

This is a post-peer-review, pre-copyedit version of:

Netti A., Kiziltan Z., Babaoglu O., Sîrbu A., Bartolini A., Borghesi A. (2019) FINJ: A Fault

Injection Tool for HPC Systems. In: Mencagli G. et al. (eds) Euro-Par 2018: Parallel

Processing Workshops. Euro-Par 2018. Lecture Notes in Computer Science, vol 11339.

Springer, Cham

The final authenticated version is available online at: https://doi.org/10.1007/978-3-

030-10549-5_62

This version is subjected to Springer Nature terms for reuse that can be found at: https://www.springer.com/gb/open-

access/authors-rights/aam-terms-v1

FINJ: A Fault Injection Tool for HPC
Systems

Alessio Netti1(B), Zeynep Kiziltan1, Ozalp Babaoglu1, Alina Ŝırbu2 ,
Andrea Bartolini3 , and Andrea Borghesi3

1 Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy

{alessio.netti,zeynep.kiziltan,ozalp.babaoglu}@unibo.it
2 Department of Computer Science, University of Pisa, Pisa, Italy

alina.sirbu@unipi.it
3 Department of Electrical, Electronic and Information Engineering,

University of Bologna, Bologna, Italy
{a.bartolini,andrea.borghesi3}@unibo.it

Abstract. We present FINJ, a high-level fault injection tool for High-
Performance Computing (HPC) systems, with a focus on the manage-
ment of complex experiments. FINJ provides support for custom work-
loads and allows generation of anomalous conditions through the use of
fault-triggering executable programs. FINJ can also be integrated seam-
lessly with most other lower-level fault injection tools, allowing users to
create and monitor a variety of highly-complex and diverse fault con-
ditions in HPC systems that would be difficult to recreate in practice.
FINJ is suitable for experiments involving many, potentially interacting
nodes, making it a very versatile design and evaluation tool.

Keywords: Exascale systems · Resiliency
Fault detection · Monitoring · Benchmarking · Open-source

1 Introduction

Motivation. High-Performance Computing (HPC) systems have become indis-
pensable for economic growth and scientific progress in our modern society. As
the performance of HPC systems increases, the value of the results they produce
increases through higher-fidelity simulations, better predictive models and anal-
ysis of greater quantities of data. The resulting techniques, policy decisions and
vastly-improved manufacturing processes in areas such as agriculture, engineer-
ing, transportation, materials, energy, health care, security and the environment
are bound to impact most aspects of our lives. Today, HPC systems are also being
used as fundamental “instruments” to achieve groundbreaking results in basic
sciences ranging from particle physics to cosmology. Yet, many important prob-
lems in various fields remain unsolvable with current computational resources.
Exascale HPC systems, capable of 1018 operations per second, are believed to

be essential for solving such problems [2]. Reaching exascale performance is the
moonshot for modern HPC systems with many nations and companies engaged
in an arms race towards achieving it.

Exascale systems, when they arrive, will come at a significant cost: scaling
current technologies to exascale performance through massive parallelism will
result in systems that have prohibitively-high levels of power consumption [17]
and excessively-high failure rates [4]. Thus, to be usable in production envi-
ronments with acceptable Quality of Service levels, exascale systems need to
improve their power efficiency and resiliency by several orders of magnitude.

In our terminology, a fault is defined as an anomalous behavior at the software
or hardware level that can lead to illegal system states (errors) and, in the worst
case, to service interruptions (failures) [7]. In this paper, we limit our attention
to improving the resiliency of HPC systems through the use of mechanisms for
predicting, detecting and preventing errors and failures. An important technique
in this endeavor is fault injection: the deliberate triggering of faults in a system
so as to observe their behavior in a controlled environment, enable development
of new prediction and response techniques and testing of existing ones [11]. For
fault injection to be effective, dedicated tools are necessary, allowing users to
trigger complex and realistic fault scenarios in a reproducible manner.

