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Abstract
The Heard-Of model is a simple and relatively expressive model of distributed computation. Because
of this, it has gained a considerable attention of the verification community. We give a characterization
of all algorithms solving consensus in a fragment of this model. The fragment is big enough to cover
many prominent consensus algorithms. The characterization is purely syntactic: it is expressed in
terms of some conditions on the text of the algorithm.
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1 Introduction

Most distributed algorithms solving problems like consensus, leader election, set agreement,
or renaming are essentially one iterated loop. Yet, their behavior is difficult to understand due
to unbounded number of processes, asynchrony, failures, and other aspects of the execution
model. The general context of this work is to be able to say what happens when we change
some of the parameters: modify an algorithm or the execution model. Ideally we would like
to characterize the space of all algorithms solving a particular problem.

To approach this kind of questions, one needs to restrict to a well defined space of all
distributed algorithms and execution contexts. In general this is an impossible requirement.
Yet the distributed algorithms community has come up with some settings that are expressive
enough to represent interesting cases and limited enough to start quantifying over “all
possible” distributed algorithms [11, 40, 1].

In this work we consider the consensus problem in the Heard-Of model [11]. Consensus
problem is a central problem in the field of distributed algorithms; it requires that all correct
processes eventually decide on one of the initial values. The Heard-Of model is a round- and
message-passing-based model. It can represent many intricacies of various execution models
and yet is simple enough to attempt to analyze it algorithmically [9, 14, 15, 28, 27]. Initially,
our goal was to continue the quest from [28] of examining what is algorithmically possible
to verify in the Heard-Of model. While working on this problem we have realized that a
much more ambitious goal can be achieved: to give a simple, and in particular decidable,
characterization of all consensus algorithms in well-defined fragments of the Heard-Of model.

The Heard-Of model is an open ended model: it does not specify what operations processes
can perform and what kinds of communication predicates are allowed. Communication
predicates in the Heard-Of model capture in an elegant way both synchrony degree and
failure model. In this work we fix the set of atomic communication predicates and atomic
operations. We opted for a set sufficient to express most prominent consensus algorithms (cf.
Section 7), but we do not cover all operations found in the literature on the Heard-Of model.
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9:2 Consensus in the Heard-Of Model

Our characterization of algorithms that solve consensus is expressed in terms of syntactic
conditions both on the text of the algorithm, and on the constraints in the communication
predicate. It exhibits an interesting way all consensus algorithms should behave. One could
imagine that there can be a consensus algorithm that makes processes gradually converge
to a consensus: more and more processes adopting the same value. This is not the case.
A consensus algorithm, in models we study here, should have a fixed number of crucial
rounds where precise things are guaranteed to happen. Special rounds have been identified
for existing algorithms [33], but not their distribution over different phases. Additionally,
here we show that all algorithms should have this structure.

As an application of our characterization we can think of using it as an intermediate
step in analysis of more complicated settings than the Heard-Of model. An algorithm in
a given setting can be abstracted to an algorithm in the Heard-Of model, and then our
characterization can be applied. Instead of proving the original algorithm correct it is enough
to show that the abstraction is sound. For example, an approach reducing asynchronous
semantics to round based semantics under some conditions is developed in [8]. A recent
paper [13] gives a reduction methodology in a much larger context, and shows its applicability.
The goal language of the reduction is an extension of the Heard-Of model that is not covered
by our characterization. As another application, our characterization can be used to quickly
see if an algorithm can be improved by taking a less constrained communication predicate,
by adapting threshold constants, or by removing parts of code (c.f. Section 7).

Organization of the paper. In the next section we introduce the Heard-Of model and
formulate the consensus problem. In the four consecutive sections we present the charac-
terizations for the core model as well as for the extensions with timestamps, coordinators,
and with both timestamps and coordinators at the same time. We then give examples of
algorithms that are covered by these characterizations. Proofs can be found in the appendix,
as well as in the full version of the paper [3].

Related work

The celebrated FLP result [18] states that consensus is impossible to achieve in an asyn-
chronous system in presence of failures, even in the presence of one crash failure. There is a
considerable literature investigating the models in which the consensus problem is solvable.
Even closer in spirit to the present paper are results on weakest failure detectors required to
solve the problem [6, 19]. Another step closer are works providing generic consensus algo-
rithms that can be instantiated to give several known concrete algorithms [31, 22, 21, 5, 34, 33].
The present paper considers a relatively simple model, but gives a characterization result of
all possible consensus algorithms.

