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Abstract

Next generation HPC applications will increasingly time-share system resources

with emerging workloads such as in-situ analytics, resilience tasks, runtime adapta-

tion services and power management activities. HPC systems must carefully schedule

these co-located codes in order to reduce their impact on application performance.

Among the techniques traditionally used to mitigate the performance effects of time-

share systems is gang scheduling. This approach, however, leverages global syn-

chronization and time agreement mechanisms that will become hard to support as

systems increase in size. Alternative performance interference mitigation approaches

must be explored for future HPC systems.
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This dissertation evaluates the impacts of workload concurrency in future HPC

systems. It uses simulation and modeling techniques to study the performance im-

pacts of existing and emerging interference sources on a selection of HPC benchmarks,

mini-applications, and applications. It also quantifies the cost and benefits of differ-

ent approaches to scheduling co-located workloads, studies performance interference

mitigation solutions based on gang scheduling, and examines their synchronization

requirements.

To do so, this dissertation presents and leverages a new Extreme Value Theory-

based model to characterize interference sources, and investigate their impact on

Bulk Synchronous Parallel (BSP) applications. It demonstrates how this model can

be used to analyze the interference attenuation effects of alternative fine-grained OS

scheduling approaches based on periodic real time schedulers. This analysis can, in

turn, guide the design of those mitigation techniques by providing tools to understand

the tradeoffs of selecting scheduling parameters.
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Chapter 1

Introduction

Modern HPC (High Performance Computing) applications are used to solve advanced

scientific problems in areas such as engineering, climate modeling, physics, and molec-

ular dynamics. Those computational science programs generate large amounts of

data that have to be prepared and analyzed before being presented to the field ex-

pert, who will use the resulting information to understand problems and inform de-

cision making. To efficiently perform this, applications are increasingly coupled with

analytics codes. This allows the system to periodically analyze data as it becomes

available during application runtime.

These applications run in complex systems with limited resources that have to

be shared with other applications and with system management activities. Next

generation systems will face new challenges given this growing concurrency of work-

loads [4, 21, 54]. In addition to the mutual interference that may exist between

co-existing codes, applications will have to deal with other interference sources such

as background system tasks, resilience routines, runtime adaptation services, and

power management policies. The random nature of the disruption events generated

by those workloads causes significant variability in the performance of individual

1



Chapter 1. Introduction

parallel components affecting the overall application performance [21].

In order to optimize the performance of applications, the system software must

make effective resource allocation decisions. In current HPC systems, resource alloca-

tion is based on coarse-grained space-shared policies, where workloads have exclusive

access to a set of nodes while they are running. In this scheme, applications fre-

quently use a subset of the compute nodes to run analytics. This requires expensive

data movement between simulation and analytics nodes (as shown in Figure 1.1a).

These costs are motivating the use of alternative resource allocation policies where

simulation is co-located on a node with analytics. This co-location of workloads

can be done using fine grained space-sharing where applications and analytics run

on a non-overlapping set of processors inside the node (as shown in Figure 1.1b)

or using time-shared allocation policies where processors are shared (as shown in

Figure 1.1c) by the coupled workloads. The advantage of time-sharing processors is

that analytics can leverage idle processors times to run, using resources that otherwise

are wasted [90].

Although moving from node space-sharing to workload co-location policies re-

duces data movement costs and uses processors more efficiently, the effects of noise

and contention for resources can increase significantly [54]. Under the co-location

scheme, separate application components contend for system resources such as mem-

ory last level caches, DRAM bandwidth, and device drivers. When using time-sharing

policies CPU cores are also shared (see Figure 1.1). Additionally, the services re-

quired to support a given workload may result in OS activities (sometimes referred

to as OS noise) that slow down coupled workloads.

Among the techniques to mitigate performance interference are hybrid space-

sharing and time-sharing approaches [2], cooperative time-sharing [90], and gang

scheduling [26]. This last approach, for example, concurrently schedules the parallel

2



Chapter 1. Introduction

…

Network

Node 1

Node 2

Node 3

Node n

…

Node 1

Node 2

Node 3

Node n

(a) Node space sharing

CPU CPUCPUCPUCPU
CPUCPUCPU

Memory I/O

Node

BUS

(b) Processor space sharing

Memory I/O

CPU CPU CPU

Node

BUS

(c) Time sharing

Resource allocated exclusively 
to simulation (space-shared)

Resource allocated exclusively 
to analytics (space-shared)

Resource time-shared between 
simulation and analytics

Figure 1.1: Resource allocation options

components of a workload across system partitions, facilitating those components

making progress in parallel and avoiding the long blocking periods that occur if they

are not scheduled at the same time. This technique leverages global synchroniza-

tion and time agreement mechanisms, however, that are difficult to scale. Given

this, alternative performance interference mitigation approaches must be explored

for future HPC systems.
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Chapter 1. Introduction

This dissertation evaluates the impacts of workload concurrency in future HPC

systems. It studies current interference mitigation solutions based on gang schedu-

ling and examines their synchronization requirements. This work also analyzes the

interference attenuation effects of alternative fine-grained OS scheduling approaches

based on periodic real time schedulers, providing the theoretical foundations to un-

derstand their impact on applications performance.