Related Work. Fault injection for prediction and detection purposes has been
a topic of great interest in recent years. In [6,8,9,16], the authors employed
software-based fault injection techniques to observe the behavior and perfor-
mance variations of HPC systems in anomalous conditions, and to detect such
faults using system performance metrics. However, while characterizing the fault-
simulating programs that were used, these works do not focus on the tools used
to inject and coordinate the faults themselves in the system.

Several studies have proposed fault injection tools with varying levels of
abstraction. Calhoun et al. [3] devised a compiler-level fault injection tool focused
on memory bit-flip errors, targeting HPC applications. De Bardeleben et al. [5]
proposed a logic error-oriented fault injection tool. This tool is designed to inject
faults in virtual machines, by exploiting emulated machine instructions through
the open-source virtual machine and processor emulator (QEMU). Both works
focus on low-level fault-specific tools and do not provide functionality for the
injection of complex workloads, and for the collection of produced data, if any.

Stott et al. [15] proposed NFTAPE, a high-level and generic tool for fault
injection. This tool is designed to be integrated with other fault injection tools
and triggers at various levels, allowing for the automation of long and complex
experiments. The tool however has aged considerably, and is not publicly avail-
able. A similar fault injection tool was proposed by Naughton et al. [14], however,
to the best of our knowledge, it has never progressed past the prototype stage
and is also not publicly available. Moreover, both tools require users to write
a fair amount of wrapper and configuration code, resulting in a complex setup
process. The Gremlins Python package1 also supplies a high-level fault injector.

1 https://github.com/toddlipcon/gremlins.

However, it does not support workload or data collection functionalities, and
experiments on multiple nodes cannot be performed.

Joshi et al. [12] introduced the PREFAIL tool, which allows for the injection
of failures at any code entry point in the underlying operating system. This
tool, like NFTAPE, employs a coordinator process for the execution of complex
experiments. It is targeted at a specific type of fault (code-level errors) and does
not permit performing experiments focused on performance degradation and
interference, among other fault types. Similarly, the tool proposed by Gunawi
et al. [10], named FATE, allows the execution of long experiments; furthermore,
it is focused on reproducing specific fault sequences, simulating real scenarios.
Like PREFAIL, it is limited to a specific fault type, namely I/O errors, thus
greatly limiting its scope.

Contributions. The main contribution of this paper is the design and imple-
mentation of FINJ, an easy-to-use open-source Python tool for fault injection
targeted at HPC systems, with workload management capabilities. A relevant
feature of FINJ is the possibility of seamless integration with other injection
tools targeted at specific fault types, thus enabling users to coordinate faults
from different sources and different system levels. By using FINJ’s workload fea-
ture, users can also specify lists of applications to be executed and faults to
be triggered on multiple nodes at specific times with specific durations. FINJ
thus represents a high-level, flexible tool, enabling users to perform complex and
reproducible experiments, aimed at revealing the complex relations that may
exist between faults, application behavior and the system itself. FINJ is also
extremely easy to use: it can be set up and executed in a matter of minutes, and
does not require the writing of additional code in most of its usage scenarios.
To the best of our knowledge, FINJ is the first portable, open-source tool that
allows users to perform and control complex injection experiments, that can be
integrated with heterogeneous fault types and that includes workload support,
while retaining ease of use and a quick setup time.

Organization. The rest of the paper is structured as follows. In Sect. 2, we
describe the FINJ architecture (Sect. 2.1), its components (Sect. 2.2) and their
implementation (Sect. 2.3). In Sect. 3, we present a simple use case to show how
FINJ can be deployed, while Sect. 4 concludes the paper.

2 FINJ Architecture

In this Section we discuss how fault injection is achieved in FINJ. We then
present its architecture, together with some implementation details. Due to its
portable and modular nature, customizing FINJ for different purposes is easy.

