21 research outputs found

    Propagation of New Innovations: An Approach to Classify Human Behavior and Movement from Available Social Network Data

    Get PDF
    It is interesting to observe new innovations, products, or ideas propagating into the society. One important factor of this propagation is the role of individual's social network; while another factor is individual's activities. In this paper, an approach will be made to analyze the propagation of different ideas in a popular social network. Individuals' responses to different activities in the network will be analyzed. The properties of network will also be investigated for successful propagation of innovations

    Revisit Behavior in Social Media: The Phoenix-R Model and Discoveries

    Full text link
    How many listens will an artist receive on a online radio? How about plays on a YouTube video? How many of these visits are new or returning users? Modeling and mining popularity dynamics of social activity has important implications for researchers, content creators and providers. We here investigate the effect of revisits (successive visits from a single user) on content popularity. Using four datasets of social activity, with up to tens of millions media objects (e.g., YouTube videos, Twitter hashtags or LastFM artists), we show the effect of revisits in the popularity evolution of such objects. Secondly, we propose the Phoenix-R model which captures the popularity dynamics of individual objects. Phoenix-R has the desired properties of being: (1) parsimonious, being based on the minimum description length principle, and achieving lower root mean squared error than state-of-the-art baselines; (2) applicable, the model is effective for predicting future popularity values of objects.Comment: To appear on European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases 201

    Modeling the structure and evolution of discussion cascades

    Get PDF
    We analyze the structure and evolution of discussion cascades in four popular websites: Slashdot, Barrapunto, Meneame and Wikipedia. Despite the big heterogeneities between these sites, a preferential attachment (PA) model with bias to the root can capture the temporal evolution of the observed trees and many of their statistical properties, namely, probability distributions of the branching factors (degrees), subtree sizes and certain correlations. The parameters of the model are learned efficiently using a novel maximum likelihood estimation scheme for PA and provide a figurative interpretation about the communication habits and the resulting discussion cascades on the four different websites.Comment: 10 pages, 11 figure

    The Lifecycle and Cascade of WeChat Social Messaging Groups

    Full text link
    Social instant messaging services are emerging as a transformative form with which people connect, communicate with friends in their daily life - they catalyze the formation of social groups, and they bring people stronger sense of community and connection. However, research community still knows little about the formation and evolution of groups in the context of social messaging - their lifecycles, the change in their underlying structures over time, and the diffusion processes by which they develop new members. In this paper, we analyze the daily usage logs from WeChat group messaging platform - the largest standalone messaging communication service in China - with the goal of understanding the processes by which social messaging groups come together, grow new members, and evolve over time. Specifically, we discover a strong dichotomy among groups in terms of their lifecycle, and develop a separability model by taking into account a broad range of group-level features, showing that long-term and short-term groups are inherently distinct. We also found that the lifecycle of messaging groups is largely dependent on their social roles and functions in users' daily social experiences and specific purposes. Given the strong separability between the long-term and short-term groups, we further address the problem concerning the early prediction of successful communities. In addition to modeling the growth and evolution from group-level perspective, we investigate the individual-level attributes of group members and study the diffusion process by which groups gain new members. By considering members' historical engagement behavior as well as the local social network structure that they embedded in, we develop a membership cascade model and demonstrate the effectiveness by achieving AUC of 95.31% in predicting inviter, and an AUC of 98.66% in predicting invitee.Comment: 10 pages, 8 figures, to appear in proceedings of the 25th International World Wide Web Conference (WWW 2016

    Cognitive network dynamics in chatlines

    Get PDF

    The Norms of Death: On Capital Punishment in China

    Get PDF
    Annual lectures held in honor of George E. Morriso

    A Model of Information Diffusion in Interconnected Online Social Networks

    Get PDF
    corecore