1.1 Modern HPC architectures

Modern HPC applications and systems are undergoing important changes. Large-

scale scientific applications are beginning to perform simulation and analysis concur-

rently instead of sequentially. Similarly, hardware memory and network bandwidth

restrictions and system power caps also motivate the need to minimize data move-

ment and power down unneeded hardware components whenever possible.

Under this scheme, system resources have to be shared between simulation and

analytics workloads. Additionally, system tasks and other emerging workloads also

compete for resources. In addition to the OS short-lived system tasks, which have

been traditionally identified as interference sources, next-generation HPC applica-

tions will face new sources of contention such as resilience routines, and power man-

agement tasks. This section describes a set of workloads and architectures of these

systems.

1.1.1 Composite Applications

Modern HPC applications are complex and are composed of coupled individual work-

loads which are each comprised of several interacting components. Figure 1.2 shows

an example of the components of simulation and analytics in an in situ analytics

4
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application. Each portion of the applications runs in its own enclave, a set of system

resources allocated to an application [4]. In Figure 1.2, enclave 1 contains the simu-

lation code and enclave 2 holds the analytics code, and these enclaves are co-located

on the same node.

I/O Middleware

Data

Simulation

Data 
Communication

I/O Middleware

Data

Analytics

Enclave 1 Enclave 2

Node

Figure 1.2: In situ analytics application

Simulation

In this architecture, a simulation application runs for a number of timesteps pre-

viously defined by the user and periodically shares the data that it generates with

analytics. This sharing is generally accomplished using a I/O middleware system such

as ADIOS [63]. Figure 1.2 shows how these enclave components cooperate within a

single node. Note that parallel instances of each workload run on thousands of nodes

performing a number of iterations comprised of local computations and barrier syn-
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chronization steps. This application model is called Bulk Synchronous Parallel [84]

because it facilitates the concurrent execution of local computation across processes,

and allows parallel progress through the use of synchronization points.

Analytics

As the simulation generates data, it is consumed by analytics which uses the I/O

middleware to receive that data from the transport channel and then generate use-

ful information for the application scientist. Often, data flows from simulation to

analytics; however data may flow from analytics to simulation to guide the compu-

tational operations performed by simulation, such in computational steering codes.

Among the tasks performed by analytics codes are visualization and steering [88],

cosmology analytics [71], data preparation and histogramming [89], and molecular

dynamics analysis and visualization [86].

1.1.2 System Support Activities

In order to support applications, a number of operating system tasks run in the

background. Those tasks provide the infrastructure services required by applications,

but at the same time are a potential source of interference. This section describes

those system activities.

Short-lived Tasks

The interference generated by background system activities has been widely stud-

ied [29,44,66]. Among the system activities that may affect application performance

in greater degree are interrupts, scheduling events, and I/O operations [66]. Al-

though these are generally short duration events, their effects can be significant on
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applications. Understanding those effects in future systems is important.

Resilience Tasks

As HPC systems grow in capacity and hardware components, failures will be more

common [55, 60]. Those systems will potentially require complex resilience mecha-

nisms to recover from those failures [27,30]. Resilience tasks such as checkpoint/restart

will be expensive in future HPC systems and will use a significant percentage of the

system available time [67]. This may reduce the time able to be used by applica-

tions. Although asynchronous checkpoint/restart, for example, helps to reduce the

costs of coordinated checkpoint/restart by relaxing the times in which checkpoints

are performed across processes, it is also harmful to applications given the nature of

the interference events that it generates.

Power Optimization Tasks

Reducing power consumption has been identified as one of the main challenges that

future large-scale systems will face [4]. Advances in hardware infrastructure seek

to improve energy efficiency; however, they may not suffice without proper system

software support [57]. The implementation of these system power management ap-

proaches can cause a wide range of problems to HPC scheduling systems. For exam-

ple, the use of idle power states to save power can generate performance degradation

in applications when the sleep length for a core is overestimated [47].

Likewise, Dynamic Voltage and Frequency Scaling (DVFS) techniques influence

both BSP application synchronization steps, and complicate scheduling policy deci-

sions. For example, DVFS may affect the duration of individual bulk synchronous

intervals generating an effect similar to that produced by OS noise [57]. Similarly,

asymmetric DVFS decisions across cores can potentially have large negative perfor-
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mance impacts on coordinated scheduling.