2.1 Architecture Overview

Fault injection in FINJ is achieved through tasks that are executed on target
nodes: each task corresponds to a particular application, which can either be

Target Node[s]Controller Node

Workload File

Benchmark and
Fault Programs

Benchmark
Processes

Fault
Processes

Children Processes

<<injection commands>>

<<status messages>>

Execution Record

Fault Injection Controller Fault Injection Engine

Injection
Controller

Network
Client

Injection
Engine

Network
Server

Workload Generator

Configuration

Input Output

Configuration

Thread Pool

Fig. 1. Architecture of the FINJ tool showing the division between a controller node
(left) and a target node (right).

a benchmark program or a fault-triggering program. As demonstrated in [15],
this approach allows for the integration in FINJ of any low-level fault injection
framework that can be triggered by using an executable program or a shell script.
A task is defined by the following attributes:

– args: the full shell command required to run the selected task. The command
must refer to an executable file that can be accessed from the target hosts;

– timestamp: the time in seconds at which the task must be started, relative to
the starting time of the injection session;

– duration: the task’s maximum allowed duration, expressed in seconds, after
which it will be abruptly terminated. This duration can serve as an exact
duration as well, with FINJ restarting the task if it finishes earlier, and ter-
minating it if it lasts more. This behavior depends on the FINJ configuration
(see Sect. 2.2). A duration of 0 implies that the task is always allowed to run
until its termination;

– isFault : defines whether the task corresponds to a fault-triggering program,
or to a benchmark application;

– seqNum: a sequence number used to uniquely identify the task;
– cores: the list of CPU cores that the task is allowed to use on target nodes,

enforced through a NUMA Control policy [13]; this attribute is optional.

A set of tasks defines a workload, which is a succession of scheduled fault and
benchmark executions at specific times, reproducing a realistic working environ-
ment for the fault injection process. A particular execution of a given workload
then constitutes an injection session. Many fault programs are supplied with
FINJ, allowing users to experiment with a variety of anomalies out-of-the-box.

FINJ consists of two basic components: a fault injection controller, and a
fault injection engine. The two components correspond to processes that must
be run on the nodes subject to injection experiments. Communication between
them is achieved through TCP sockets using a simple message-based protocol.
The high-level structure of the FINJ architecture is illustrated in Fig. 1.

FINJ Controller. The controller is the orchestrator of the injection process, and
should be run on an external node that is not affected by the faults. The con-
troller maintains connections to all nodes involved in the injection session, which
run fault injection engine instances and whose addresses are specified by users
when launching the program. Therefore, injection sessions can be performed on
multiple nodes at the same time. The controller reads task entries from the
selected workload: the reading process is incremental, and tasks are read in real-
time a few minutes before their expected execution, according to their relative
time-stamp. For each task the controller sends a command to all target hosts,
instructing them to start the new task at the specified time. Finally, the con-
troller collects all status messages produced by the target hosts, and stores them
in a separate file for each host. These status messages are related to the start and
termination of each single task, besides status changes in the host (for example,
when connection is lost and re-established).

FINJ Engine. The engine is structured as a daemon, perpetually running on
nodes that are expected to be subject to injection sessions. The engine waits for
task commands to be received from remote controller instances. Engines can be
connected to multiple controllers at the same time, and status messages will be
sent to all of them. However, task commands are accepted from one controller
at a time, which is defined as the master of the injection session. The engine
manages received task commands by assigning them to a dedicated thread from
a pool. The thread manages all aspects related to the execution of the task,
such as spawning the necessary subprocesses and sending status messages to
controllers when relevant events (such as the start or termination of the task)
occur. Whenever a fault causes a target node to crash and reboot, controllers are
able to re-establish and recover the previously running injection session, given
that the engine is set up to be executed at boot time on the target node.

2.2 Components

FINJ is based on a highly modular architecture, and therefore it is very easy to
customize single components in order to add or tune features.

Network. Engine and controller instances communicate through a network layer
in the FINJ tool. Communication is achieved through a simple message-based
protocol employing TCP sockets. This design choice is motivated by the fact
that the volume of data sent during injection sessions is extremely low, while
high reliability is a desirable quality. Users can still integrate their preferred
transport method with little effort, thanks to FINJ’s highly modular nature.