The cornerstone idea of the Heard-Of model is to represent both asynchrony and failures
by the constraints on the message loss expressed by communication predicates. This greatly
simplifies the model, that in turn is very useful for a kind of characterizations we present here.
Unavoidably, not all aspects of partial synchrony [17, 12] or failures [7] are covered by the
model. For example, after a crash it may be difficult for a process to get into initial state, or
in terms of the Heard-of model, do the same round as other processes [38, 8]. Faults are not
malicious: a sent value may be lost, but the value may not be modified during transmission.
These observations just underline that there is no universal model for distributed algorithms.
There exists several other proposals of relatively simple and expressible models [20, 40, 1, 32].
The Heard-Of model, while not perfect, is in our opinion representative enough to merit a
more detailed study.
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On the verification side there are at least three approaches to analysis of the Heard-Of or
similar models. One is to use automatic theorem provers like Isabelle [10, 9, 14]. Another is
deductive verification methods applied to annotated programs [16, 15]. The closest to this
work is a model-checking approach [37, 28, 27, 2]. Particularly relevant here is the work
of Maric et al. [28]. who show cut-off results for a fragment of the Heard-Of model and
then perform verification on a resulting finite state system. Our fragment of the Heard-Of
model is incomparable with the one from that work, and arguably it has less restrictions
coming from purely technical issues in proofs. While trying to extend the scope of automatic
verification methods along the lines in the above papers, we have realized that in our case it
is possible to obtain a characterization result.

Of course there are also other models of distributed systems that are considered in the
context of verification. For example there has been big progress on verification of threshold
automata [26, 24, 25, 35, 4]. There are also other methods, as automatically generating
invariants for distributed algorithms [23, 39, 36], or verification in Coq proof assistant [41, 42].

2 Heard-Of model and the consensus problem

In the Heard-Of model a certain number of processes execute the same code synchronously.
An algorithm consists of a sequence of rounds, every process executes the same round at
the same time. The sequence of rounds, called phase, is repeated forever. In a round every
process sends the value of one of its variables to a communication medium, receives a multiset
of values, and uses it to adopt a new value (cf. Figure 1).
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Figure 1 A schema of an execution of a round and of a phase. In every round i every process
sends a value of its variable xi, and sets its variable xi+1 depending on the received multiset of
values: Hj

i . At the beginning of the phase the value of inp is sent, at some round inp may be
updated; we use ir for the index of this round. In the last round dec may be set. Both inp and dec
are not updated if the value is ?, standing for undefined.

At the beginning every process has its initial value in variable inp. Every process is
expected to eventually set its decision variable dec. Every round is communication closed
meaning that a value sent in a round can only be received in the same round; if it is not
received it is lost. A communication predicate is used to express a constraint on acceptable
message losses. Algorithm 1 is a concrete simple example of a 2-round algorithm with two
rounds. In the first round the value of inp is send, in the second the value of x1. We will
explain the algorithm later in the text.

We proceed with a description of the syntax and semantics of Heard-Of algorithms. Next
we define the consensus problem. In later sections we will extend the core language with
timestamps and coordinators.

CONCUR 2020



9:4 Consensus in the Heard-Of Model

Algorithm 1 Parametrized OneThird algorithm [11], thr1, thr2 are constants from (0, 1).

send (inp)
if uni(H) ∧ |H| > thr1 · |Π| then x1 := inp := smor(H);
if mult(H) ∧ |H| > thr1 · |Π| then x1 := inp := smor(H);

send x1
if uni(H) ∧ |H| > thr2 · |Π| then dec := smor(H);

Communication predicate: F(ψ1 ∧ Fψ2)
where: ψ1 := (ϕ= ∧ ϕthr1 , true) and ψ2 := (ϕthr1 , ϕthr2)

Syntax
An algorithm has one phase that consists of two or more rounds. In the first round each
process sends the value of inp variable, in the last round it can set the value of dec variable.
A phase is repeated forever, all processes execute the same round at the same time. A round
i is a send statement followed by a sequence of conditionals:

send xi−1
if cond1

i (H) then xi := op1
i (H);

...
if cond li(H) then xi := opli(H);

The variables are used in a sequence: first x0, which is inp, is sent and x1 is set, then x1 is
sent and x2 is set, etc. (cf. Figure 1). There should be exactly one round (before the last
round) where inp is updated; the conditional lines in this round are:

if condjir(H) then xir := inp := opjir(H)

Since this is a special round, we use the index ir to designate this round number. In the last
round, only instructions setting variable dec can be present:

if condjr(H) then dec := opjr(H)

Because of this special form of the last round, a phase needs to have at least two rounds.
Of course one can also have a syntax and a characterization for one round algorithms, but
unifying the two hinders readability. Our fragment roughly corresponds to the fragment
from [28], without extra restrictions but with a less liberty at the fork point.

The intuition behind the syntax is that in the ith round, after a process sends its value of
the xi−1 variable and receives a multiset H, it finds the first instruction whose condition is
satisfied by H and performs the corresponding assignment. Hence, even if multiple conditions
are satisfied by a multi-set, only the first such condition is executed.

As an example, consider Algorithm 1. It has two rounds, each begins with a send
statement. In the first round both x1 and inp are set, in the second round dec is set. The
conditions talk about properties of the received H multiset; we describe them below.

