113 research outputs found

    Robust Video Communication over an Urban VANET

    Get PDF

    Simulation and performance analysis of the Zone Routing Protocol for tactical mobile AD HOC networks

    Get PDF
    This thesis presents a simulation and analysis of the Zone Routing Protocol (ZRP) for mobile ad hoc network (MANET) environments using the OPNET simulation tool. ZRP is being suggested for possible implementation in the Joint Tactical Radio System (JTRS) for the United States military. Utilizing a ZRP OPNET model that was developed at Cornell University, the analysis focuses on key performance parameters that include overhead generation, network adaptation, efficiency, and routing zone optimization. The ZRP model's traffic monitoring has been enhanced for this work to identify the engineering tradeoffs between efficiency and performance. The results of this thesis provide valuable insight into the analysis and performance with varying zone routing radius, node velocity, and node density. Critical MANET environmental and simulation parameters required for JTRS implementation into the military battlespace have been studiedhttp://archive.org/details/simulationndperf10945779

    ALGORITHMS FOR FAULT TOLERANCE IN DISTRIBUTED SYSTEMS AND ROUTING IN AD HOC NETWORKS

    Get PDF
    Checkpointing and rollback recovery are well-known techniques for coping with failures in distributed systems. Future generation Supercomputers will be message passing distributed systems consisting of millions of processors. As the number of processors grow, failure rate also grows. Thus, designing efficient checkpointing and recovery algorithms for coping with failures in such large systems is important for these systems to be fully utilized. We presented a novel communication-induced checkpointing algorithm which helps in reducing contention for accessing stable storage to store checkpoints. Under our algorithm, a process involved in a distributed computation can independently initiate consistent global checkpointing by saving its current state, called a tentative checkpoint. Other processes involved in the computation come to know about the consistent global checkpoint initiation through information piggy-backed with the application messages or limited control messages if necessary. When a process comes to know about a new consistent global checkpoint initiation, it takes a tentative checkpoint after processing the message. The tentative checkpoints taken can be flushed to stable storage when there is no contention for accessing stable storage. The tentative checkpoints together with the message logs stored in the stable storage form a consistent global checkpoint. Ad hoc networks consist of a set of nodes that can form a network for communication with each other without the aid of any infrastructure or human intervention. Nodes are energy-constrained and hence routing algorithm designed for these networks should take this into consideration. We proposed two routing protocols for mobile ad hoc networks which prevent nodes from broadcasting route requests unnecessarily during the route discovery phase and hence conserve energy and prevent contention in the network. One is called Triangle Based Routing (TBR) protocol. The other routing protocol we designed is called Routing Protocol with Selective Forwarding (RPSF). Both of the routing protocols greatly reduce the number of control packets which are needed to establish routes between pairs of source nodes and destination nodes. As a result, they reduce the energy consumed for route discovery. Moreover, these protocols reduce congestion and collision of packets due to limited number of nodes retransmitting the route requests

    Data Gathering and Dissemination over Flying Ad-hoc Networks in Smart Environments

    Get PDF
    The advent of the Internet of Things (IoT) has laid the foundations for new possibilities in our life. The ability to communicate with any electronic device has become a fascinating opportunity. Particularly interesting are UAVs (Unmanned Airborne Vehicles), autonomous or remotely controlled flying devices able to operate in many contexts thanks to their mobility, sensors, and communication capabilities. Recently, the use of UAVs has become an important asset in many critical and common scenarios; thereby, various research groups have started to consider UAVs’ potentiality applied on smart environments. UAVs can communicate with each other forming a Flying Ad-hoc Network (FANET), in order to provide complex services that requires the coordination of several UAVs; yet, this also generates challenging communication issues. This dissertation starts from this standpoint, firstly focusing on networking issues and potential solutions already present in the state-of-the-art. To this aim, the peculiar issues of routing in mobile, 3D shaped ad-hoc networks have been investigated through a set of simulations to compare different ad-hoc routing protocols and understand their limits. From this knowledge, our work takes into consideration the differences between classic MANETs and FANETs, highlighting the specific communication performance of UAVs and their specific mobility models. Based on these assumptions, we propose refinements and improvements of routing protocols, as well as their linkage with actual UAV-based applications to support smart services. Particular consideration is devoted to Delay/Disruption Tolerant Networks (DTNs), characterized by long packet delays and intermittent connectivity, a critical aspect when UAVs are involved. The goal is to leverage on context-aware strategies in order to design more efficient routing solutions. The outcome of this work includes the design and analysis of new routing protocols supporting efficient UAVs’ communication with heterogeneous smart objects in smart environments. Finally, we discuss about how the presence of UAV swarms may affect the perception of population, providing a critical analysis of how the consideration of these aspects could change a FANET communication infrastructure

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Enabling Efficient, Robust, and Scalable Wireless Multi-Hop Networks: A Cross-Layer Approach Exploiting Cooperative Diversity