Specifically, a message client and server were implemented: clients are used
by FINJ controllers in order to connect to servers hosted on FINJ engine
instances. Messages can then be either commands, related to single tasks and
imposed by controllers, or status messages, which are sent by engines and are
related to status changes in their system. All messages are in the form of dic-
tionaries. This component also handles resiliency features such as automatic

re-connection from clients to servers, since temporary connection losses are to
be expected in a fault injection context.

Thread Pool. Task commands in FINJ engines are assigned to a thread in a
pool as they are received: each thread manages all aspects of a task assigned to
it. Specifically, the thread sleeps until the scheduled starting time of the task
(according to its time-stamp); then, it spawns a subprocess running the speci-
fied task, and sends a message to all connected controllers to inform them of the
event. At this point, the thread waits for the task’s termination, depending on
its duration and on the current configuration. Finally, the thread sends a new
status message to all connected hosts informing them of the task’s termination,
and returns to sleep. The amount of threads in the pool, which is a configurable
parameter, determines the maximum number of tasks that can be executed con-
currently. Since threads in the pool are started only once during the engine’s
initialization, and wake up for minimal amounts of time when a task needs to be
started or terminated, we expect their impact on performance to be negligible.

Input and Output. In FINJ, input and output of all data related to injection
sessions are performed by controller instances, and are handled by reader and
writer entities. By default, these employ the CSV format, which was chosen
due to its extreme simplicity and generality, but they can be easily customized
by users for other formats. Input in FINJ is constituted by workload files: as
mentioned in Sect. 2.1, these files include one entry for each task that must be
executed in the injection session. Using the CSV format makes workload files
extremely readable, and manually writing workloads corresponding to highly
specific test cases can be easily achieved as well. FINJ output, instead, is made up
of two parts. The first is the execution log, which contains entries corresponding
to status changes in the target node, namely the start and termination of tasks,
errors that are encountered if any, and connection loss or recovery events. The
second part of FINJ output is related to tasks: all output text written to the
stdout or stderr channels during their execution, if any, is reported to controllers,
and is stored in separate plain-text files in a directory alongside the main output
file, each named according to the task’s name and sequence number.

Configuration. The FINJ tool’s runtime behavior is customizable by means of
a configuration file. This file is in JSON format and includes several options
that alter the behavior of either controller or engine instances. Among the basic
options, it is possible to specify the listening TCP port for engine instances, and
the list of addresses of target hosts, to which controller instances should connect
at launch time. The latter is useful when injection sessions must be performed
on large sets of nodes, whose addresses can be conveniently stored in a file.
More complex options are also available: for instance, it is possible to define a
series of commands corresponding to tasks that must be launched together with
FINJ, and must be terminated with it. This option proves especially useful when
users wish to set up monitoring frameworks, such as the Lightweight Distributed

Metric Service (LDMS) [1], to be launched together with FINJ in order to collect
system performance metrics during injection sessions.

Workload Generation. While writing workload files manually is possible, this
is time-consuming and not desirable for long injection sessions. Therefore, we
implemented in FINJ a workload generation tool, which can be used to auto-
matically generate workload files with certain statistical features, while trying
to combine flexibility and ease of use. The workload generation process is con-
trolled by three parameters: a maximum time span for the total duration of the
workload expressed in seconds, a statistical distribution for the duration of tasks,
and another one for their inter-arrival times. These distributions are separated
in two sets, for fault and benchmark tasks, thus amounting to a total of four.
They can be either specified analytically by the user or can be fitted from real
data, thus reproducing realistic behavior.

A workload is composed as a series of fault and benchmark tasks that are
selected from a list of possible shell commands. To control the composition of
workloads, users can optionally associate to each command a probability for its
selection during the generation process, and a list of CPU cores for its execution,
as explained in Sect. 2.1. By default, commands are picked uniformly. Having
defined its parameters, the workload generation process is then fairly simple:
tasks are randomly generated in order to achieve statistical features close to those
specified as input, and are written to an output CSV file, until the maximum
imposed time span is reached. Alongside the full workload, a probe file is also
produced: this workload file contains one entry for each task type, all with a
short fixed duration, and represents a lightweight workload version. This file can
be used during the setup phase to test the correct configuration of the system,
making sure that all tasks are correctly found and executed on the target hosts,
without having to run the entire heavy workload.