In round i every process first sends the value of variable xi−1, and then receives a multiset
of values H that it uses to set the value of the variable xi. The possible tests on the received
set H are uni, mult, and |H| > thr · |Π| saying respectively that: the multiset has only
one value; has more than one value; and that is of size > thr · n where n is the number of
processes and 0 ≤ thr < 1. The possible operations are min(H) resulting in the minimal
value in H, and smor(H) resulting in the minimal most frequent value in H. For example, the
first conditional line in Algorithm 1 tests if there is only one value in H, and if this value has
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multiplicity at least thr1 · n in H; if so inp and x1 are set to this value, it does not matter if
min or smor operation is used in this case. The test in the second line holds when received H
set has at least two values and is of size at least thr1 · n. In this case x1 is set to the smallest
most frequent value in H.

In addition to description of rounds, an algorithm has also a communication predicate
putting constraints on the behavior of the communication medium. A communication
predicate for a phase with r rounds is a tuple ψ = (ψ1, . . . , ψr), where each ψl is a conjunction
of atomic communication predicates that we specify later. A communication predicate for an
algorithm is

(Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . )))

where ψ and ψi are communication predicates for a phase. Predicate ψ is a global predicate,
and ψ1 . . . , ψk are sporadic predicates. So the global predicate specifies constraints on every
phase of execution, while sporadic predicates specify a sequence of special phases that should
happen: first ψ1, followed later by ψ2, etc. We have two types of atomic communication
predicates: ϕ= says that every process receives the same multiset; ϕthr says that every
process receives a multiset of size at least thr · n where n is the number of processes. In
Algorithm 1 the global predicate is trivial, and we require two special phases. In the first of
them, in its first round every process should receive exactly the same H multiset, and the
multiset should contain values from at least thr1 fraction of all processes.

Semantics
The values of variables come from a fixed linearly ordered set D. Additionally, we take a
special value ? /∈ D standing for undefined. We write D? for D ∪ {?}.

We describe the semantics of an algorithm for n processes. A state of an algorithm is a
pair of n-tuples of values; denoted (f, d). Intuitively, f specifies the value of the inp variable
for each process, and d specifies the value of the dec variable. The value of inp can never be
?, while initially the value of dec is ? for every process. We denote by mset(f) the multiset
of values appearing in the tuple f . Only values of inp and dec survive between phases. All
the other variables are reset to ? at the beginning of each phase.

There are two kinds of transitions:

(f, d) ψ−→(f ′, d′) a phase transition

f
ϕ=⇒if

′ a transition for round i

Phase transitions will be defined as a composition of round transitions. In a transition for
round i, tuple f describes the values of xi−1, and f ′ the values of xi Phase transition is
labeled with a phase communication predicate, while a round transition has a round number
and a conjunction of atomic predicates as labels.

Before defining these transitions we need to describe the semantics of communication
predicates. At every round processes send values of their variable to a communication medium,
and then receive a multiset of values from the medium (cf. Figure 1). Communication medium
is not assumed to be perfect, it can send a different multiset of values to every process,
provided it is a sub-multiset of received values. An atomic communication predicate puts
constraints on multisets that every process receives. In other words, such a predicate specifies
constraints on a tuple of multisets ~H = (H1, . . . ,Hn). Predicate ϕ= requires that all the
multisets are the same. Predicate ϕthr requires that every multiset is bigger than thr · n for
some number 0 ≤ thr < 1. Predicate true does not put any restrictions. We write ~H � ϕ
when the tuple of multisets ~H satisfies the conjunction of atomic predicates ϕ.

CONCUR 2020



9:6 Consensus in the Heard-Of Model

Once a process p receives a multiset Hp, it uses it to do an update of one of its variables.
For this it finds the first condition that Hp satisfies and performs the operation from the
corresponding assignment.

Recall that a condition is a conjunction of atomic conditions: uni, mult, |H| > thr · |Π|.
A multiset H satisfies uni when it contains just one value; it satisfies mult if it contains more
than one value. A multiset H satisfies |H| > thr · |Π| when the size of H is bigger than thr · n,
where n is the number of processes. Observe that only predicates of the last type take into
account possible repetitions of the same value.

We can now define the update value updatei(H), describing to which value the process
sets its variable in round i upon receiving the multiset H. For this the process finds the first
conditional statement in the sequence of instructions for round i whose condition is satisfied
by H− {?} and looks at the operation in the statement:

if it is x := min(H) then updatei(H) is the minimal value in H− {?};
if it is x := smor(H) then updatei(H) is the smallest most frequent value in H− {?};
if no condition is satisfied then updatei(H) =?.

A transition f
ϕ=⇒i f

′ is possible when there exists a tuple of multisets (H1, . . . ,Hn) � ϕ
such that for all p = 1, . . . , n: Hp ⊆ mset(f), and f ′(p) = updatei(Hp). Observe that ? value
in Hp is ignored by the update function, but not by the communication predicate.