    Get PDF
    The practical performance in terms of throughput, robustness, and scalability of traditional Wireless Multihop Networks (WMNs) is limited. The key problem is that such networks do not allow for advanced physical layers, which typically require (a) spatial diversity via multiple antennas, (b) timely Channel State Information (CSI) feedback, and (c) a central instance that coordinates nodes. We propose Corridor-based Routing to address these issues. Our approach widens traditional hop-by-hop paths to span multiple nodes at each hop, and thus provide spatial diversity. As a result, at each hop, a group of transmitters cooperates at the physical layer to forward data to a group of receivers. We call two subsequent groups of nodes a stage. Since all nodes participating in data forwarding at a certain hop are part of the same fully connected stage, corridors only require one-hop CSI feedback. Further, each stage operates independently. Thus, Corridor-based Routing does not require a network-wide central instance, and is scalable. We design a protocol that builds end-to-end corridors. As expected, this incurs more overhead than finding a traditional WMN path. However, if the resulting corridor provides throughput gains, the overhead compensates after a certain number of transmitted packets. We adapt two physical layers to the aforementioned stage topology, namely, Orthogonal Frequency-Division Multiple Access (OFDMA), and Interference Alignment (IA). In OFDMA, we allocate each subchannel to a link of the current stage which provides good channel conditions. As a result, we avoid deep fades, which enables OFDMA to transmit data robustly in scenarios in which traditional schemes cannot operate. Moreover, it achieves higher throughputs than such schemes. To minimize the transmission time at each stage, we present an allocation mechanism that takes into account both the CSI, and the amount of data that each transmitter needs to transmit. Further, we address practical issues and implement our scheme on software-defined radios. We achieve roughly 30% average throughput gain compared to a WMN not using corridors. We analyze OFDMA in theory, simulation, and practice. Our results match in all three domains. Further, we design a physical layer for corridor stages based on IA in the frequency domain. Our practical experiments show that IA often performs poorly because the decoding process augments noise. We find that the augmentation factor depends only on the channel coefficients of the subchannels that IA uses. We design a mechanism to determine which transmitters should transmit to which receivers on which subchannels to minimize noise. Since the number of possible combinations is very large, we use heuristics that reduce the search space significantly. Based on this design, we present the first practical frequency IA system. Our results show that our approach avoids noise augmentation efficiently, and thus operates robustly. We observe that IA is most suitable for stages with specific CSI and traffic conditions. In such scenarios, the throughput gain compared to a WMN not using corridors is 25% on average, and 150% in the best case. Finally, we design a decision engine which estimates the performance of both OFDMA and IA for a given stage, and chooses the one which achieves the highest throughput. We evaluate corridors with up to five stages, and achieve roughly 20% average throughput gain. We conclude that switching among physical layers to adapt to the particular CSI and traffic conditions of each stage is crucial for efficient and robust operation

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Castle in the Air: A Domain Name System for Spectrum

    Get PDF
    This article envisions the foundational infrastructure for a true wireless Internet. The domain name system (DNS) for addressing allowed the Internet to scale as a decentralized, loosely-coupled system. A similar system for the wireless communication would allow devices to negotiate frequently assignments and other attributes dynamically. The traditional, static approach to spectrum allocation creates massive inefficiencies, which will become increasingly problematic as wireless demand grows. A DNS for spectrum could be based on the database the Federal Communications Commission recently mandated for devices operating in the “White Spaces” around broadcast television channels. Such an infrastructure would enable rapid growth and innovation in next-generation mobile devices and applications

    Biology-Inspired Approach for Communal Behavior in Massively Deployed Sensor Networks

    Get PDF
    Research in wireless sensor networks has accelerated rapidly in recent years. The promise of ubiquitous control of the physical environment opens the way for new applications that will redefine the way we live and work. Due to the small size and low cost of sensor devices, visionaries promise smart systems enabled by deployment of massive numbers of sensors working in concert. To date, most of the research effort has concentrated on forming ad hoc networks under centralized control, which is not scalable to massive deployments. This thesis proposes an alternative approach based on models inspired by biological systems and reports significant results based on this new approach. This perspective views sensor devices as autonomous organisms in a community interacting as part of an ecosystem rather than as nodes in a computing network. The networks that result from this design make local decisions based on local information in order for the network to achieve global goals, thus we must engineer for emergent behavior in wireless sensor networks. First we implemented a simulator based on cellular automata to be used in algorithm development and assessment. Then we developed efficient algorithms to exploit emergent behavior for finding the average of distributed values, synchronizing distributed clocks, and conducting distributed binary voting. These algorithms are shown to be convergent and efficient by analysis and simulation. Finally, an extension of this perspective is used and demonstrated to provide significant progress on the noise abatement problem for jet aircraft. Using local information and actions, optimal impedance values for an acoustic liner are determined in situ providing the basis for an adaptive noise abatement system that provides superior noise reduction compared with current technology and previous research efforts
    • …
    corecore