2.3 Implementation

FINJ is implemented in Python, an object-oriented, high-level interpreted pro-
gramming language2 , and can be used on all major operating systems. All FINJ
dependencies are included in the Python distribution, and the only optional
external dependency is the scipy package, which is needed for the workload gen-
eration functionality. The source code is publicly available on GitHub3 under
the MIT license, together with its documentation, usage examples and several
fault-triggering programs. FINJ works on Python versions 3.4 and above.

In Fig. 2 we illustrate the class diagram for the FINJ tool. The engine and
controller entities are respectively represented by the InjectorEngine and Injec-
torController classes. Users can instantiate these classes and start injection ses-
sions directly, by using the listen method to put the engine in listening mode, and
the inject method of the controller, which allows to start the injection session

2 https://www.python.org/events/python-events/.
3 https://github.com/AlessioNetti/fault injector.

Fig. 2. Class diagram of the FINJ tool.

itself. However, scripts are supplied with FINJ to create controller and engine
instances from a command-line interface, simplifying the process. This method
will be discussed in Sect. 3. The InjectionThreadPool class, instead, supplies the
thread pool implementation used to execute and manage tasks.

The network layer of the tool is represented by the MsgClient and MsgServer
classes, which implement the message and queue-based client and server used
for communication. Both classes are implementations of the MsgEntity abstract
class, which provides the interface for sending and receiving messages, and imple-
ments the basic mechanisms that regulate the access to the underlying queue.

Input and output are instead handled by the Reader and Writer abstract
classes and their implementations: CSVReader and CSVWriter handle the read-
ing and writing of workload files, while ExecutionLogReader and ExecutionLog-
Writer handle execution logs generated by injection sessions. Since these classes
are all implementations of abstract interfaces, it is easy for users to customize
them for different formats. Tasks are modeled by the Task class that contains
all attributes specified in Sect. 2.1.

Lastly, access to the workload generator is provided through the Workload-
Generator class, which is the interface used to set up and start the generation
process. This class is backed by the ElementGenerator class, which offers basic
functionality for fitting data and generating random values. This class acts as a
wrapper on scipy’s rv continuous class, which generates random variables.

3 Using FINJ

In this Section we demonstrate the flow of execution of FINJ through a concrete
example carried out on a real HPC node and provide insight on its overhead.

Fig. 3. A sample CSV workload that can be used with FINJ.

3.1 Sample Execution

In this Section we will consider a sample fault injection session carried out using
FINJ. The employed workload file, named sample.csv, is illustrated in Fig. 3.
The test was carried out on one node of an HPC system equipped with two Intel
Xeon E5-2630 v3 CPUs, each with 8 cores, 128GB of RAM, and running CentOS
7.3. The finj engine and finj controller Python scripts are supplied with FINJ
to start engine and controller instances respectively. Their usage is explained on
the GitHub repository for the tool, together with all configuration options.

In this workload, the first task is the Intel Distribution4 for the well-known
High-Performance Linpack (HPL) benchmark, optimized for Intel Xeon CPUs.
This task starts at time 0 in the workload, and has a maximum allowed dura-
tion of 30min. The following two tasks are fault-triggering programs: cpufreq
uses the Intel P-State driver in the Linux kernel5 to dynamically reduce the
maximum allowed CPU frequency, emulating performance degradation, while
leak [16] creates a memory leak in the system, eventually using all available
RAM. The cpufreq program requires appropriate permissions, so that users can
access the files controlling Linux CPU governors. The HPL benchmark was run
with 8 threads, pinned on the first 8 cores of the machine, while the cpufreq and
leak tasks were forced to run on cores 6 and 4 respectively. Also note that the
tasks must be available at the specified path on the systems running the FINJ
engine, which in this case is relative to the location of the launching script.