A transition (f, d) ψ−→ (f ′, d′), for ψ = (ϕ1, . . . , ϕn), is possible when there is a sequence:

f0
ϕ1=⇒1 f1

ϕ2=⇒2 · · ·
ϕr−1=⇒r−1 fr−1

ϕr=⇒r fr where

f0 = f ;
f ′(p) = fir(p) if fir(p) 6=?, and f ′(p) = fir(p) otherwise;
d′(p) = d(p) if d(p) 6=?, and d′(p) = fr(p) otherwise.

This means that if in round ir, the value of fir(p) was ?, then the process p retains its value
of the inp onto the next phase; otherwise the process p updates its value of inp to fir(p).
The value of dec cannot be updated, it can only be set if it has not been set before. For
setting the value of dec, the value from the last round is used.

An execution is a sequence of phase transitions. An execution of an algorithm respecting
a communication predicate (Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . ))) is an infinite sequence:

(f0, d0) ψ−→
∗

(f1, d1) ψ∧ψ
1

−→ (f ′1, d′1) · · · ψ−→
∗

(fk, dk) ψ∧ψ
k

−→ (f ′k, d′k) ψ−→
ω

· · ·

where ψ−→
∗
stands for a finite sequence of ψ−→ transitions, and ψ−→

ω

for an infinite sequence.
For every execution there is some fixed n determining the number of processes, f0 is any
n-tuple of values without ?, and d0 is the n-tuple of ? values. Observe that the size of the
first tuple determines the size of every other tuple. By definition of transitions, there is
always a transition from every configuration, so an execution cannot block. Thus we can
think of every execution as being infinite.

I Definition 1 (Consensus problem). An algorithm has agreement property if for every
number of processes n, and for every state (f, d) reachable by an execution of the algorithm,
for all processes p1 and p2, either d(p1) = d(p2) or one of the two values is ?. An algorithm
has termination property if for every n, and for every execution there is a state (f, d) on this
execution with d(p) 6=? for all p = 1, . . . , n. An algorithm solves consensus if it has agreement
and termination properties.
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I Remark 2. Normally, the consensus problem also requires irrevocability and integrity
properties, but these are always guaranteed by the semantics: once set, a process cannot
change its dec value, and a variable can be set only to one of the values that has been
received.
I Remark 3. The original definition of the Heard-Of model is open ended: it does not limit
possible forms of a communication predicate, conditions, or operations. Clearly, for the kind
of result we present here, we need to fix them.
I Remark 4. In the original definition processes are allowed to have identifiers. We do not
need them for the set of operations we consider. Later we will add coordinators without
referring to identifiers. This is a relatively standard way of avoiding identifiers while having
reasonable expressivity.

3 A characterization for the core language

We present a characterization of all the algorithms in our language that solve consensus. In
later sections we will extend it to include timestamps and coordinators. As it will turn out,
for our analysis we will need to consider only two values a, b with a fixed order between them:
we take a smaller than b. This order influences the semantics of instructions: the result of
min is a on a multiset containing at least one a; the result of smor is a on a multiset with
the same number of a’s and b’s. Because of this asymmetry we mostly focus on the number
of b’s in a tuple. In our analysis we will consider tuples of the form bias(θ) for θ < 1, i.e., a
tuple where we have n processes (for some large enough n), out of which θ · n of them have
their value set to b; and the remaining ones to a. The tuple containing only b’s (resp. only
a’s) is called solo (resp. soloa).

We show that there is essentially one way to solve consensus. The text of the algorithm
together with the form of the global predicate determines a threshold thr . We prove that in
the language we consider here, there should be a unifier phase which guarantees that the
tuple of inp values after the phase belongs to one of the following four types: solo, soloa,
bias(θ), or bias(1−θ) where θ ≥ thr . Intuitively, this means that there is a dominant value in
the tuple. This phase should be followed by a decider phase which guarantees that if the tuple
of inp values is of one of the above mentioned types, then all the processes decide. While
this ensures termination, agreement is ensured by proving that some structural properties on
the algorithm should always hold.

Before stating the characterization, we will make some observations that allow us to
simplify the structure of an algorithm, and in consequence simplify the statements.

It is easy to see that in our languge we can assume that the list of conditional instructions
in each round can have at most one uni conditional followed by a sequence of mult conditionals
with non-increasing thresholds:

if uni(H) ∧ |H| > thr iu · |Π| then x := opiu(H)
if mult(H) ∧ |H| > thr i,1m · |Π| then x := opim(H)
...
if mult(H) ∧ |H| > thr i,km · |Π| then x := opim(H)

We use superscript i to denote the round number: so thr1
u is a threshold associated to uni

instruction in the first round, etc. If round i does not have a uni instruction, then thr1
u will

be −1. For the sake of brevity, thr i,km will always denote the minimal threshold appearing in
any of the mult instructions in round i and −1 if no mult instructions exist in round i.