1.2 The Effects of Interference

As described in Section 1.1, bulk synchronous parallel applications are comprised of

iterations in which the parallel components of the applications perform local compu-

tations and synchronize at the end of each computation step. The duration of each

iteration is dominated by the slowest parallel component, since all parallel compo-

nents must finish the computation step in order to synchronize. Interference is one

of the main factors that influence the interval length.

The effects of interference on parallel applications vary depending on the charac-

teristics of the noise events and the applications’ granularity (i.e., the length of the

computation iteration [82]) [23]. In the absence of any mitigation mechanism, the

individual components of parallel applications may not be affected in the same way;

instead they will meet interference events of different duration at different times.

This significantly affects communication between components and results in signifi-

cant performance degradation and variability in the application runtime [21].

Noise events perturbing a given process are amplified if they affect the expected

end time of a parallel operation, for example increasing the wait time on processes

during blocking operations. Other noise events disturbing a process may be absorbed

if they do not increase the parallel operation’s total duration. This may occur, for

example, if interfering activities occur while the application is already waiting for

other reasons.

Previous work [29] has shown that high-duration low-frequency noise patterns

(e.g., analytics codes, resilience tasks) happening during blocking collective opera-

tions are more likely to be amplified, while low-duration high-frequency noise events
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(e.g., short-lived tasks) are more easily absorbed. The application’s granularity also

influences the noise impact with shorter operations being more sensitive to noise.

1.3 Example

To illustrate these concepts, consider an example based on the Gyrokinetic Toroidal

Code (GTC), a code used to study magnetic microturbulence in torus geometries

by using a 3D-particle in cell approach to analyze particles interactions [68]. Each

particle has a set of features such as position, velocity, and weight [53]. This particle

information is shared with PreDatA analytics through an output channel. PreDatA

then performs several operations, including global analysis and aggregation of each of

the particles’ features, range queries to detect particles in a given area, and histogram

computations.

As shown in this example, the operations performed both by simulation and

analytics codes are complex, as are the interactions between these two workloads. In

this example, most of the computational resources are allocated to GTC to perform

simulations. Every 5 timesteps, which combined have a duration of approximately

5 seconds, GTC sends data to PreDatA. PreDatA then consumes the simulation

data and runs for approximately 100 milliseconds. Both simulation and analytics

perform global operations that require communication and synchronization between

processes through shared network resources.

In this hypothetical example, both GTC and PreDatA are using one million

processes and are time-sharing the same number of CPU cores. While workloads

are running, several tasks run in the background in order to facilitate their correct

execution. Among these tasks are:

• Short-lived tasks: for example, I/O devices generate interrupts that must be
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handled by the corresponding device driver, and the CPU scheduler is executed

each time that an interrupt is received.

• Resilience tasks: an asynchronous checkpoint/restart mechanism with check-

pointing tasks of one second duration every two minutes like the described

in [30] runs in order to protect workloads from system failures.

• Power optimization tasks: a DVFS mechanism attempts to reduce power con-

sumption by independently controlling CPU frequencies.

These sources of interference impact the duration of bulk synchronous intervals

and the overall workloads’ performance in different ways. The bursty nature of the

interference pattern that PreDatA generates in GTC has a potentially high impact on

GTC performance. Similarly, the uncoordinated nature of the checkpointing events

and their lower-frequency higher-duration pattern may generate even more significant

impacts. Since the DVFS mechanism used in this example perform changes in CPU

frequencies independently, it will impact the duration of bulk synchronous intervals

in different ways, having a potentially high impact on the total workloads’ comple-

tion time. Finally, short-lived tasks will also contribute to workload performance

degradation.

1.4 Mitigating Interference Impacts

As described in Sections 1.2 and 1.3, the effects of interference may be important if

applications and noise patterns meet certain characteristics. Given their stochastic

nature, interference events impact individual bulk synchronous parallel intervals in

a non-uniform way, increasing the length of the total interval. The length of this

interval depends on the slowest process reaching the synchronization barrier. One

of the approaches to mitigate this phenomena is to synchronize the occurrence of
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interference events in order to generate homogeneous interference patterns across

the application’s processes, facilitating the communication between them.

This can be accomplished by using system-based gang scheduling or gang sche-

duling using synchronizing collectives in the workloads’ code. System-based gang

scheduling leverages tight system synchronization services to schedule interference

events at the same time. On the other hand, synchronizing collectives do not rely on

system synchronization services; however, as the MPI 3.0 standard recommends [32],

application developers must be careful on relying on the synchronization capabili-

ties provided by MPI collectives. These current mitigation mechanism will not scale

efficiently, however, and new approaches may need to be explored [78] for future

large-scale systems. This is especially critical for applications with very short inter-

vals, which require tight synchronization [78], and is even more problematic if they

are affected by interference sources with low-frequency high-duration patterns.

Approaches based on periodic real-time scheduling [50, 61] have shown benefits

similar to these traditional mitigation approaches. Those alternative techniques re-

quire less strict system synchronization services and may help to mitigate the impact

of emerging workloads in HPC systems. Limited research has been done on the effi-

cacy of these techniques, however.

