal with the Poisson equation.

The "rst test considered is the strong scaling of the

time-integration phase. Results are shown in Figure 1260

(left) for two meshes of 1024M and 2048M nodes, gener-

ated by the extrusion of an unstructured gridmade of one

million nodes. The number of CPU-cores ranges from

16,384 up to 131,072, running 16 ranks per node. In both

cases, acceleration is observed all the way up to 131,072265

cores but, as expected, the larger the mesh size the bet-

ter the speedup since the relative weight of the commu-

nications decreases. In particular, the parallel e$ciency

achieved is 67% and 76%, respectively. It is important to

note that theworkload perCPUat the last point, engaging270

131,072, is only about 7 and 15K nodes, respectively. In

the right part of Figure 1 is compared, for the largestmesh

of two billion nodes, the speedup of the time-step and

the SpMV kernel for the Laplacian operator. The accel-

eration of both is almost the same up to 65,536 CPU-275

cores, what validates the results obtained for the time-

step since the SpMV is the dominant kernel.With 131,072

cores, the acceleration achieved with the SpMV is about

8K16K 32K 65K 131K
0.5

0.75

1

1.25

1.5

Number of CPU-cores

S
lo

w
d
o
w

n

timestep

Figure . Weak scaling: test for the time-step with a load of ,
nodes per MPI task.

10 points above the one for the overall time-step. This can

be explained by the collective communications required 280

on the evaluation of norms and other global measures,

which end up slowing down the time-step acceleration.

Figure 2 shows a weak scaling test. The load per CPU

has been kept constant at the moderate load of 31,250

nodes. The number of CPU-cores is increased from 8192 285

up to 131,072. It can be observed that while both the

size of the problem and the number of CPU-cores are

Strong scaling. Left: speedup of the full timepeedup of the full time-step usingstep using two respectively). Right: speedup of
the full time-step and speedup of the SpMV kernel for the largest mesh.

achieved is 67% and 76%, respectively. It

10

nodes. The number of CPU-cores is increas
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Table . Time(s) spent in the preprocessing and check-pointing
phases of TermoFluids, for different number of CPUs and mesh
sizes.

Mesh Check Check
CPUs size (M) Pre-process point write point read

    
,    
,    
,    

increased by a factor of 16, the cost of the time-step grows

only by 22%. Since here we are analysing computing

aspects of the code, we have kept the number of iterations290

of the PCG algorithm constant while increasing the size

of the problem. Therefore, this result shows good weak

scaling of the kernels involved in the time integration, but

does not account for additional iterations required by the

linear solver or additional time-steps required during the295

time integration.

Finally, in Table 1 is shown the time spent in the pre-

processing stage and in the check-pointing writing and

reading parts, for the same tests run on the previous weak

speedup study. Ideally, if the scaling was perfect, the time300

would remain constant while the number of CPUs and

the size of the mesh are proportionally increased. This isQ6

almost the situation for the preprocessing stage. On the

other hand, as expected, the IO operations through the

parallel "le system su!er degradation at increasing305

the number of parallel processes. However, note that in

the worst case it takes about 100 s to write a check point

for a 2 billion node mesh using 65K CPU-cores. The

time-step cost for this case is of 0.8 s, but the checkpoint-

ing cost is very acceptable since it is performed between310

fairly long periods of simulation time.

5. Concluding remark

In this paper, we describe di!erent aspects of TF that

have been optimised in order to reach petascale capac-

ity for a single simulation. In particular, we have per-315

formed tests engaging up to 131,072 CPU-cores, that sum

up a peak performance of about 1.7 peta- ops. The "rst

improvement has been in the inter-CPU communica-

tions, in particular in the communication scheme of the

halos update process. Notable results have been obtained320

for both strong and weak scalings of the new version of

the code, engaging up to 131,072 CPU-cores. The pre-

processing stage has also been optimised avoiding any

sequential bottleneck, results show also perfect scalability.

Finally, the IO operations have been considered, in this325

case the scalability is harder due to limitations on the par-

allel "le system, however considering the time required,

the overhead generated by the check-pointing within the

time-integration phase is almost negligible.
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