CONCUR 2020



9:8 Consensus in the Heard-Of Model

We fix a communication predicate:

(Gψ) ∧ (F(ψ1 ∧ F(ψ2 ∧ . . . (Fψk) . . . ))) (1)

Without loss of generality we can assume that every sporadic predicate implies the global
predicate; in consequence, ψ ∧ ψi is equivalent to ψi. Recall that each of ψ,ψ1, . . . , ψk is
an r-tuple of conjunctions of atomic predicates. We write ψ�i for the i-th element of the
tuple and so ψ is (ψ�1, . . . , ψ�r). By thr i(ψ) we denote the threshold constant appearing in
the predicate ψ�i, i.e., if ψ�i has ϕthr as a conjunct, then thr i(ψ) = thr, if it has no such
conjunct then thr i(ψ) = −1. We call ψ�i an equalizer if it has ϕ= as a conjunct. In this case
we also say that ψ has an equalizer.

Recall (cf. page 2) that a transition f ψ=⇒i f
′ for a round i under a phase predicate ψ is

possible when there is a tuple of multisets (H1, . . . ,Hn) � ψ�i such that for all p = 1, . . . , n:
Hp ∈ mset(f) and f ′(p) = updatei(Hp).

I Definition 5. A round i is preserving w.r.t. ψ iff one of the three conditions hold: (i) it
does not have an uni instruction, (ii) it does not have a mult instruction, or (iii) thr i(ψ) <
max(thr iu, thr i,km ). Otherwise the round is non-preserving. The round is solo safe w.r.t. ψ if
0 ≤ thr iu ≤ thr i(ψ).

If i is a preserving round, then there exists a tuple f such that ? /∈ mset(f) and such that
a transition f ψ=⇒i f

′ is possible for f ′ a tuple consisting solely of ?. The consequence of
such a transition is that inp is not updated in the phase, i.e., old values of inp are preserved.
On the other extreme, if all transitions in the phase are non-preserving then all inp values
are necessarily updated by the phase. Finally, a solo safe round cannot alter the solo state,
i.e., solo ψ=⇒i solo is the only transition possible from solo.
I Remark 6. Suppose rounds 1, . . . , i− 1 are non-preserving under ψ, the global predicate.

In this situation, since ? /∈ mset(f), if f ψ�1=⇒1 f1
ψ�2=⇒2 . . .

ψ�i−1=⇒ i−1 fi−1 then ? /∈ mset(fi−1).
Hence, no heard-of multi-set H constructed from fi−1 can have ? value. Notice that every
process is bound to receive a heard-of set of size at least thr i(ψ) in round i. For a sake of
example, suppose thr i(ψ) > thr i,2m . The semantics then guarantees that every heard-of set
sent during the ith round either satisfies the uni instruction, or one of the first two mult
instructions, or no instruction at all. Hence, in such a case all the mult instructions except
the first two can be removed from the description of round i as they will be never executed.
This implies that we can adopt the following assumption.

I Assumption 1. For every round i, if rounds 1, . . . , i− 1 are non-preserving under ψ then{
thr iu ≥ thr i(ψ) if round i has uni instruction
thr i,km ≥ thr i(ψ) if round i has mult instruction

(2)

We put some restrictions on the form of algorithms we consider in our characterization.
They greatly simplify the statements, and as we argue, are removing cases that are not that
interesting anyway.

I Proviso 1. We adopt the following additional syntactic restrictions:
We require that the global predicate does not have an equalizer.
We assume that there is no mult instruction in the round ir + 1.

Concerning the first of the above requirements, if the global predicate has an equalizer
then it is quite easy to construct an algorithm for consensus because equalizer guarantees
that in a given round all the processes receive the same value. The characterization below



A.R. Balasubramanian and I. Walukiewicz 9:9

can be extended to this case but would require to mention it separately in all the statements.
Concerning the second requirement, We can show that if such a mult instruction exists then
either the algorithm violates consensus, or the instruction will never be fired in any execution
of the algorithm and so it can be removed without making an algorithm incorrect.

In order to state our characterization we need to give formal definitions of concepts we
have discussed at the beginning of the section.

I Definition 7. The border threshold is thr = max(1− thr1
u, 1− thr1,k

m /2).

I Definition 8. A predicate ψ is a
Decider, if all rounds are solo safe w.r.t. ψ
Unifier, if the three conditions hold:

thr1(ψ) ≥ thr1,k
m and either thr1(ψ) ≥ thr1

u or thr1(ψ) ≥ thr ,
there exists i such that 1 ≤ i ≤ ir and ψ�i is an equalizer,
rounds 2, . . . , i are non-preserving w.r.t. ψ and rounds i+ 1, . . . ir are solo-safe w.r.t. ψ

Finally, we list some syntactic properties of algorithms that, as we will see later, imply
the agreement property.

I Definition 9. An algorithm is syntactically safe when:
1. First round has a mult instruction.
2. Every round has a uni instruction.
3. In the first round the operation in every mult instruction is smor.
4. thr1,k

m /2 ≥ 1− thr ir+1
u , and thr1

u ≥ 1− thr ir+1
u .

