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A model of information diffusion in interconnected online social
networks

ROSSANO GAETA

Online social networks (OSN) have today reached a remarkable capillary diffusion. There are numerous ex-
amples of very large platforms people use to communicate and maintain relationships. People also subscribe
to several OSNs, e.g, people create accounts on Facebook, Twitter, and so on. This phenomenon leads to
online social internetworking (OSI) scenarios where users who subscribe to multiple OSNs are termed as
bridges. Unfortunately, several important features make the study of information propagation in an OSI
scenario a difficult task, e.g., correlations in both the structural characteristics of OSNs and the bridge inter-
connections among them, heterogeneity and size of OSNs, activity factors, cross-posting propensity, etc. In
this paper we propose a directed random graph-based model that is amenable to efficient numerical solution
to analyze the phenomenon of information propagation in an OSI scenario; in the model development we
take into account heterogeneity and correlations introduced by both topological (correlations among nodes
degrees and among bridge distributions) and user-related factors (activity index, cross-posting propensity).
We first validate the model predictions against simulations on snapshots of interconnected OSNs in a ref-
erence scenario. Subsequently, we exploit the model to show the impact on the information propagation of
several characteristics of the reference scenario, i.e., size and complexity of the OSI scenario, degree distri-
bution and overall number of bridges, growth and decline of OSNs in time, and time-varying cross-posting
users propensity.

1. INTRODUCTION

Nowadays, online social networks (OSN) have become a key medium for information diffu-
sion and amplification. There are countless daily examples of news, rumors, emotions that
use OSNs to spread and reach a large number of people throughout the whole world.

A fraction of people subscribe to multiple OSNs (we term them as bridges) and represent
the key elements of an online social internetworking scenario (OSI). Bridges have the capa-
bility to cross-post information received from a given OSN to a subset of the other OSNs
they are part of; they actually allow the information to use additional pathways to diffuse
and to reach more users.

Modeling and analysis of information spreading in an OSI scenario are crucial to under-
stand the impact of different system parameters on the diffusion process. Nevertheless, it is
a difficult task because OSNs are numerous, large, heterogeneous, and interconnected. From
the topological point of view, correlations in both the structural characteristics of OSNs and
the bridge interconnections among them pose a difficult challenge to both modeling and
efficient analysis. Moreover, user-related factors such as users activity, and cross-posting
propensity interact with this complex topological scenario thus making the analysis even
harder.

Simulation and/or measurement-based analysis have been carried out but are either very
complex or partial due to the size of each OSN and to the complexity arising from the
bridge-based interconnection of several such complex systems.

Paper contribution

The main contribution of this paper is the development of a tractable mathematical model
for the analysis of information propagation across multiple OSNs. This problem is highly
complex because of many factors: structural heterogeneities of each OSN, bridges that
interconnect them, and heterogeneities associated with users such as their activity patterns,
interests, and propensities.

In particular, we propose a directed generalized random graph-based modeling framework
to study the number of accounts in all OSNs composing the OSI scenario that receive an
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information originating from an OSN. In this case, information travels inside the originating
OSN and crosses OSN boundaries thanks to cross-postings operated by bridges.

To this end, we include the relevant topological feature of each OSN by representing
them as directed generalized random graphs with correlations among nodes degrees; we
also describe the bridge interconnection among OSNs by means of the probabilities a node
belongs to any pair of OSNs that compose the OSI scenario. As far as the user-related factors
are concerned, we consider the information spreading process originating from a randomly
chosen node in a given OSN taking into account users activity, interest, and propensity to
cross-post the information to other OSNs.

All the model parameters are OSN specific therefore heterogeneity of the OSI scenario is
readily included in the model specification. The numerical model solution complexity allows
to consider an OSI scenario composed of several large scale OSNs.

Validation is performed by running simulations on real snapshots of interconnected OSNs
in an OSI scenario [Buccafurri et al. 2013]: we will prove that the model predictions are
reliable and accurate on large scale topologies we obtain through a graph magnification
operation. We successively use the model to investigate the impact of several system pa-
rameters to the size of diffusion of information in a reference OSI scenario. In particular,
we consider the impact of the:

— size and complexity of the OSI scenario,

— degree distribution and overall number of bridges,
— growth and decline of OSNs in time, and

— time-varying cross-posting users propensity.

We observed interesting relationships between degree distribution and overall number of
bridges on the actual information propagation as well as non-monotonic behavior when
popularity of OSNs evolves in time.

The paper is organized as follows: Section 2 describes our system and formalizes all
relevant concepts, Section 3 presents the mathematical derivation of the generalized random
graph model we developed, Section 4 contains model validation through simulation, as
well as model exploitation, Section 5 discusses related works, and in Section 6, we draw
conclusions and outline ongoing activities that extend the current work.

2. SYSTEM DESCRIPTION

In this section we set up the terminology and notation we adopt to describe and formalize the
topological organization of the OSI scenario we consider; we then illustrate the information
spreading process and the user-related factors we include in our modeling and analysis.

2.1. OSI topological organization

The OSI scenario we consider is composed of a set of X OSNs. Users may subscribe to a
subset of them; we denote a user who subscribed to multiple OSNs as a bridge while we
denote a user who owns only one account in only one OSN as an 4sland. In the following,
we denote as X the index set X = {1,2,..., X} and we use lowercase letters z, y, and w to
identify OSNs in X.

We consider users that subscribe to an OSN and create one account; for the sake of
simplicity, we assume a user creates only one account in a given OSN. Users establish
contacts between their account and others in the OSN (outgoing contacts); contacts from
other accounts are termed as incoming contacts. Then, Vx € X we denote as d, a pair
of nonnegative integers d, = (iy,0,) to represent that an account in OSN z has i, (o)
incoming (outgoing) contacts from (to) other accounts; we term d, as the account degree
and iy (0;) as the in-degree (out-degree).

The interconnection among OSNs is realized by means of bridges co-located in multiple
OSNs. Bridges represent only a fraction of the whole set of accounts in an OSN; the inter-
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connection strength depends on the fraction of accounts in each pair of OSNs in X as well
as on the bridges degree in both.

2.1.1. Formalization. We describe each OSN in X as a directed generalized random graph
[Avrachenkov et al. |; its topology is described by the degree distribution {p(dy)} that
represents a partition of accounts in OSN x that is based on the number of contacts they
have.