1.5 Research Challenges

The new trends on computational science codes and the advent of the new interfer-

ence sources described in previous sections brings new interesting research challenges.

Although several empirical studies have been devoted to study the impact of OS inter-

ference on applications, there is a need of further research on the impacts of emerging

interference sources. Additionally, there is a need of more rigorous analytical tools to

perform that research. This will allow to use theoretical foundations to characterize
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those new interference sources, to study their impact on emerging applications, and

to study alternative mitigation approaches that can be used in future HPC systems.

The following is a summary of the research questions that I attempt to address

in this work:

1. How will emerging interference sources impact applications’ performance in

next-generation HPC systems, and what is the effect of using different ap-

proaches to schedule co-located workloads?

2. What are the synchronization requirements of current performance interference

mitigation approaches?

3. How can we effectively characterize emerging HPC interference sources?

4. How can we effectively model the impact of interference sources and mitigation

techniques on applications?

1.6 Contributions

My thesis is that fine-grained OS scheduling techniques can be effectively used to sup-

port the co-location of HPC applications and emerging workloads in next-generation

exascale systems. To evaluate this thesis, I first empirically study current approaches

to scheduling co-located workloads. I then develop a model-based approach for study-

ing interference workloads. Finally, I use these techniques to examine the effects of

using fine-grained OS scheduling to mitigate performance impacts.

The major contributions of this work are:

• A simulation-based method to evaluating the performance impacts of the co-

location of emerging workloads and HPC applications.
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• An empirical study of the performance impact of different approaches to sche-

duling applications and co-located workloads;

• An examination (performed in collaboration with other colleagues) of the syn-

chronization requirements of traditional gang scheduling approaches used to

reduce the performance impact on applications;

• An extreme value theory-based approach to modeling traditional and new inter-

ference sources, predicting their impact, and informing the design of scheduling

techniques to assist in their co-location with HPC applications.

• A validation of the analytical model that I propose, by characterizing several

sources of interference and predicting their impacts on a set of applications.

• An evaluation of a fine-grained OS scheduling performance interference miti-

gation technique using both the empirical and the analytical approaches that

I present in this dissertation.

1.7 Dissertation Outline

The remainder of this document is organized as follows: Chapter 2 provides essen-

tial background information and discusses related work on application composition,

performance interference in HPC applications and extreme value theory concepts.

Chapter 3 presents a framework that I developed in collaboration with other col-

leagues. The chapter then uses the framework to quantify the costs and benefits

of different approaches to scheduling applications and workloads on nodes in large-

scale applications, including space sharing, uncoordinated time sharing, and gang

scheduled time sharing. Chapter 4 presents an extreme value theory-based model for

analyzing the performance of bulk-synchronous HPC applications under the presence

of co-located workloads. Chapter 5 evaluates fine-grained OS scheduling policies as
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a means to support code co-location both empirically and using the extreme value

modeling approach that I propose in this dissertation. Finally, Chapter 6 concludes

and presents directions for future work.
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Related Work

This chapter describes past work related to this dissertation. Section 2.1 presents an

overview of the composition of HPC applications as well as the system mechanisms

and scheduling techniques required to support it. Section 2.2 describes previous re-

search on the characterization of sources of interference in HPC systems. Section 2.3

studies works on analytical modeling of applications performance and the impact

of interference. Section 2.4 provides a study of current interference impact mitiga-

tion strategies. Finally, Section 2.5 contrasts the works described here against this

dissertation, and explains the novel contributions of my work.

2.1 Application Composition

A major source of interference for next-generation HPC applications are the work-

loads used for in situ data analysis, steering, data aggregation, and visualization

that they feed. Such codes are used, for example, to provide new analysis capabili-

ties to existing simulation codes, optimize I/O performance by reducing system I/O

demands, and provide summary information at runtime that scientists can use to
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monitor the behavior of the simulation.

2.1.1 Example Composite Codes

There are a large number of analytics codes [71,86,88,89]. In this dissertation, I focus

on two modern in situ analytics workloads, using them to quantify the potential

impact of analytics on applications’ performance, the Bonds analysis used with the

LAMMPS application code and a histogramming analysis for the GTC-P proxy

application performed using the PreDatA analytics middleware.

SmartPointer Analysis in LAMMPS: SmartPointer [86] is an analytics and

visualization code comprised of configurable analytics services. The Bonds capa-

bility of SmartPointer facilitates the tracking of cracks generated by the LAMMPS

simulation code [73]. Specifically, Bonds directly reads atom bonding information

from LAMMPS, and conducts a compute-intensive analysis that determines where

in a simulated material adjacent molecules are no longer bonded. It then writes the

computed information to a previously configured output channel. Bonds performs

no additional communication of its own; it relies on communication by LAMMPS to

obtain ghost cell information from other nodes.