Recall that ψ1, . . . , ψk are the set of sporadic predicates from the communication predicate.
Without loss of generality we can assume that there is at least one sporadic predicate; at
a degenerate case it is always possible to take a sporadic predicate that is the same as the
global predicate. With these definitions we can state our characterization:

I Theorem 10. Consider algorithms in the core language satisfying syntactic constraints
from Assumption 1 and Proviso 1. An algorithm solves consensus iff it is syntactically safe
according to Definition 9, and it satisfies the condition:
T There is i ≤ j such that ψi is a unifier and ψj is a decider.

A two value principle is a corollary from the proof of the above theorem: an algorithm
solves consensus iff it solves consensus for two values. Indeed, it turns out that it is enough
to work with three values a, b, and ? standing for undefined. The proof considers separately
safety and liveness aspects of the consensus problem. Notice that the properties from
Definition 9 intervene also in the proof of termination.

I Lemma 11. An algorithm violating structural properties from Definition 9 cannot solve
consensus. An algorithm with the structural properties has the agreement property.

I Lemma 12. An algorithm with the structural properties from Definition 9 has the
termination property iff it satisfies condition T from Theorem 10.

4 A characterization for algorithms with timestamps

We extend our characterization to algorithms with timestamps. Now, variable inp stores not
only the value but also a timestamp, that is the number of the last phase at which inp was
updated. These timestamps are used in the first round, as a process considers only values
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with the most recent timestamp. The syntax is the same as before except that we introduce
a new operation, called maxts, that must be used in the first round and nowhere else. So
the form of the first round becomes:

send (inp, ts)
if cond1

1(H) then x1 := maxts(H);
...
if cond l1(H) then x1 := maxts(H);

The semantics of transitions for rounds and phases needs to take into account timestamps.
The semantics changes only for the first round; its form becomes (f, t) ϕ=⇒ f ′, where t is a
vector of timestamps (n-tuple of natural numbers). Timestamps are ignored by communication
predicates and conditions, but are used in the update operation. The operation maxts(H)
returns the smallest among values with the most recent timestamp in H.

The form of a phase transition changes to (f, t, d) ψ−→ (f ′, t′, d′). Value t(p) is the
timestamp of the last update of inp of process p (whose value is f(p)). We do not need
to keep timestamps for d since the value of dec can be set only once. Phase transitions
are defined as before, taking into account the above mentioned change for the first round
transition, and the fact that in the round ir when inp is updated then so is its timestamp.
Some examples of algorithms with timestamps are presented in Section 7.

As in the case of the core language, without loss of generality we can assume conditions
from Assumption 1. Concerning Proviso 1, we assume almost the same conditions, but now
the second one refers to the round ir and not to the round ir + 1, and is a bit stronger.

I Proviso 2. We adopt the following syntactic restrictions:
We require that the global predicate does not have an equalizer.
We assume that there is no mult instruction in the round ir, and that thr ir

u ≥ 1/2.

The justification for the first restriction is as before. Concerning the second restriction,
we can prove that if these two assumptions do not hold then either the algorithm violates
consensus, or we can remove the mult instruction and increase thr ir

u without making an
algorithm incorrect.

Our characterization resembles the one for the core language. The structural conditions
get slightly modified: the condition on constants is weakened, and there is no need to talk
about smor operations in the fist round.

I Definition 13. An algorithm is syntactically t-safe when:
1. Every round has a uni instruction.
2. First round has a mult instruction.
3. thr1,k

m ≥ 1− thr ir+1
u and thr1

u ≥ 1− thr ir+1
u .

We consider the same shape of a communication predicate as in the case of the core
language (1). A characterization for the case with timestamps uses a stronger version of a
unifier that we define now. The intuition is that we do not have thr constant because of
maxts operations in the first round. In other words, the conditions are the same as before
but when taking thr > 1.

I Definition 14. A predicate ψ is a strong unifier ψ if it is a unifier in a sense of Definition 8
and thr1

u ≤ thr1(ψ).

Modulo the above two changes, the characterization stays the same.
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I Theorem 15. Consider algorithms in the language with timestamps satisfying syntactic
constraints from Assumption 1 and Proviso 2. An algorithm satisfies consensus iff it is
syntactically t-safe according to Definition 13, and it satisfies:
sT There are i ≤ j such that ψi is a strong unifier and ψj is a decider.

5 A characterization for algorithms with coordinators

We consider algorithms equipped with coordinators. The novelty is that we can now have
rounds where there is a unique process that receives values from other processes, as well as
rounds where there is a unique process that sends values to other processes. For this we
extend the syntax by introducing a round type that can be: every, lr (leader receive), or
ls (leader-send):

A round of type every behaves as before.
In a round of type lr only one arbitrarily selected process receives values.
In a round of type ls, the process selected in the immediately preceding lr round sends
its value to all other processes.

If an ls round is not preceded by an lr round then an arbitrarily chosen process sends its
value. We assume that every lr round is immediately followed by an ls round, because
otherwise the lr round would be useless. We also assume that inp and dec are not updated
during lr rounds, as only one process is active in these rounds.

For ls rounds we introduce a new communication predicate. The predicate ϕls says that
the leader successfully sends its message to everybody; it makes sense only for ls rounds.

