1,444 research outputs found

    Idle Period Propagation in Message-Passing Applications

    Full text link
    Idle periods on different processes of Message Passing applications are unavoidable. While the origin of idle periods on a single process is well understood as the effect of system and architectural random delays, yet it is unclear how these idle periods propagate from one process to another. It is important to understand idle period propagation in Message Passing applications as it allows application developers to design communication patterns avoiding idle period propagation and the consequent performance degradation in their applications. To understand idle period propagation, we introduce a methodology to trace idle periods when a process is waiting for data from a remote delayed process in MPI applications. We apply this technique in an MPI application that solves the heat equation to study idle period propagation on three different systems. We confirm that idle periods move between processes in the form of waves and that there are different stages in idle period propagation. Our methodology enables us to identify a self-synchronization phenomenon that occurs on two systems where some processes run slower than the other processes.Comment: 18th International Conference on High Performance Computing and Communications, IEEE, 201

    Online Fault Classification in HPC Systems through Machine Learning

    Full text link
    As High-Performance Computing (HPC) systems strive towards the exascale goal, studies suggest that they will experience excessive failure rates. For this reason, detecting and classifying faults in HPC systems as they occur and initiating corrective actions before they can transform into failures will be essential for continued operation. In this paper, we propose a fault classification method for HPC systems based on machine learning that has been designed specifically to operate with live streamed data. We cast the problem and its solution within realistic operating constraints of online use. Our results show that almost perfect classification accuracy can be reached for different fault types with low computational overhead and minimal delay. We have based our study on a local dataset, which we make publicly available, that was acquired by injecting faults to an in-house experimental HPC system.Comment: Accepted for publication at the Euro-Par 2019 conferenc

    Towards an Adaptive OS Noise Mitigation Technique for Microbenchmarking on Apple Ipad Devices

    Get PDF
    This study investigates levels of Operating System (OS) noise on Apple iPad mobile devices. OS noise causes variations in application performance that interfere with microbenchmark results. OS noise manifests in collected data through extreme outliers and variations in skewness. Using our collected data, we develop an iterative, semi-automated outlier removal process for Apple iPad OS noise profiles. The profiles generated by outlier removal represent the first step toward an adaptive noise mitigation technique, which presents opportunities for use in microbenchmarking across other mobile platforms

    Propagation and Decay of Injected One-Off Delays on Clusters: A Case Study

    Full text link
    Analytic, first-principles performance modeling of distributed-memory applications is difficult due to a wide spectrum of random disturbances caused by the application and the system. These disturbances (commonly called "noise") destroy the assumptions of regularity that one usually employs when constructing simple analytic models. Despite numerous efforts to quantify, categorize, and reduce such effects, a comprehensive quantitative understanding of their performance impact is not available, especially for long delays that have global consequences for the parallel application. In this work, we investigate various traces collected from synthetic benchmarks that mimic real applications on simulated and real message-passing systems in order to pinpoint the mechanisms behind delay propagation. We analyze the dependence of the propagation speed of idle waves emanating from injected delays with respect to the execution and communication properties of the application, study how such delays decay under increased noise levels, and how they interact with each other. We also show how fine-grained noise can make a system immune against the adverse effects of propagating idle waves. Our results contribute to a better understanding of the collective phenomena that manifest themselves in distributed-memory parallel applications.Comment: 10 pages, 9 figures; title change

    Framework for Adaptable Operating and Runtime Systems: Final Project Report

    Full text link

    Scheduling Heterogeneous HPC Applications in Next-Generation Exascale Systems

    Get PDF
    Next generation HPC applications will increasingly time-share system resources with emerging workloads such as in-situ analytics, resilience tasks, runtime adaptation services and power management activities. HPC systems must carefully schedule these co-located codes in order to reduce their impact on application performance. Among the techniques traditionally used to mitigate the performance effects of time- share systems is gang scheduling. This approach, however, leverages global synchronization and time agreement mechanisms that will become hard to support as systems increase in size. Alternative performance interference mitigation approaches must be explored for future HPC systems. This dissertation evaluates the impacts of workload concurrency in future HPC systems. It uses simulation and modeling techniques to study the performance impacts of existing and emerging interference sources on a selection of HPC benchmarks, mini-applications, and applications. It also quantifies the cost and benefits of different approaches to scheduling co-located workloads, studies performance interference mitigation solutions based on gang scheduling, and examines their synchronization requirements. To do so, this dissertation presents and leverages a new Extreme Value Theory- based model to characterize interference sources, and investigate their impact on Bulk Synchronous Parallel (BSP) applications. It demonstrates how this model can be used to analyze the interference attenuation effects of alternative fine-grained OS scheduling approaches based on periodic real time schedulers. This analysis can, in turn, guide the design of those mitigation techniques by providing tools to understand the tradeoffs of selecting scheduling parameters

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism

    FINJ: A Fault Injection Tool for HPC Systems

    Get PDF
    We present FINJ, a high-level fault injection tool for High-Performance Computing (HPC) systems, with a focus on the management of complex experiments. FINJ provides support for custom workloads and allows generation of anomalous conditions through the use of fault-triggering executable programs. FINJ can also be integrated seamlessly with most other lower-level fault injection tools, allowing users to create and monitor a variety of highly-complex and diverse fault conditions in HPC systems that would be difficult to recreate in practice. FINJ is suitable for experiments involving many, potentially interacting nodes, making it a very versatile design and evaluation tool.Comment: To be presented at the 11th Resilience Workshop in the 2018 Euro-Par conferenc
    • …
    corecore