Unfortunately, degree distribution is not enough to account for the many existing correla-
tions in the OSN topologies, e.g., [Mislove et al. 2007; Krishnamurthy et al. 2008; Cha et al.
]. To this end, we complement the topology description of OSN z by considering probability
distribution {p(d|d;)}, i.e., the probability that a randomly chosen degree d, account has
an outgoing contact pointing to a degree d! account.

The formalization of the interconnection among OSNs is realized by the concept of
strength between any pair of OSNs. Formally, Vz,y € X such that * # y, we denote
the strength of the connection of OSN z towards OSN y through d, and d, degree accounts
as b(dy,dy), that is, the joint probability that a randomly chosen account in OSN z has
degree d, and it is at the same time a degree d, account in OSN y. Please note that:

— strength is not a symmetrical concept therefore, in general, b(ds, dy) # b(dy, dz);
— strength of connection between OSN z and itself is clearly b(d,,d,) = p(dy) if d; = d,
and 0 otherwise.

2.2. Information propagation process

We focus on an information originating from a randomly chosen account in OSN z; we
denote this triggering account as the information origin. We consider diffusion occurring
thanks to forwarding actions taken by accounts to share information with their outgoing
contacts. To this end, both the origin and an intermediate account select outgoing contacts
to forward them the information. Actual selection of outgoing contacts depends on many
parameters; in the following we describe what we believe are the most influential.

— Information content: users forward information if they are interested in the content
[Liu et al. ; Wen et al. 2015]. Interest is also an OSN-specific concept, e.g., gossip news
could be of little interest to Linkedin users.

— Information age: previous works, e.g., [Ye and Wu 2010; Cha et al. 2008] suggest that
users forward information with a propensity that is a function of the information age and
it is also content specific.

— Forwarding mechanism offered by OSNs: the forwarding mechanism is OSN depen-
dent. For instance, in Twitter tweets and re-tweets are meant to be received by all outgoing
contacts of a forwarding account while Facebook allows one to define subsets of contacts
to be included in the information sharing. Also in this case, interest in information might
have an impact on the size of the subset of contacts with whom to share the information.

Another important issue in the diffusion of an information is related to users activity
[Rejaie et al. 2010; Torkjazi et al. 2009; Liu et al. 2013; Ribeiro 2014]. Indeed, all the
forwarding actions we previously described can be taken only by active users, i.e., users
who access their account and carry on activities on it.

Finally, in an OSI scenario information can cross the OSN boundaries and diffuse in
an OSN other than the originating one thanks to bridges who cross-post the information
[Reza Farahbakhsh and Crespi 2015; Ottoni et al. ]. Indeed, the process of switching OSN
while sharing information is becoming a basic functionality provided by many platforms
and OSN aggregators. Nevertheless, some bridges might operate without the aid of these
facilitating tools, e.g., tools which enables users to connect to multiple OSNs with a single
authentication, therefore might be less prone to forward the information.
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2.2.1. Formalization. We abstract the complex process of selection of outgoing contacts
to share the information with by assuming that accounts either forward or discard the
information based on the result of flipping a coin whose weight is OSN-specific, degree-
dependent, and age-dependent [Gonzdlez et al. |. In particular, a degree d,, account in OSN
x € X forwards the information to a random subset of its outgoing contacts in the same

OSN with probability féi) (that we denote as the forwarding probability) where t is the
information age, i.e., the number of forwarding steps taken starting from the origin. With

probability 1 — f o(li) the information is discarded, i.e., it is forwarded to 0 outgoing contacts.

If accounts forward the information to their outgoing contacts then information forward-
ing is probabilistically carried out to a random subset of them. To this end, we model this
process as accounts flipping a coin before sending or forwarding the information to an outgo-
ing contact. Also in this case, the weight of this coin is OSN-specific, degree-dependent, and

age-dependent. In particular, a degree d, account in OSN z € X forwards the information
to one of its outgoing contacts in the same OSN with probability qc(li) (that we denote as the

contact selection probability). Please note that both { flgi)} and {qg;)} are not probability
distributions.

We represent activity of users of OSN z as the fraction of active accounts over the total
number of accounts. We allow this probability to be degree-dependent [Gonzalez et al. | and
we denote it as ag,. Here we do not further detail if activity is defined as the daily active
users or the monthly active users; the use of one activity index with respect to the other
would only affect the actual values of g, used for analysis.

To represent information cross-posting, we define crossing propensity 34,4, i-e., the
probability that a degree d, account in OSN z takes a forwarding action for the information
using his/her account in OSN y wherein the degree is d,. Crossing propensity can also be
interpreted as an indirect measure of how easily the forwarding action can be taken in an
OSI scenario. Please note that (4, 4, needs not to be symmetric, i.e., 84,4, # Bd,.d,, and
that in the same OSN zx propensity is maximum, i.e., Vd,, d. B, .4, = 1. Lastly, please note
that crossing propensities do not form a probability distribution. To ease reading, all the
paper notation is summarized in Table I.

3. SYSTEM MODEL

In this section we present the generalized random graph-based modeling to represent in-
formation propagation in an OSI scenario. In Section 3.1 we derive the mean number of
contacts that are potentially reachable from the origin through the OSN networks. We then
proceed with the derivation of the mean number of actual contacts receiving the information
in Section 3.2.

3.1. Potential propagation

The network of accounts and contacts among them in OSN z is represented as a directed,
generalized random graph [Newman et al. 2001] whose topological characteristics are rep-
resented by the degree distribution {p(d,)} and by the probability that a randomly chosen
degree d, account has an outgoing contact pointing to a degree d!. account {p(d.|d,)}.

To characterize the mean number of contacts up to distance ¢ that can potentially receive
the information, we start by considering a randomly chosen degree d,, = (i, 0,) account in

OSN z; Equation 1 describes cgli)ﬁ o that is the mean number of degree d, contacts t hops

away in the same OSN that receive the information. It is a recursive definition that is based
on the main assumption that the network of contacts is locally tree-like!.

L Actual networks of contacts are not tree-like but in Section 4 we show that for small-to-moderate values
of t the model predictions are in agreement with simulations hence making this assumption acceptable.
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Table I. Paper notation

Parameter Description
X Number of interconnected OSNs.
X Set of indexes to identify OSNs.
Topology parameters
dg Joint in-out degree of a randomly chosen account in OSN .
p(dz) Fraction of degree d; accounts.
p(dl|ds) Probability that a randomly chosen degree d; account has an outgoing arc pointing to a

degree d!, account.
b(dz, dy) Joint probability that a randomly chosen account in OSN x has degree d, and it is also a
degree dy account in OSN y.

