34,485 research outputs found

    Characterizing Consensus in the Heard-Of Model

    Get PDF
    The Heard-Of model is a simple and relatively expressive model of distributed computation. Because of this, it has gained a considerable attention of the verification community. We give a characterization of all algorithms solving consensus in a fragment of this model. The fragment is big enough to cover many prominent consensus algorithms. The characterization is purely syntactic: it is expressed in terms of some conditions on the text of the algorithm

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic

    Thecla of Iconium

    Get PDF

    Advancing the remote sensing of precipitation

    Get PDF
    Satellite-based global precipitation data has addressed the limitations of rain gauges and weather radar systems in forecasting applications and for weather and climate studies. Inspite of this ability, a number of issues that require the development of advanced concepts to address key challenges in satellite-based observations of precipitation were identified during the Advanced Concepts Workshop on Remote Sensing of Precipitation at Multiple Scales at the University of California. These include quantification of uncertainties of individual sensors and their propagation into multisensor products warrants a great deal of research. The development of metrics for validation and uncertainty analysis are of great importance. Bias removal, particularly probability distribution function (PDF)-based adjustment, deserves more in-depth research. Development of a near-real-time probabilistic uncertainty model for satellitebased precipitation estimates is highly desirable

    Greedy Gossip with Eavesdropping

    Full text link
    This paper presents greedy gossip with eavesdropping (GGE), a novel randomized gossip algorithm for distributed computation of the average consensus problem. In gossip algorithms, nodes in the network randomly communicate with their neighbors and exchange information iteratively. The algorithms are simple and decentralized, making them attractive for wireless network applications. In general, gossip algorithms are robust to unreliable wireless conditions and time varying network topologies. In this paper we introduce GGE and demonstrate that greedy updates lead to rapid convergence. We do not require nodes to have any location information. Instead, greedy updates are made possible by exploiting the broadcast nature of wireless communications. During the operation of GGE, when a node decides to gossip, instead of choosing one of its neighbors at random, it makes a greedy selection, choosing the node which has the value most different from its own. In order to make this selection, nodes need to know their neighbors' values. Therefore, we assume that all transmissions are wireless broadcasts and nodes keep track of their neighbors' values by eavesdropping on their communications. We show that the convergence of GGE is guaranteed for connected network topologies. We also study the rates of convergence and illustrate, through theoretical bounds and numerical simulations, that GGE consistently outperforms randomized gossip and performs comparably to geographic gossip on moderate-sized random geometric graph topologies.Comment: 25 pages, 7 figure

    A computer scientist looks at game theory

    Full text link
    I consider issues in distributed computation that should be of relevance to game theory. In particular, I focus on (a) representing knowledge and uncertainty, (b) dealing with failures, and (c) specification of mechanisms.Comment: To appear, Games and Economic Behavior. JEL classification numbers: D80, D8

    A Characterization of Consensus Solvability for Closed Message Adversaries

    Get PDF
    Distributed computations in a synchronous system prone to message loss can be modeled as a game between a (deterministic) distributed algorithm versus an omniscient message adversary. The latter determines, for each round, the directed communication graph that specifies which messages can reach their destination. Message adversary definitions range from oblivious ones, which pick the communication graphs arbitrarily from a given set of candidate graphs, to general message adversaries, which are specified by the set of sequences of communication graphs (called admissible communication patterns) that they may generate. This paper provides a complete characterization of consensus solvability for closed message adversaries, where every inadmissible communication pattern has a finite prefix that makes all (infinite) extensions of this prefix inadmissible. Whereas every oblivious message adversary is closed, there are also closed message adversaries that are not oblivious. We provide a tight non-topological, purely combinatorial characterization theorem, which reduces consensus solvability to a simple condition on prefixes of the communication patterns. Our result not only non-trivially generalizes the known combinatorial characterization of the consensus solvability for oblivious message adversaries by Coulouma, Godard, and Peters (Theor. Comput. Sci., 2015), but also provides the first combinatorial characterization for this important class of message adversaries that is formulated directly on the prefixes of the communication patterns
    • …
    corecore