These extensions of the syntax are reflected in the semantics. For convenience we introduce
two new names for tuples: oneb is a tuple where all the entries are ? except for one entry
which is b; similarly for onea. Abusing the notation we also write one? for solo?, namely the
tuple consisting only of ? values.

Let us define the semantics of lr and ls rounds. If i-th round is of type lr, we have
a transition f

ψ=⇒i oned for every d ∈ firei(f, ψ). In particular, if ? ∈ firei(f, ψ) then
f

ϕ=⇒i solo? is possible.
Suppose i-th round is of type ls. If ψ�i contains ϕls as a conjunct then

oned ψ=⇒isolod if round (i− 1) is of type lr

f
ψ=⇒isolod for d ∈ set(f) otherwise

When ψ�i does not contain ϕls then independently of the type of the round (i− 1) we have
f

ψ=⇒i f
′ for every d ∈ set(f) and f ′ such that set(f ′) ⊆ {d, ?}.

We consider the same shape of a communication predicate as in the case of the core
language (1).

The semantics allows us to adopt some more simplifying assumptions about the syntax
of the algorithm, and the form of the communication predicate.

I Assumption 2. We assume that ls rounds do not have a mult instruction. Indeed, from
the above semantics it follows that mult instruction is never used in a round of type ls. It
also does not make much sense to use ϕls in rounds other than of type ls. So to shorten some
definitions we require that ϕls can appear only in communication predicates for ls-rounds.
For similar reasons we require that ϕ= predicate is not used in ls-rounds. As we have
observed in the first paragraph, we can assume that neither round ir nor the last round are
of type lr.
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The notions of preserving and solo-safe rounds get adapted to the new syntax.

I Definition 16. A round of type ls is c-solo-safe w.r.t. ψ if ψi has ϕls as a conjunct, it is
c-preserving otherwise. A round of type other than ls is c-preserving or c-solo-safe w.r.t ψ
if it is so in the sense of Definition 5.

I Definition 17. A c-equalizer is a conjunction containing a term of the form ϕ= or ϕls.

I Proviso 3. We assume the same conditions as in Proviso 8, but using the concepts of
c-equalizers instead of equalizers.

To justify the proviso we prove that mult instruction in round ir + 1 cannot be useful.
Assumption 1 is also updated to using the notion of c-preserving instead of preserving. We
restate it for convenience.

I Assumption 3. For every round i, if rounds 1, . . . , i − 1 are non-c-preserving under ψ
then{

thr iu ≥ thr i(ψ) if round i has uni instruction
thr i,km ≥ thr i(ψ) if round i has mult instruction

(3)

Finally, the above modifications imply modifications of terms from Definition 8.

I Definition 18. A predicate ψ is called a
c-decider, if all rounds are c-solo safe w.r.t. ψ.
c-unifier, if

thr1(ψ) ≥ thr1,k
m and either thr1(ψ) ≥ thr1

u or thr1(ψ) ≥ thr ,
there exists i such that 1 ≤ i ≤ ir and ψ�i is an c-equalizer,
rounds 2, . . . , i are non-c-preserving w.r.t. ψ and rounds i + 1, . . . ir are c-solo-safe
w.r.t. ψ.

With these modifications, we get an analog of Theorem 10 for the case with coordinators
subject to the modified provisos as explained above.

I Theorem 19. Consider algorithms in the language with timestamps satisfying syntactic
constraints from Assumptions 2, 3 and Proviso 3. An algorithm satisfies consensus iff the
first round and the (ir + 1)th round are not of type ls, it is syntactically safe according to
Definition 9, and it satisfies the condition:
cT There are i ≤ j such that ψi is a c-unifier and ψj is a c-decider.

6 A characterization for algorithms with coordinators and timestamps

Finally, we consider an extension of the core language with both coordinators and timestamps.
Formally, we extend the coordinator model with timestamps in the same way we have extended
the core model. So now inp variables store pairs (value, timestamp), and all the instructions
in the first round are maxts (cf. page 10).

I Proviso 4. We assume the same proviso as for timestamps; namely, Proviso 2, but using
the notion of c-equalizer.

As in the previous cases we justify our proviso by showing that the algorithm violating
the second condition would not be correct or the condition could be removed.

The characterization is a mix of conditions from timestamps and coordinator cases.



A.R. Balasubramanian and I. Walukiewicz 9:13

I Definition 20. A predicate ψ is a strong c-unifier if it is a c-unifier (cf. Definition 14)
and thr1

u ≤ thr1(ψ).

I Theorem 21. Consider algorithms in the language with timestamps satisfying syntactic
constraints from Assumptions 2, 3 and Proviso 4. An algorithm satisfies consensus iff the
first round and the (ir + 1)th round are not of type ls, it has the structural properties from
Definition 13, and it satisfies:

scT There are i ≤ j such that ψi is a strong c-unifier and ψj is a c-decider.

7 Examples

We apply the characterizations from the previous sections to some consensus algorithms
studied in the literature, and their variants.