User-related parameters

f (i) Probability a degree d; account in OSN z forwards the information whose age is t.

(®)

a,, Probability a degree d; account in OSN =z selects a contact to forward the information
whose age is t.

aq, Fraction of active degree d; accounts in OSN z.
6dz,dy Probability that a degree d, user in OSN x takes a forwarding action for the information
using his/her account in OSN y wherein degree is d.
Model description
c((;) & Mean number of degree d/;, contacts ¢ hops away that can potentially receive the information
e originating from a randomly chosen degree d; account in OSN z.
T’l(ii) dy Mean number of degree d,, contacts in OSN y that are ¢ hops away and that can potentially

receive the information originating from a randomly chosen degree d,; account in OSN z.

The base case for t = 1 represents the sum of 0, i.i.d. Bernoulli variables whose parameter
is equal to p(d,|d,), i.e., the probability that a randomly chosen degree d, account has an
outgoing arc pointing to a degree d/, account.

oz - p(d..|dy) t=1

t  _ _

Capt, =\ D ) ey t>1 (1)
a7

To consider diffusion in other OSNs, i.e., to generalize Equation 1 to the OSI scenario,
we assume we randomly select a degree d, account that is an island in OSN z. Equation

2 defines r;i) dy that describes the mean number of contacts ¢t steps away whose degree is

equal to d, in OSN y that can potentially receive the information. For ¢t = 1 the mean

number of contacts in OSN y is equal to cg;) dy if x =y and it is equal to 0 otherwise since

we are focusing on an island (the symbol ¢, , denotes the Kronecker delta).
For larger values of ¢ we must account for the number of contacts in OSN w whose degree

is d,, after t — 1 steps. A fraction of such contacts is a bridge towards OSN y whose degree

is equal to d; (this fraction is given by the ratio %’d)y)); the contacts potentially reachable

in one step whose degree is equal to d, are then considered by the function composition.
The overall number is then described by summing over all possible values of w, d,,, and d;.

(5w7yc£l?7dy t=1

O 1y b(dy,d!

Ty, = r&i;l(T;)c;gdy £>1 (2)
weX Pllw
du,d,
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Please note that Equation 2 simplifies to Equation 1 when X = 1 since in this case we
have that b(d,dy) = p(d;) when z and y coincide and 0 otherwise.

The overall number of potentially reachable contacts from a degree d, account that are
t hops away can be obtained by summing all contributions from Equation 2 yielding

e =3, 3)

yeX

dy
We now relax the assumption that the information origin is an island in OSN z and we con-
sider the contribution the origin can give to cross OSN boundaries since the very beginning
of the diffusion process. To this end, we complete the description of the potential number
of reachable contacts of a degree d, account that are ¢ hops away as the weighted sum of
contributions from Equation 3, i.e.,

RY =" b(dy,dy)rly). (4)
ng

The final step of our model development allows one to derive the overall mean potential
number of contacts up to a maximum distance 7" receiving the information originating from
any account in OSN z. To this end, we define Equation 5 that is obtained by combining all
contributions from Equation 4 yielding

T

Bor = p(d) Y R (5)
de

t=1

The p, r value represents the mean overall number of contacts in the OSI scenario that can
structurally receive the information that spreads through the contact relationships among
accounts.

3.2. Actual propagation

In the previous section we derived the mean number of contacts that can potentially re-
ceive the information originating from a random account in OSN z by properly combining
instances of Equation 2. Equation 6 is a refinement of Equation 2 that describes the mean
number of contacts t steps away in OSN y that actually receive the information originating
from a degree d, account in OSN z.

0) (0
Guy a0 t=1
(t) _ - - w,d! b dwad/ -
002 S g ) Pl ) oy g (6)
weX p(dw) ! !
du,d,

To derive it we considered the:

— forwarding mechanism inside a OSN. We used the forwarding probabilities { flgi)} to rep-
resent the possibility accounts discard the information and contact selection probabilities

{qc(li)} to represent a random selection of neighbors of forwarding accounts that will actu-

ally receive the information. Contact selection probability qy) can be understood as the

fraction of contacts of a degree d, account that will receive the information whose age is
t where ages are represented as the number of hops from the information origin.

— users activity index. To account for the activity index of users we observe that forwarding
takes place only when accounts are actually used therefore:
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— forwarding occurs only if a degree d,, account in OSN w is active (the probability of
this event is equal to g, );

— with the complementary probability 1 — a4, the number contacts receiving the infor-
mation is equal to zero.

— cross-posting propensity. Information can cross the OSN boundaries only if two condi-

tions occur: a user is a bridge (this is represented by the probability b(;&df)) and a user

decides to forward the information to outgoing contacts of his/her account in another
OSN. This latter condition is represented in Equation 6 by the crossing propensity ﬁdw)d;,
i.e., the probability that a degree d,, account in OSN w takes a forwarding action for the
information using his/her account in OSN y wherein the degree is d;.

Please note that Equation 6 simplifies to Equation 2 when Vz,y € X,Vd;,d,,t : q((;;) =

t
féz) = aq, = Bd, a4, = 1.

The overall mean number of actually reachable contacts from a degree d, account that
are t hops away can be obtained by summing all contributions from Equation 6 yielding

ag) = > ag (7)
yeX
dy
Since a degree d, account (the information origin) can be a bridge we must take into
account the contribution the origin can give to cross OSN boundaries since the beginning
of the diffusion process. To this end, we complete the description of the actual number of
reachable contacts of a degree d, account that are ¢ hops away as the weighted sum of
contributions from Equation 7, i.e.,

Al(ztm) = Z b(dx,dy)ﬁdz,dyaé?, (8)
ng

The final step of our model development is the definition of the overall actual number
of contacts up to a maximum distance T receiving the information originating from any
account in OSN z. To this end, we define Equation 9 that is obtained by combining all
contributions from Equation 8 yielding

G =Y plds) Y AY 9)
dy

t=1

3.3. Information propagation efficiency

The model analysis requires the definition of some measures to quantify the impact of the
OSI parameters on the efficiency of information propagation. To this end, from Equations
5 and 9 we consider the information propagation efficiency as the ratio

Sx, T = = —. 10
pz,T ( )

This index is actually the relative size of the information propagation and represents a
measure of efficiency; the values of s, r are in the range [0,1] where s, r = 1 means all
accounts potentially reachable from the information origin have actually received it.