Having defined the workload, the injection engine and controller must be
started. Using the default configuration, and supposing that the test must be
performed locally, this can be accomplished with the two following commands:
python finj_engine -p 30000 &
python finj_controller -w sample.csv -a localhost:30000

In the code above, the -p argument indicates the listening TCP port for the
engine instance. The -a argument is instead the list of engine addresses to which
the controller should connect, and -w is the path of the CSV workload file to
be injected. The controller instance will then connect to the engine and start
executing the workload, storing all output in a unique CSV file for each target
host. When this process is finished, the controller terminates. The output CSV
files for our example have the format shown in Fig. 4: each entry represents a
status change event, which in this case is the start or termination of tasks, and
4 https://software.intel.com/en-us/mkl-windows-developer-guide-overview-of-the-
intel-distribution-for-linpack-benchmark.

5 https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt.

Fig. 4. A sample output file produced by FINJ after an injection session for the work-
load specified in Fig. 3.

is flagged with its absolute time-stamp on the target host. In addition, we also
find an error field, detailing possible errors that were encountered. Note that the
file is opened and closed by session start and end entries: the presence of these
ensures that the injection process did not encounter errors and that the entire
workload was processed successfully. It can be clearly seen from this experiment
how easily a FINJ experiment can be configured and started on multiple cores.

At this point, the data generated by FINJ can be easily compared with
other data, for example performance metrics collected through a monitoring
framework, in order to better understand the system’s behavior under faults. For
this test, we used the LDMS framework [1] to collect performance metrics on the
target host at each second, for the duration of the injection session. In Fig. 5 we
show the total RAM usage and the CPU frequency of core 0. The benchmark’s
profile is simple, showing a constant CPU frequency while RAM usage slowly
increases as the application performs tests on increasing matrix sizes. The effect
of our fault programs, marked in gray, can be clearly observed in the system:
the cpufreq fault causes a sudden drop in CPU frequency, resulting in reduced
performance and longer computation times, while the leak fault causes a steady,
linear increase in RAM usage. Even though saturation of the available RAM is
not reached, this peculiar behavior can be used for prediction purposes.

3.2 Overhead of FINJ

We also performed tests in order to evaluate the overhead that FINJ may intro-
duce. To do so, we employed the same system used in Sect. 3.1 together with
the HPL benchmark, this time configured to use all 16 cores of the machine. We
run the HPL benchmark 20 times directly, and then repeated the same process
by using a FINJ workload. FINJ was once again instantiated locally. In both
conditions the HPL benchmark scored an average running time of roughly 320
seconds, therefore leading us to conclude that the impact of FINJ on running
applications is negligible, as expected from the implementation.

Fig. 5. CPU Frequency and RAM Usage, as monitored on the target system during
the sample injection session.

4 Conclusions

We have presented FINJ, a high-level, easy-to-use tool for fault injection and
monitoring in HPC systems. FINJ allows for the automation of complex experi-
ments, and for reproducing anomalous behaviors in a deterministic, simple way.
FINJ is open-source and implemented in Python, an object-oriented interpreted
programming language available on all major operating systems, and has no
dependencies for its core operation. This, together with the simplicity of its
command-line interface, makes the deployment of FINJ on large-scale systems
trivial. Since FINJ is based on the use of tasks, which are external executable
programs, users can integrate the tool with any existing lower-level fault injection
framework that can be triggered in such way, and ranging from the application
level to the kernel, or even hardware level. The use of workloads in FINJ also
allows to reproduce complex, specific fault conditions in HPC systems, and to
reliably perform experiments involving multiple nodes at the same time.

As future work, we plan to perform scalability studies on the FINJ tool,
by deploying it on a large-scale HPC environment. We have already performed
extensive testing on the system presented in Sect. 3 with excellent preliminary
results. Also, we plan to implement the ability to build workloads in which the
order of tasks is defined by causal relationships rather than time-stamps, which
might simplify the triggering of extremely specific anomalous states in a given
system. We will also integrate multiple network transport methods to choose
from besides TCP, so as to extend the range of systems FINJ can be applied to.