PreDatA - Preparatory Data Analytics in GTC-P: PreDatA is a middleware

with pluggable components that perform a number of data preparation operations

such as data sorting, filtering, and histogram generation. Those operations are pre-

defined according to the users needs [89], and frequently used so that scientists can

monitor the progress (and potential correctness) of long-running simulations. A num-

ber of applications have used PreDatA to perform in-situ analytics, including the

Gyrokinetic Toroidal Code (GTC) [51], a computational-science application used for
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3D particle-in-cell simulations of plasma micro-turbulence, and Pixie3D [11], a 3D

MHD (Magneto Hydro-Dynamics) solver.

2.1.2 System Software Support for Analytics

A range of system software techniques have been developed to support in situ analyt-

ics including, data movement, consistency management, and scheduling techniques.

Figure 2.1 shows an example of the stack that simulation and analytics codes use to

support their activities. The Adaptable I/O System (ADIOS) [63] provides an API

applications can use to efficiently transport data either to other applications or to

the file system. It is a flexible middleware that allows applications to choose between

different data transport methods at runtime.

There are several alternatives to data transport. The Transparently Consistent

Asynchronous Shared Memory (TCASM) [3] API provides low-overhead interfaces

for asynchronous memory sharing between codes, while also providing consistent

views of shared data using virtual memory techniques. Flexpath [18] uses a pub-

lic/subscribe mechanism to facilitate data transport between coupled codes by using

either shared-memory, Remote Direct Memory Access (RDMA), or TCP/IP commu-

nication. Finally, DataSpaces [22] offers data transport and coordination capabilities

using RDMA as communication layer.

New HPC system software architectures, for example the Hobbes exascale op-

erating system [9], seek to provide more systematic support for multi-component

applications. The Hobbes XEMEM (Cross Enclave Memory) [52] abstraction, for

example, provides a shared-memory system between enclaves which is compatible

with XPMEM [87]. The Cross-Enclave Asynchronous Shared Memory (XAMS) [24]

approach leverages XEMEM and a copy-on-write technique to facilitate application

composition by providing an interface to communicate between application compo-
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Figure 2.1: System software support for in situ analytics

nents using a consumer-producer approach. The coupled codes that I study in this

dissertation use ADIOS and XEMEM as middleware and data transport, respec-

tively.

2.1.3 Scheduling Analytics

Analytics can be scheduled in a variety of ways, broadly categorized as either space-

shared, where cores are dedicated to analytics, or time-shared, where cores are shared

between application and analytics. Space sharing is simpler but requires dedicating

resources to analytics, while time-sharing can overlap analytics computation with

application computation but directly interfere with application performance.

Time-sharing scheduling approaches include uncoordinated time sharing and gang-

scheduled time sharing. In uncoordinated time sharing, each node schedules when
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analytics runs using a purely local scheduling policy. In gang-scheduled time sharing,

a system-wide mechanism coordinates when analytics runs, for example using syn-

chronized clocks, collective communication in the analytics, or collective communica-

tion in the application. Methods that avoid introducing extra global communications

are generally preferable because of the cost of those communications in large-scale

systems.

New services to cooperatively co-schedule analytics and simulation are also un-

der development. The Goldrush system [90], for example, proposes user-level mech-

anisms to enable simulation/analytics co-location, particularly on OpenMP appli-

cations with significant serial execution sections. This work has demonstrated the

viability of time-sharing analytics and simulation but relies on significant changes

to the application runtime. It is unclear if similar time-sharing approaches are ap-

propriate for a broader range of applications or more general OS-level support could

provide similar capabilities.

Chang et al. in [12] propose an approach in which workloads are classified as

I/O-intensive or CPU-intensive. They claim that in high speed networks, where the

costs of processing huge amount of packets are elevated, I/O-intensive tasks may

not receive enough access to CPU resources, which are usually allocated to CPU-

intensive tasks. They propose a solution in which CPU-intensive tasks voluntarily

yield CPU cycles to I/O-intensive tasks.

2.2 Performance Interference

A large number of works have empirically studied the impacts of performance inter-

ference. Most have focused on the impact of short-lived background system activities,

while a few have studied the effects of other interference sources. Different techniques

have been used to these studies, ranging from implementation-based to simulation
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and emulation-based approaches. This section describes these approaches.

2.2.1 Performance Interference Characterization

OS noise [72] is the most well-known and studied interference source. Some au-

thors [5, 44] have studied the influence of OS noise on BSP applications and the

benefits of synchronizing noise events. Pradipta et al. [19] identified the sources of

jitter that are potentially more harmful for applications. They found that timer

interrupts are the OS noise events that generate the most significant amount of in-

terference, representing approximately a 63% of the total jitter in systems. Further

works [29,66] have investigated the impact of kernel activities on application perfor-

mance and how system design decisions such as the location of noisy nodes influence

performance [28].