4. RESULTS

The following section presents a discussion on important issues in model validation as well
as the real-world data we exploited to derive the model parameters that define our ref-
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Table Il. Snapshots relevant statistics

OSN Size Number of bridges between OSN pairs
YouTube | LiveJournal | MySpace | Twitter | Google+
YouTube 209,851 NA 23 142 104 319
LiveJournal 147,100 23 NA 27 84 135
MySpace 1,362,128 142 27 NA 100 59
Twitter 1,378,470 104 84 100 NA 1,264
Google+ 425,775 319 135 59 1,264 NA

erence scenario. Finally, we discuss some examples of model exploitation to gain a better
understanding on which factors influence information spreading in an OSI scenario.

4.1. Issues in model validation

Model validation should consider two features: realism and correctness. As for the model
realism, ideally validation should be conducted by mining real-world data to obtain values
for the topology of each OSN, the bridge interconnection among them, as well as the user-
related parameters. Furthermore, once fed to the model solution algorithm, the predicted
information propagation should be compared to the propagation actually observed in real-
world data. To fully characterize the model realism this kind of real-world data should be
collected for different types of information since, as discussed in Section 2.2, information
content is one of the most influential parameters in final information diffusion.

Unfortunately, to the best of our knowledge, logs of information cascades over a set of
interconnected OSNs are not available due to the inherent complexity of tracking down si-
multaneous spreading over multiple media of an information whose format may adapt to the
OSN (we actually believe this is still an open problem in OSN analysis and measurement).
Indeed, most of the publicly accessible data are either information cascades on a single
OSN, or snapshots of contact networks of an isolated OSN, or bridge information (without
internal OSN structure) in an OSI scenario. This is not surprising since simultaneously
collecting all these information by means of crawlers is difficult and time consuming.

Nevertheless, data collected in [Buccafurri et al. 2013] can be exploited to derive all
topology-related parameters for our model validation. This leaves us with an arbitrary
choice for the user-related parameters; although model realism is reduced we are still able
to evaluate our model correctness in closer to reality scenarios. Once correctness is ascer-
tained, our model predictions can be exploited to perform a what-if analysis to gain a better
understanding on which factors influence information spreading in an OSI scenario.

Model validation (correctness) is carried out by means of simulations run on the OSI
scenario taken from [Buccafurri et al. 2013] and composed of a set of OSN snapshots as well
as their bridge interconnections. Validation through comparison against simulation results
is the common and inevitable choice of all previous works, e.g., [Li et al. 2015; Yagan et al.
2013].

4.2. Dataset description

Validation of our model relies on the availability of real snapshots of OSN topologies and
their bridge interactions to run simulations on them: data collected in [Buccafurri et al.
2013] include both information required for our model validation. In that paper, the authors
crawled five OSNs, namely Twitter, YouTube, MySpace, LiveJournal, and Google+. They
experimented with several techniques to also crawl the bridge interconnection among OSNs
and reported results on the distribution of bridges. In particular, the log files? after a bit
of post-processing provide the possibility to extract all model parameters related to OSN
topologies and bridges distribution as defined in Section 2.

2available at http://www.ursino.unirc.it/bridges.html
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Table Ill. Parameters of the reference scenario
Cross-posting propensities [z,
OSN fe = A YouTube | LiveJournal | MySpace Twitﬁ:or Google+

YouTube 0.5 0.75 0.5 1 0.25 0.5 1 1
LiveJournal | 0.25 0.5 0.25 0.25 1 0.5 1 1

MySpace 0.5 0.5 0.5 0.5 0.5 1 1 1

Twitter 0.75 1 0.75 0.25 0.25 0.25 1 0.5

Google+ 0.75 1 0.75 0.25 0.25 0.25 0.5 1

Table IT shows the size of each snapshot as well as the number of bridges between each pair
of OSNs. Since the analysis in [Buccafurri et al. 2013] focused on the distribution of bridges
little attention has been paid to coverage of each OSN. As a consequence, the snapshots
representing the considered OSNs are small; indeed, it is well known that graph size does
affect the computation of the average overall number of nodes reachable from a randomly
chosen vertex up to distance T. For instance, in the case of entirely random undirected
graphs with arbitrary degree distribution one can express this quantity as 1 —i—ZtT:l z¢ where
Zy = 21 (z—f)t_l, and where z; and z9 are the average numbers of first and second-nearest
neighbors, respectively (Section ILF in [Newman et al. 2001]). Of course, this formula holds
only when this quantity is not close (or does not exceed) the considered graph size. In the
case of directed, correlated, and interconnected graphs considered in this paper, formulas
are more complex (Equations 1-5) but the effect of graph finite (and small) sizes is similar.
The OSN graphs used for the model validation are small meaning that their size and degree
distributions are such that the equations developed in Section 3 are valid only for very small
values of T', i.e., T=2,3.

To cope with the limited size of the snapshots we devised a graph magnification operation
(specified by Algorithm 1 in the paper Appendix that increases the size of the graph (the
number of nodes) by the magnification factor k. It works by creating k replicas of each
node in the original graph; these replica compose the set of nodes V. For each node in Vj
the same in/out degree is set. After that, each arc of the original graph is analyzed and
k replicas are added to Ej that randomly connect nodes in V), with identical degrees. It
can be easily observed that the operation implemented by Algorithm 1 preserves all the
topological characteristics of the original OSN contact networks that have been exploited in
the model development, i.e., p(d,.) and p(d,|d,), while yielding arbitrarily larger graphs. A
similar replication approach is carried out for magnifying the number of bridges to preserve
the original b(d,,d,) probabilities.

4.3. Reference scenario

The dataset we use allows us to define all the model input parameters related to the OSI
topology (see Table I); these parameters are those required to compute the values of Equa-
tion 5. To compute values of Equation 9 we also need to define values for user-related model
parameters. To this end, we defined a reference scenario whose settings are summarized in

Table III. We arbitrarily assigned values to féi), qfli), aq,, and Bq, 4,; to simplify the analysis

and the management of model parameters we chose to drop dependencies on both account
degrees and information age except for the forwarding probability of origins that is always

equal to 1, i.e., Vo € X Vd,, fég) = 1. Nevertheless, we retained system heterogeneity in the
definition of all model parameters.
In particular, we assumed that:

— information interest is low in LiveJournal, medium in YouTube and MySpace, and high
in Twitter and Google+ (column f, of Table III represents forwarding probabilities);
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— the size of the outgoing contacts receiving the information is low in both LiveJournal and
MySpace, medium in YouTube, and maximum in both Twitter and Google+ (column g,
of Table III represents contact selection probabilities);

— user activity in LiveJournal is low while it is medium in YouTube and MySpace, and high
for Twitter and Google+ (column «, of Table III represents user activity).