Acknowledgements. A. Netti has been supported by a research fellowship from the
Oprecomp-Open Transprecision Computing project. A. Ŝırbu has been partially funded
by the EU project SoBigData Research Infrastructure—Big Data and Social Mining
Ecosystem (grant agreement 654024).

References

1. Agelastos, A., et al.: The lightweight distributed metric service: a scalable infras-
tructure for continuous monitoring of large scale computing systems and applica-
tions. In: Proceedings of SC 2014, pp. 154–165. IEEE (2014)

2. Ashby, S., Beckman, P., Chen, J., Colella, P., Collins, B., Crawford, D., et al.: The
opportunities and challenges of exascale computing. In: Summary Report of the
Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee, pp.
1–77 (2010)

3. Calhoun, J., Olson, L., Snir, M.: FlipIt: an LLVM based fault injector for HPC.
In: Lopes, L., et al. (eds.) Euro-Par 2014. LNCS, vol. 8805, pp. 547–558. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-14325-5 47

4. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: Toward exascale
resilience: 2014 update. Supercomput. Front. Innovations 1(1), 5–28 (2014)

5. DeBardeleben, N., Blanchard, S., Guan, Q., Zhang, Z., Fu, S.: Experimental frame-
work for injecting logic errors in a virtual machine to profile applications for soft
error resilience. In: Alexander, M., et al. (eds.) Euro-Par 2011. LNCS, vol. 7156, pp.
282–291. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29740-
3 32

6. Ferreira, K.B., Bridges, P., Brightwell, R.: Characterizing application sensitivity
to OS interference using kernel-level noise injection. In: Proceedings of SC 2008,
p. 19. IEEE Press (2008)

7. Gainaru, A., Cappello, F.: Errors and faults. In: Herault, T., Robert, Y. (eds.)
Fault-Tolerance Techniques for High-Performance Computing. CCN, pp. 89–144.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20943-2 2

8. Guan, Q., Chiu, C.C., Fu, S.: CDA: a cloud dependability analysis framework
for characterizing system dependability in cloud computing infrastructures. In:
Proceedings of PRDC 2012, pp. 11–20. IEEE (2012)

9. Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures. In: Proceedings of SRDS 2013, pp. 205–214.
IEEE (2013)

10. Gunawi, H.S., et al.: FATE and DESTINI: a framework for cloud recovery testing.
In: Proceedings of NSDI 2011, p. 239 (2011)

11. Hsueh, M.C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer
30(4), 75–82 (1997)

12. Joshi, P., Gunawi, H.S., Sen, K.: PREFAIL: a programmable tool for multiple-
failure injection. In: ACM SIGPLAN Notices, vol. 46, pp. 171–188. ACM (2011)

13. Lameter, C.: Numa (non-uniform memory access): an overview. Queue 11(7), 40
(2013)

14. Naughton, T., Bland, W., Vallee, G., Engelmann, C., Scott, S.L.: Fault injection
framework for system resilience evaluation: fake faults for finding future failures.
In: Proceedings of Resilience 2009, pp. 23–28. ACM (2009)

15. Stott, D.T., Floering, B., Burke, D., Kalbarczpk, Z., Iyer, R.K.: NFTAPE: a frame-
work for assessing dependability in distributed systems with lightweight fault injec-
tors. In: Proceedings of IPDS 2000, pp. 91–100. IEEE (2000)

16. Tuncer, O., et al.: Diagnosing performance variations in HPC applications using
machine learning. In: Kunkel, J.M., Yokota, R., Balaji, P., Keyes, D. (eds.) ISC
2017. LNCS, vol. 10266, pp. 355–373. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58667-0 19

17. Villa, O., Johnson, D.R., O’connor, M., Bolotin, E., Nellans, D., Luitjens, J.,
et al.: Scaling the power wall: a path to exascale. In: Proceedings of SC 2014,
pp. 830–841. IEEE (2014)