Many other sources of interference have also been identified, including asyn-

chronous checkpointing [30, 60], in situ analytics systems [90], and system power

capping [70]. These sources are particularly interesting because of the increasing

importance of application composition and dynamic resource management in next-

generation HPC systems and applications [9, 53].

2.2.2 Summary

Despite all these empirical interference studies, however, the HPC community has

only a rough understanding of exactly how HPC applications are perturbed. For

example, OS noise studies have empirically demonstrated that the “shape” of the

noise is at least as important as the amount of noise; infrequent, long-duration noise

events have been shown to be significantly more disruptive than frequent short-

duration noise events [29, 41].
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These studies are almost exclusively empirical with little or no theoretical or ana-

lytical underpinning to help researchers understand why interference interacted with

applications in the way it did or provide quantitative predictions about how particu-

lar interference sources and applications would interact. In contrast, this dissertation

seeks to provide the theoretical foundations to characterize interference sources, pre-

dict their impact on applications and understand performance interference mitigation

strategies.

2.2.3 Simulating Interference Performance Impact

Several researchers have used simulation and emulation techniques in order to inves-

tigate the potential effects of interference on applications running on future large-

scale systems. This facilitates study of those impacts using scales and capabilities

not present in current systems. A number of works, including that described in

this dissertation have used LogGOPSim. In the remainder of this section, I describe

LogGOPSim in detail, as well as information on other simulation approaches.

LogGOPSim Extreme-scale Simulator

LogGOPSim [42] has been used to investigate the effects of noise and noise-like phe-

nomena on application performance. Hoefler et al. [41] used this simulator to evaluate

the effects of OS noise on application performance. Levy et al. [60] demonstrated

that LogGOPSim could be used to accurately predict the impact of resilience mecha-

nisms on applications performance. Ferriera et al. [30] subsequently used LogGOPSim

to consider the impact of asynchronous checkpoint/restart on application perfor-

mance. Widener et al. [85] used LogGOPSim to study how non-blocking collectives

might be used to reduce the performance penalties associated with asynchronous

checkpoint/restart.
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LogGOPSim uses the LogGOPS model based on LogP [16]. It simulates traces

collected from small applications runs, reproducing messages between processes and

communication dependencies [30]. It also provides an extrapolation capability which

performs simulations at larger scales [42]. LogGOPSim simulates the impact of noise

by reading a noise trace. This noise trace contains noise events, characterized by their

starting time and duration, which are added to the communication or computation

events during simulation.

LogGOPSim provides the capability to simulate the level of synchronization of

interference events by controlling the point in which each process starts reading the

noise trace. If the starting points across processes are selected uniformly at random,

LogGOPSim simulates total uncoordinated scheduling of noise events. If the starting

points are selected from a normal distribution, it simulates gang scheduling with

different levels of synchronization. The degree of coordination is controlled with the

standard deviation of the distribution.

Other Simulation Approaches

Other works have used simulation and emulation approaches. Engelmann et al. [23]

use the extreme scale simulator (xSim) [8] to investigate noise impacts on HPC

systems with up to 2M nodes and 1 billion cores. They study the effects of noise

amplification and noise absorption on MPI collectives and propose this framework as

a tool to be used in hardware/software co-design of future HPC systems. Pradipta

De et al. [20] propose an emulation-based approach to study the impact of noise and

the mitigation effects of jitter synchronization. Unlike LogGOPSim, which provides

the capability of performing large scale analysis running simulations in a single node,

these frameworks require large amounts of systems resources which increase with size

of the extrapolation under analysis.
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In this dissertation, I leverage LogGOPSim to study the impact of new sources of

interference on HPC applications. I also use it to collect the baseline application’s

data that feed my performance interference analytical model.

2.3 Modeling Performance Impact

A few works have used mathematical-based modeling to study application perfor-

mance interference. A number of works leverage probabilistic and statistics of ex-

tremes concepts to provide the theoretical foundations to understand this problem.

This section describes these works and introduce the theoretical foundations that

they use.

2.3.1 Modeling Extremes

Extreme Value Theory (EVT) and the Expectation of Maximum Values (EMV) con-

cepts have been widely used across a variety of domains to estimate the probability

of extreme events. These theories have been recently used in computer science to

estimate applications’ performance [81] and the impact of jitter [78]. I next discuss

these and additional related works.

Extreme Value Theory

Extreme Value theory (EVT) is a sub-field of statistics focused on the behavior of

maxima of a set of random variables [43]. It is generally used to analyze or predict

the likelihood of extreme events occurring. EVT works with a set of independent,

identically distributed (i.i.d.) stochastic events of potentially unknown distribution,

and seeks to understand when a new extreme value (a sample larger than those seen
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previously) should be expected to happen.

EVT has been used in fields such as hydrology to determine long-term flood plain

levels, and for similar actuarial analyses in the insurance and financial industries.