As for the cross-posting propensities, we chose to tightly couple all OSNs to both Twitter
and Google+ and to loosely couple all other OSN pairs. Clearly, within OSN z propensity
is maximum, i.e., 83, = 1.

Although we defined all parameters for all five OSNs, our reference scenario includes only
YouTube, LiveJournal, and Twitter (model parameter X = 3); furthermore, the maximum
age of information (parameter T in Equations 5 and 9) is set to three hops from the origin.
These choices have been forced by the high computational complexity of simulations required
for validation. Indeed, simulations were feasible for large magnification factors only for
subsets of three out of five OSNs and for rather small values of T. Please note that the
complexity of the model solution from parameter T is linear while it is exponential for
simulations.

4.4. Model validation

We developed a simulator to represent information propagation on OSN snapshots obtained
from [Buccafurri et al. 2013] up to a maximum information age T'. To this end, the simulator
activity is organized as follows:

— magnification of OSN snapshots using a magnification factor k;

— allocation and initialization of data structures representing X OSNs and bridge relation-
ships among them;

— reproduction of the information propagation from each account n of each OSN x. This
activity is simulated by considering the starting account n as the root of a probabilistic
breadth-first visit of the interconnected OSNs whose depth is equal to 7. At the t** step
of the visit a degree d, account in OSN z decides to forward or to drop the information

according to its activity aq4, and to the forwarding probabilities féi). Furthermore, if the

account propagates the information it does so by using contact selection probability qétz)

to select receiving outgoing contacts. Finally, if the account is also a bridge towards a
degree d, account in OSN y then propensity B4, 4, is used to decide to cross-post the
information to OSN y.

Each information propagation operation records the overall number of contacts that received
the information. The average of this quantity is computed for each OSN x and is denoted as
Gy 7. The simulations are run in 30 independent trials to compute 95% confidence intervals
to be compared against Equation 9 computed using as inputs distributions p(d,), p(d.|d..),
and b(d,, d,) measured from snapshots in [Buccafurri et al. 2013].

Validation has been carried out in two cases:

— first, by setting all user-related parameters of our model ({ fcgi)}, {aq, }, {qfli)}, and
{Bad,.a,}) to 1 to compare p, 4 against Equation 5 (p,, 7);

— then, by using parameters that define our reference scenario (summarized in Table III) to
compare a, 7 against Equation 9 (G 7).

Figure 1 depicts the absolute relative error (defined as |%|) between the predic-

tions of our model and the same quantities estimated from simulations in the OSI reference
scenario composed of YouTube, LiveJournal, and Twitter (other subsets of OSNs provided
similar results). It can be noted that simulation results and model predictions are in excel-
lent agreement for the three OSNs we chose as the snapshot size increases. This confirms
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Fig. 1. Model predictions relative error for increasing values of graph magnification factor k.
Table IV. Average actual number of contacts and information efficiency for increasing complexity of the OSI scenario
OSN ‘ YouTube | LiveJournal | Twitter | all three [[ three + MySpace | four + Google+ |
YouTube 3.24/0.132 3.26,/0.088 28.40/0.278 28.57/0.237 85.36,/0.006 21,638.54/0.260
LiveJournal 7.78/0.002 7.78/0.002 78.40/0.015 78.41/0.015 101.64/0.009 1,620.20/0.091
Twitter 5,131.65/0.329 | 5,132.97/0.328 | 5,131.38/0.329 5,133.24/0.328 5,140.67/0.270 9,686.67/0.201

that our model is well suited for large scale OSNs and is accurate enough to provide trustful
predictions on the characterization of information propagation in complex OSI scenarios.
The paper Appendix further discusses how the graph magnification affects structural prop-
erties other than degree distribution and degree correlations, and how the network size itself
affects the accuracy of model predictions.

Please note that we limited our simulations to only subsets of three out of five available
OSNs, i.e., X = 3, for managing computational complexity of simulations: indeed, only
one simulation experiment for magnification factor k£ = 20 took an average of 5,400s while
the model solution required only 135s on the same computer. Since the time complexity of
simulations is exponential with 7" and X this means that experiments for larger scenarios
take days of CPU time to complete.

4.5. Model exploitation

This section shows how to exploit the model predictions to gain a better understanding on
which factors influence information spreading in an OSI scenario.

4.5.1. Information propagation in isolated OSNs. Here we take a closer look to the model pre-
dictions whose accuracy with respect to simulations we discussed in the previous section. To
this end, Table IV shows the impact of the complexity of the OSI scenario on the average
overall number of actual contacts that received the information (@, r in Equation 9) and
the information efficiency (s, 1 in Equation 10). Gray-shaded cells in the first three columns
refer to an OSN in isolation and from them it can be noted that information spreads very
little and rather inefficiently on both YouTube and LiveJournal but for different reasons:

— for YouTube, this is due to the topological characteristics of this OSN as captured by
the snapshots we used; indeed, the average overall number of potential contacts can be

obtained from Equation 10 as (p, 1 = f’”—;) and it is equal to only 24.63 for YouTube;

— for LiveJournal, p;; = 3,204.86 (a much higher value) but information spreads very little
because of the particularly low values we used for fi;, aq;, and g;; in the reference scenario
described in Table III.
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On the contrary, Twitter has both large values of p,,, r = 15,574.85 and displays high
information efficiency thanks to high values for fy, = a4, = 0.75 and to the broadcast
nature of tweets represented by ¢z, = 1.