First, we can revisit the parametrized Algorithm 1 from page 4. This is an algorithm
in the core language, and it depends on two thresholds. Theorem 10 implies that it solves
consensus iff thr1/2 ≥ 1 − thr2. In case of thr1 = thr2 = 2/3 we obtain the well known
OneThird algorithm. But, for example, thr1 = 1/2 and thr2 = 3/4 are also possible solutions
for this inequality. So Algorithm 1 solves consensus for these values of thresholds.

Because of the conditions on constants, thr1,k
m /2 ≥ 1− thr ir+1

u coming from Definition 9,
it is not possible to have an algorithm in the core language where all constants are at most
1/2. This answers a question from [11] for the language we consider here.

The above condition on constants is weakened to thr1,k
m ≥ 1 − thr ir+1

u when we have
timestamps. In this case indeed it is possible to use only 1/2 thresholds [27].

When we have both timestamps and coordinators, we get variants of Paxos algorithm.

Algorithm 2 Paxos algorithm.

send (inp, ts) lr
if uni(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);
if mult(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 lr
if uni(H) ∧ |H| > 1/2 · |Π| then x3 := smor(H);

send x3 ls
if uni(H) then dec := smor(H);

Communication predicate: F(ψ1) where ψ1 := (ϕ1/2, ϕls, ϕ1/2, ϕls)

The algorithm is correct by Theorem 21. One can observe that without modifying the
code there is not much room for improvement in this algorithm. A decider phase is needed to
solve consensus, and ψ1 is a minimal requirement for a decider phase. A possible modification
is to change the thresholds in the first round to, say, 1/3 and in the third round to 2/3 (both
in the algorithm and in the communication predicate).
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Algorithm 3 Three round Paxos algorithm.

send (inp, ts) lr
if uni(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);
if mult(H) ∧ |H| > 1/2 · |Π| then x1 := maxts(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 every
if uni(H) ∧ |H| > 1/2 · |Π| then dec := smor(H);

Communication predicate: F(ψ1) where ψ1 := (ϕ1/2, ϕls, ϕ1/2)

The three round Paxos presented above is also correct by Theorem 21. Once again it is
possible to change constants in the first round to 1/3 and in the last round to 2/3 (both in
the algorithm and in the communication predicate).

One can also wander about algorithms with coordinators but without timestamps. Here
is a possibility that resembles three round Paxos:

Algorithm 4 Three round coordinator algorithm.

send (inp) lr
if uni(H) ∧ |H| > 2/3 · |Π| then x1 := smor(H);
if mult(H) ∧ |H| > 2/3 · |Π| then x1 := smor(H);

send x1 ls
if uni(H) then x2 := inp := smor(H);

send x2 every
if uni(H) ∧ |H| > 2/3 · |Π| then dec := smor(H);

Communication predicate: F(ψ) where ψ := (ϕ2/3, ϕls, ϕ2/3)

The algorithm solves consensus by Theorem 19. The constants are bigger than in Paxos
because we do not have timestamps: the constraints on constants come from Definition 9,
and not from Definition 13. The advantage is that we do not need time-stamps, while keeping
the same structure as for three-round Paxos.

It is possible to introduce more parameters in these algorithms to analyze for which
choices of parameters they solve consensus.

8 Conclusions

We have characterized all algorithms solving consensus in a fragment of the Heard-Of model.
We have aimed at a fragment that can express most important algorithms while trying to
avoid ad hoc restrictions (c.f. proviso on page 8). The fragment covers algorithms considered
in the context of verification [28, 10] with a notable exception of algorithms sending more than
one variable. In this work we have considered only single phase algorithms while originally
the model permits also to have initial phases. We believe that it is possible to extend
the characterization to incorporate the initial phases, but this would further complicate
the results and there are no well-know algorithms that use such phases. More severe and
technically important restriction is that we allow to use only one variable at a time. In
particular, it is not possible to send pairs of variables.

One curious direction of further research would be to list all “best” consensus algorithms
under some external constraints; for example the constraints can come from some properties
of an execution platform external to the Heard-Of model. This problem assumes that there
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is some way to compare two algorithms. One guiding principle for such a measure could
be efficient use of knowledge [30, 29]: at every step the algorithm does maximum it can do,
given its knowledge of the state of the system.

This research is on the borderline between distributed computing and verification. From
a distributed computing side it considers quite a simple model, but gives a characterization
result. From a verification side, the systems are complicated because the number of processes
is unbounded, there are timestamps, and interactions are based on a fraction of processes
having a particular value. We do not advance on verification methods for such a setting.
Instead, we observe that in the context considered here verification may be avoided. We
believe that a similar phenomenon can appear also for other problems than consensus. It is
also an intriguing question to explore how much we can enrich the current model and still
get a characterization. We conjecture that a characterization is possible for an extension
with randomness covering at least the Ben-Or algorithm. Of course, formalization of proofs,
either in Coq or Isabelle, for such extensions would be very helpful.
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