It has also been used to estimate the size of demand bursts in internet traffic [37].

Similarly, Uchida et al. [83] present a model that uses extreme value theory to explain

the tail of the distribution of throughput and as a tool to predict peaks of throughput.

EVT methods generally focus on the use of the Generalized Extreme Value (GEV)

distribution. This distribution combines different related distributions in which the

maximum value of a set of independent and identically distributed random variables

can be fitted assuming distributions with well-behaved tails.

F (x | ξ, µ, σ) = e−[1+ξ(x−µσ )]
−1
ξ

(2.1)

Where, −∞ < ξ <∞, −∞ < µ <∞, and σ > 0

Equation 2.1 shows the cumulative distribution function (CDF) for the GEV dis-

tribution, which includes three parameters, shape (ξ), location (µ) and scale (σ).

The location parameter determines the shift of the distribution to left or right direc-

tion. The scale parameter defines the dispersion of the distribution; the greater this

parameter the greater the dispersion. A property of the scale parameter is that if it

is multiplied by a constant, c, the random variable will be multiplied as well. Thus,

for a random variable X, |c| ×σ(X) = σ(c×X) [76]. The shape parameter defines if

the distribution of maxima belongs to the lightly-tailed Gumbel (ξ = 0) distribution,

the heavy-tailed Fréchet distribution (ξ > 0), or the upper bounded-tail Weibull

distribution (ξ < 0).

The block maxima method from EVT is a commonly-used technique for fitting the

GEV distribution to the maximum of a set of random samples of a random variable.

In this method, the observations of a given random variable are divided into blocks of
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size n and the maximum value occurrence in each block is determined. A traditional

distribution fitting method, commonly maximum likelihood estimation (MLE), is

then used to determine the GEV parameters that best fit this set of maxima. The

resulting distribution is that of the maxima of blocks of size n. In flood plain analysis,

for example, the block maxima method is frequently used with blocks of 365 days to

estimate GEV parameters for the distribution of maximum annual water levels.

The regularity of the maximum likelihood estimators and the degree in which they

meet the asymptotic property of a GEV distribution can be established by studying

the ξ parameter [14, 79]. For ξ parameters greater than -0.5, regular likelihood esti-

mators can be obtained. For ξ parameters between -1 and -0.5 likelihood estimators

can be obtained but they do not meet the asymptotic property of a GEV distribu-

tion. Finally, for ξ parameters less than -1, is generally not possible to compute the

estimators.

Given a concrete GEV, return level analysis can then be used to compute the

return level, R̄. This return level can be interpreted as the value that will, on average,

be exceeded once in every N samples of the distribution. Note, that this is once every

b blocks when using the block maxima method to fit the GEV distribution. In the

common flood plain level, for example, the 100-year flood plain is simply the 100-

year return level once the GEV parameters for the distribution of annual maximum

waters levels have been determined. Details of this calculation have been omitted

for brevity and are available in the literature [14].

Expectation of Maximum Values

In addition to return level analysis, extreme value techniques also sometimes seek to

directly calculate the expected value of the maximum of a set of random variables,

an area termed expectation of maximum values (EMV). A number of approximation
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techniques have been proposed for this problem [7,25,31,35,81].

Modeling Application Runtime Recent work [81] used the expected mean max-

imum approach (EMMA) to estimate execution times in BSP applications when the

probability distribution of process local computation times is known a priori. In

particular, this technique estimates the expected value of the maximum m instances

of a set of i.i.d. random variables Xi with distribution F as:

E(maxmi=1Xi) ≈ F−1(P ) (2.2)

where P ≈ 0.5703760021/m.

This dissertation provides a novel approach that uses EVT concepts to character-

ize interference sources and study their impact on applications. While EMMA [81]

used extreme value concepts to derive the expected mean maximum approximation,

it did not use extreme value distributions themselves to estimate application per-

formance. This limits EMMA’s direct use in application performance estimation.

However, the method described in this work for conducting such estimations relies

heavily on EMMA for extrapolation. EMMA focuses on runtime estimations for ap-

plications running in isolation. Unlike EMMA, our model focuses on the impact of

interference in time-shared environments, and does not assume similar computation

efforts across BSP iterations.

Modeling Interference Seelam et al. [78] use expectation of maximum values

analysis to predict the effects of jitter on applications. To that end they use a sim-

ple synthetic Bulk Synchronous Parallel (BSP) benchmark to study the effect of

short-lived noise events for BSP computational intervals of different lengths. They

compute lower and upper bounds of the expected slowdowns using the approxima-
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tions proposed by Bertsimas [6] and Crammer [15], respectively. They then use the

data provided by the benchmark’s runs to estimate the probabilistic parameters used

by those models and estimate slowdowns at larger scales. By using their model, they

state that the slowdown experienced by an application is proportional to
√
n, where

n is the number of CPUs in the system. They also use the model to study the

mitigation effects of co-scheduling.