4.5.2. Information propagation in OSN pairs. Table IV also shows how information spreads
when an OSN is part of a more complex OSI scenario. In particular:

— propagation of information originating in YouTube (first row) is virtually unaffected by
the coupling with LiveJournal. About 90% of the bridges from YouTube to LiveJournal
have at least one outgoing contact in LiveJournal (average number of outgoing contacts
is equal to 185.261) but have low crossing propensity (f3a,,,q4,; is only 0.25 in the reference
scenario); furthermore, analysis of information propagation in LiveJournal in isolation
highlighted the limiting effect of the values of fi;, a;;, and ¢q;; we chose in the refer-
ence scenario. Coupling with Twitter shows limited benefit for information originating in
YouTube despite the high value of p,,, ;- observed for Twitter in isolation. Indeed, this can
be explained by noting that about 75% of the bridges from YouTube to Twitter have 0
outgoing contacts in Twitter although the average number of outgoing contacts in Twitter
was equal to 400.472 in the snapshots we considered;

— information originating in LiveJournal cannot use YouTube as a mean to reach more con-
tacts since bridges from LiveJournal to YouTube all have 0 outgoing contacts in YouTube
in the snapshots we consider: the final effect is that information cross-posted from Live-
Journal to YouTube does not spread any further in this additional OSN. Moreover, also in
this case coupling with Twitter shows limited benefit for information propagation: indeed,
about 65% of the bridges from LiveJournal to Twitter have 0 outgoing contacts in Twitter
although the average number of outgoing contacts in Twitter was equal to 215.69;

— when information originates in Twitter it gains no benefit from interconnecting to either
OSNs despite the non-zero connectivity of bridges from Twitter to YouTube (about 75%
of bridges in YouTube have at least one outgoing contact and the average is equal to
112.245) and from Twitter to LiveJournal (almost all bridges in LiveJournal have at least
one outgoing contact and the average is equal to 347.214); in this case, the limiting factor
is the rather small cross-posting propensity in our reference scenario of Twitter bridges
toward both YouTube and LiveJournal, i.e., Bty yo = Brw,i; = 0.25.

4.5.3. Impact of the OSl size. The shaded column in Table IV shows the information prop-
agation size in the complete reference scenario composed of YouTube, LiveJournal, and
Twitter. It can be noted that results are (slightly) greater than the isolated and pair cases
with results that are very close to those obtained by the interaction with Twitter only. Of
course, the explanation we provided to justify results in the OSN pairs case hold in the
complete scenario as well.

Table IV is completed with the last columns where MySpace and Google+ are also in-
cluded in the model analysis. It can be noted that all three reference OSNs observe a marked
increase in the values of @, r since Google+ is by far the OSN with the largest value of
a, 7 and all other OSNs have maximum propensity to cross-post the information towards
it, i.e., the values of j3, 4, are equal to 1 for almost all OSNs. Furthermore, bridges from all
OSNs to Google+ have often non-zero outgoing contacts in Google+ in the snapshots we
considered.

4.5.4. Impact of bridge degree correlations. In the previous section we observed the key role of
bridges in propagating the information in an OSI scenario. In this section we further analyze
their role by first evaluating the values of @, r in two cases: first, we add new bridges to
the reference scenario and then we modify the degree distribution of the existing ones.

— For the first part of this analysis we add b,qq new bridges to each subset of the X snapshots
we consider. We choose accounts in each OSN such that their out-degree is equal to dyqq4
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Fig. 2. Average number of accounts receiving the information (@, ) as a function of the number of addi-
tional bridges (bgdq)-

Table V. Average actual number of contacts and information effi-
ciency for increasing bridge degrees

\ OSN ] all three | dpmin =10 [ dpmin = 100 |
YouTube 28.57/0.237 149.77/0.212 271.17/0.238

LiveJournal| 78.41/0.015 100.79/0.020 809.74/0.047
Twitter 5,133.24/0.328 | 5,143.12/0.322| 5,151.52/0.313

connections to tune overall bridge connectivity. We then compute probabilities b(dg, dy)
to solve our model. Please note, that this transformation affects the distribution of bridges
between OSNs and does not preserve the total fraction of contacts in each OSN that is a
bridge, i.e., Vx,y € X, de,dy b(dg,dy).

Figure 2 shows the values of @, r for increasing values of b,qq and for different values of
dadq- It can be noted that information propagation linearly increases as the number and
out-degree of additional bridges increases. This phenomenon is marked for YouTube and
LiveJournal while it is marginal for Twitter that, with the range of values we considered,
almost does not benefit from interconnection to other OSNs.

— In the previous section, we observed that low out-degree bridges in one OSN limit the ac-
tual diffusion of information in the reference OSI scenario. To better understand the effect
of this limitation we modify the b(d,, dy) probabilities as follows: for each bridge between
OSNs z and y in the original snapshots we select two randomly chosen contacts (one in
each OSN) such that the in-degree and the out-degree of both exceeds a given threshold
dpmin. Starting from the modified snapshots we compute the new b(d,, d,) probabilities to
solve our model and compute @, r and s; 7 for all OSNs. Please note that this transforma-
tion only affects the distribution of bridges between OSNs but preserves the total fraction
of contacts in each OSN that is a bridge, i.e., Va,y € X, Zd,,dy b(d, dy) is unchanged.

Table V shows results for the original scenario (the gray shaded column is taken from
Table IV to ease comparison) and the results obtained for increasing values of the de-
gree threshold dymin. It can be noted that information originating in both YouTube and
LiveJournal propagates now to a larger number of contacts as the degree of their mutual
bridges increases. In particular, information originating in LiveJournal can now reach an
increased number of contacts in YouTube; moreover, despite the low cross-posting propen-
sity of YouTube bridges toward LiveJournal it is now possible for information originating
in YouTube to reach a larger number of LiveJournal contacts. Diffusion of information
originating in Twitter is only slightly affected because cross-posting propensity remains
low in the reference scenario while degree of bridges in the original snapshots was already
high: the average number of outgoing contacts of bridges towards YouTube was equal to
112.245 and it was equal to 347.214 for bridges towards LiveJournal.
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Fig. 3. Time-dependent users activity.

We also plotted the values of Table V in the graphs of Figure 2. For YouTube, we note
that adding 80 new bridges whose out-degree is equal to 20 is as effective as considering
existing bridges with minimum degree dp,,;, = 10. It takes a lot more bridges to obtain
the same effect when dp,,;,, = 100. It can also be noted that for LiveJournal and Twitter
increasing the degree of existing bridges is much more effective than adding new low degree
bridges to obtain a higher number of accounts that receive the information.

4.5.5. Impact of OSN evolution. In this section we consider the growth and decline of OSNs
in time and analyze how the information propagation can be affected by these phenomena.
We consider the scenario where bridge degrees exceed dpp;n = 100 and we represent time-
dependent OSN growth and decline by increasing (decreasing, respectively) the fraction of
active users in each OSN. We let user activities depend on time where we denote as a/(t)
the time-varying parameter for users in OSN z. To represent the temporal evolution of
user activities we assume Twitter is declining in time while Youtube and LiveJournal enjoy
explosive growth; we refer to [Ribeiro 2014] and we set all time dependencies as exponential
laws of the kind

- k;nam
T Tt R

In this case, function g, (t) represents ay(t) where parameter £2'®* is equal to a*** (the
asymptotic value for «,(t)); parameter h, is set to start at time 0 with a,(t) = «, as
defined in the reference scenario (Table IIT) and to asymptotically reach a**® for increasing
user activities and 1 — a;'*® for decreasing activities (we consider ayy™® = ;7" = 1 and
1—a*** =0.4,0.5,0.6). Figure 3 displays the time evolution we consider for 1 —aj** = 0.5.

Figure 4 shows that for YouTube and Twitter the decaying activity of Twitter users has a
negative impact on the number of contacts reached by the information originating in them.
The larger the decay the lower the number of informed accounts. We already observed that
information originating in Twitter actually propagates mostly inside it therefore it is rather
straightforward to observe a reduction in the values of @, 7. For YouTube, the increase of
the number of internal accounts reached thanks to OSN growth is counterbalanced by the
more marked decrease of Twitter accounts receiving the information.

For LiveJournal the phenomenon is a little less intuitive, instead. On one hand, the
number of contacts inside LiveJournal that receive the information increases thanks to the
time increasing «;;(t); on the other hand, the number of Twitter accounts receiving the

information from it decreases. Depending on the intensity of decaying, i.e., the values of

9z (1) (11)

1 — o}, the two contributions either balance or dominate each other. When decaying is
marked (1 — af2*® = 0.4) LiveJournal information spreads less in time while for lighter
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Fig. 4. Model predictions (@, ) for OSN evolution in time.
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Fig. 5. Model predictions (@, 1) for time-dependent cross-posting propensities and user activities for 1 —
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decaying (1 — a’** = 0.6) propagation increases. The intermediate case (1 — a2 = 0.5)
displays a non-monotonic time behavior where the initial evolution leads to a decrease of
@i, while as time passes by the average overall number of reached contacts starts to

increase again.

4.5.6. Impact of cross-posting propensity. In this section we consider how the cross-posting
propensity of OSN users [Reza Farahbakhsh and Crespi 2015; Ottoni et al. | affects the
efficiency of information propagation. To this end, we again inspire to [Ribeiro 2014] to set
the values of 8, , parameters of our model. In particular, we consider the reference scenario
where all cross-posting propensities lesser than 1 evolve in time following an exponential law
as in Equation 11; in this case, function g,(t) represents 3, ,(¢) where parameter kJ'** is
equal to 1 for all cases of the reference scenario (Table III) where £, values are lesser than 1,
i.e., Byo,ijs Bij.yor Biw,yo, and Biw,1;. Parameter hy is set to start at time 0 with 5, ,(t) = Bz,y
as defined in the reference scenario and to asymptotically reach ﬁg}v‘ﬁy. Figure 5 shows that
increasing cross-posting propensities has a limited impact on the diffusion of information in
the OSI scenario we considered. Indeed, the main forces driving the spread of information
throughout OSNs are both the total fraction of contacts in each OSN that is a bridge, i.e.,
Ve,y e X, do.d, b(dg,d,) and the degree distribution of bridges as already observed.

5. RELATED WORK

Information propagation in a single isolated OSN is well-understood as testified by a large
body of previous work, e.g., [Zhao et al. 2012; Bakshy et al. ; Yang and Leskovec ; Kumar
et al. 2006], and by two recent surveys on this topic [Hu et al. 2015; Guille et al. 2013]. Mod-
eling and analysis of information spreading in multiple OSN is still in its infancy although a
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substantial amount of research has been carried out on the more general and abstract topic
of diffusion processes on multilayer networks [Salehi et al. 2015].

A few papers focused on information spreading in multiple OSNs. In particular, we con-
sider [Li et al. 2015] where the authors propose an information diffusion model on multiplex
networks with two layers composed of the same number of nodes representing the same
group of users. The paper makes a lot of simplifying assumptions to be able to derive
analytical results. It neglects correlations in the OSN topologies and in bridge interconnec-
tions. It does not include any of our user-related model parameters and it does not provide
validation on real snapshots.

A second work we believe is related to ours is [Yagan et al. 2013] where the authors
derive analytical results for a system composed of an overlay and a physical network the
information can use to propagate. The limitations of this work are the same as [Li et al.
2015].

Validation of our model results requires the collection and exploitation of real world
data mined simultaneously from multiple OSNs. This is an arena where several problems
related to concepts definition and measurement approaches can still be considered as open.
Therefore, only partial real world data are available to modelers, i.e., topological information
of the OSI scenario as reported in [Buccafurri et al. 2013]. The authors of [Su 2014] present
a clear picture of the current state-of-the art of studies aiming at mining data on multiple
OSNs.

6. CONCLUSIONS AND FUTURE WORK

The main contribution of this paper is the development of a tractable mathematical model
for the analysis of information propagation across multiple OSNs. This problem is highly
complex because of many factors: structural heterogeneities of each OSN, bridges that
interconnect them, and heterogeneities associated with users such as their activity patterns,
interests, and propensities.

In particular, we provided a directed generalized random graph-based model to analyze
the information propagation in a complex scenario where users may subscribe to multiple
OSNs becoming bridges that can cross-post information to additional accounts. We modeled
the correlations that are often found in the topological characteristics of OSNs as well as
the co-location of bridges in multiple OSNs. We also represented the information diffusion
process by taking into account user interest in information, information age, forwarding
mechanism offered by OSNs, users activity, and cross-posting propensity.

We validated the model predictions against simulations run on real snapshots describing
a complex OSI scenario and found excellent agreement for large scale systems. We also
exploited the model predictions to get insights on the information propagation process as a
function of size and complexity of the OSI scenario, degree distribution of bridges, growth
and decline of OSNs in time, and time-varying cross-posting users propensity. We observed
interesting relationships between degree distribution and overall number of bridges on the
actual information propagation as well as non-monotonic behavior when popularity of OSNs
evolves in time.

The model we developed represents one step forward in the research of information dif-
fusion across multiple OSNs. Some questions remain open and suggest potential directions
for further developments. In particular, the model could be extended to incorporate infor-
mation propagating from multiple originating accounts. This is a difficult problem to cope
with and simple mathematical tools are still lacking.

Any modeling efforts has to face the problem of validating predictions against real mea-
sures. Such validation requires the collection and exploitation of real world data simulta-
neously mined from multiple OSNs. This is an arena where several problems related to
concepts definition and measurement approaches can still be considered as open.
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Efficient algorithms for the numerical model solution are required when the size of the
OSI scenario under investigation grows. This calls for both approximation techniques (to
reduce the computational and storage complexity of the model solution) and ad-hoc parallel
algorithms exploiting available multi-core processors.

Finally, the model could be used to analyze the propagation of malicious information,
e.g., fake news, in a multiple social network scenario with a focus on the dynamic evolution
of both the topological structure of OSNs and their bridge interconnection.
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APPENDIX

The magnification algorithm we informally described in Section 4.2 is completely specified
in Algorithm 1. It can be easily noted that it preserves both topological characteristics of
the original OSN contact networks that have been exploited in the model development, i.e.,
{p(d;)} and {p(d,|d,)}, while yielding arbitrarily larger graphs. The input for the algorithm
is the contact network G = (V, E) as well as the magnification factor k. The output is a
magnified contact network Gy (Vi, Ex).

ALGORITHM 1: Input: G = (V, E), magnification factor k. Output: Gi(Vi, Ex)

Gr=0,E, =0
for all d do
sqa=10
end for
for all v € V do
d = (iv,00)
for j=0tok—1 do
vV =7-V]|+wv

sa=saU{v'}
stubs,r = iy
Gy =Gr U {’U’}
end for
end for
for all (vy,v:) € E do
dy = (ivt7 O’Ut)
for j=0tok—1 do
vp =3 |V +vf
v,=select random node € sgq,
Er=FEpU {(v},vé)}
stubsvé = stubsvé -1
if (stubs,; == 0) then
Sdy = Sdy — {Ué}
end if
end for
end for

There is some resemblance between Algorithm 1 and the work in [Faqgeeh et al. 2015]
where the authors devise a magnification technique (that is called L—cloning) to study
the impact of clustering on dynamical processes running on undirected networks. Figure
6 depicts the clustering coefficient (CC) [Fagiolo 2007] of magnified directed networks we
used in Section 4. It can be noted that Algorithm 1 produces less clustered networks and
it thus transforms the magnified graphs into more tree-like structures. This, in turn, affects
the accuracy of the model predictions when compared to simulation as shown in graphs of
Figure 1 in the paper.

Nevertheless, a lower clustering coefficient is not the only explanation for a higher model
accuracy. Indeed, network size alone is responsible for more accurate model predictions,
independently of CC values. To verify this, we retrieved other snapshots of the same OSNs
we consider in Section 4. We were able to obtain other snapshots for all five OSNs but we
could not process the huge Twitter data from [Kwak et al. 2010] ® and from [Cha et al. 2010]*

3available at http://an.kaist.ac.kr/traces/ WWW2010.html
4available at http://twitter.mpi-sws.org/
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Fig. 6. Clustering coefficient of magnified OSN graphs as a function of magnification factor k.

Table VI. Additional data characteristics

Network Size (NS)

Clustering Coefficient (CC)

OSN this paper / other source this paper / other source Reference (available at)
YouTube 209,851 / 1,157,827 0.005716 / 0.082344 [Mislove et al. 2007]°
LiveJournal 147,100 / 4,847,571 0.085915 / 0.163194 [Biil;iffof o ;11 220085}6
LiveJournal 147,100 / 5,284,457 0.085915 / 0.159267 Mislove et al. 2007}7
Googlet 425,775 ] 211,187 0.156871 / 0.064898 [Fire et al. 20138
MySpace 1,362,128 / 100,000 0.025233 / 0.128688 [Ahn et al. 2007]°

due to the limited available computing and storage resources, i.e., an i7 CPU equipped with
4GB RAM. Table VI shows the network size (NS) and the CC for the cases we considered.

We also explored other values for the user related model parameters besides those defined
for the reference scenario in Table III; to keep things simple, we selected a scenario where
f=¢q=a=pwith p € {0.25,0.375,0.5}. Table VII shows the absolute relative error (RE)
between the model predictions and the simulation results without any magnification and
for each OSN in isolation. It can be noted that:

— for YouTube the larger snapshot is associated with a much larger CC but for some values
of the model parameters, i.e., for p = 0.375, the model predictions are more accurate;
— a similar observation can be made for the two additional snapshots of LiveJournal: their
CC is about twice the one obtained from the snapshots used in this paper but for small
values of p the model predictions are more accurate;
—in the case of Google+, the snapshot used in this paper is larger than the only additional
one it was possible to retrieve. Furthermore, its CC is more than twice the smaller one.
Nevertheless, the RR is lower for all values of p;
— model predictions on MySpace are always more accurate on the larger snapshot (the one
used in this paper) when compared to the accuracy obtained on the additional snapshot
whose size is just 13 times smaller. It should also be noted that the CC of the smaller
snapshot is five times the CC of the larger network.

Please note that we observed similar trends also for f, g, @ values of the reference scenario
as described in Table IIL. In particular, all cases but YouTube (in this case the RR is 2% for
the smaller snapshot and 18% for the larger one) resulted in higher accuracy of the model
predictions when larger snapshots were used to obtain the topology related parameters.

Shttp:/ /socialnetworks.mpi-sws.org/datasets.html
Shttps://snap.stanford.edu/data/soc- LiveJournall.html
Thttp:/ /socialnetworks.mpi-sws.org/datasets.html
8http://proj.ise.bgu.ac.il/sns/googlep.html
9https://an.kaist.ac.kr/traces/ WWW2007.html
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Table VII. Absolute relative error (in %).

OSN this paper / other source | this paper / other source | this paper / other source
f=q=a=0.25 f=q=a=0.375 f=q=a=0.5
YouTube 2/3 7/4 5 /12
LiveJournal 10 / 0.004 0.0001 / 5 6 /17
LiveJournal 10 / 0.003 0.0001 / 5 6 /18
Google+ 0.0007 / 0.02 7/ 10 24 /37
MySpace 2/3 4/24 9 /90

To conclude, the graph magnification algorithm yields network with increased size and
decreased CC: both have an independent effect on the accuracy of the model predictions
when compared to simulations on larger snapshots.
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