The Bertsimas and Cramer bounds used by Seelam et al. [78] roughly estimate the

impacts of OS noise; however the exact distribution of the noise is not computed.

This is reasonable to estimate the modest impacts of OS noise but not sufficient

to estimate the impacts of more extreme types of interference. The model that I

propose in this dissertation, in contrast, estimates the underlying distribution of

BSP computational intervals under the effects of a variety of noise types. Moreover,

Seelam et al. leverages the synthetic benchmark for all experiments. This may suffice

for well-balanced real applications in co-location with modest interference. However

other approaches are needed to study interference sources such as analytics codes or

resilience operations.

2.3.2 Other Analytical Models

Tsafrir et. al. [82] used probabilistic methods to demonstrate the linear dependency

of applications’ performance interference and the size of a system. They propose a

simple model that states that given a system of n nodes, if the per-node probability

of an application being delayed is p and p ≤ 1
10n

, the noise affecting the parallel

application on each computational iteration is directly proportional to the system

size with a probability of the application being delayed given by p × n. The p

probability is measured by benchmarking the application to estimate the probality

distribution of computational iterations. This model provides a general sense of the
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probability of application delays, but it can not be used to compute the expected

application slowdown. The model that I propose in this dissertation seeks to estimate

the expected application slowdown.

2.4 Performance Impact Mitigation

Many techniques have been proposed for mitigating the impact of performance inter-

ference on HPC applications. A number of works have used gang scheduling-based

techniques to minimize the impact of potentially interfering workloads. Other works

have propose alternative approaches based on periodic real time scheduling. This

section describes those works.

2.4.1 Gang Scheduling

Using gang scheduling has shown performance benefits for BSP applications. When

using this technique, the application’s processes are co-scheduled. This facilitates

the communication between them and reduces the amount of time that the fastest

processes have to wait for synchronization.

Feitelson et al. [26] in one of the first works that studied gang scheduling, com-

pared two synchronization techniques: (1) a busy waiting-based gang scheduling

technique implemented by the runtime which schedules application processes at the

same time; and (2) a blocking, with uncoordinated scheduling, synchronization mech-

anism. They show that fine-grained parallel applications benefit from using the gang

scheduling policy, which otherwise incur overheads due to context switching while

blocking to perform synchronization.

More recently, Jones et al. in [44] presented a run-time system to avoid the inter-
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ference over large fine-grained parallel applications generated by short-lived system

tasks. This run-time coordinates those system tasks in order to run them at the same

time. This helps to decrease interference impacts, allowing parallel applications to

be co-scheduled at precise times, and improving their performance and scalability.

This approach works for both inter-node and intra-node cases. In this dissertation,

we use simulation to study the global synchronization requirements of traditional

gang scheduling-based mitigation approaches.

2.4.2 Real Time Scheduling Mitigation

Local scheduling policies are generally the purview of the operating and application

runtime systems. In best-effort scheduling, typified by Linux’s round-robin preemp-

tive priority scheduler, the CPU is shared roughly equally when both analytics and

the application need to run. Earliest-deadline-first (EDF) scheduling, in contrast,

provides fine-grain control of when each task runs and the share of the processor

given to each task, and has been proposed to mitigate performance interference.

Earliest Deadline First (EDF) Scheduling

Earliest Deadline First (EDF) is a periodic real time scheduling algorithm. An EDF

scheduler uses a dynamically calculated priority value as the scheduling criterion

to choose what task will be scheduled. This priority value is calculated according

with the relative deadline of the tasks that are ready to run in a runqueue. The

tasks with less time before their deadline will receive higher priorities. At each

opportunity to make a scheduling decision (e.g., when an interrupt is received), the

scheduler executes the task that has the deadline that will expire first.

Each task’s scheduling requirements in EDF scheduling are described by a sche-

duling period, T , and the length of the task’s slice, S, within that period. A task with
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a slice S and a period T is guaranteed to execute for S seconds in each T second

period. Usually, the deadline for each task is assumed to be the expiration of its

current period.

A task uses at least slice (S) seconds of CPU every period (T). The period is

defined as the time in which the task may receive a CPU allocation, and the slice

is the minimum amount of time received for the task during each period [62]. The

portion of the CPU used for a task i (i.e., task’s utilization factor) is

ui =
Si
Ti

(2.3)

and the processor’s utilization is given by:

U =
n∑
i=1

Si
Ti

(2.4)

Where n is the number of EDF tasks running on that processor.

The schedulability condition [62] is given by,

n∑
i=1

Si
Ti
≤ 1 (2.5)

This schedulability condition guarantees that no task will miss deadlines if the

CPU utilization is at most 100%.

EDF-Based Mitigation

An alternative performance interference mitigation technique leverages the EDF

scheduling policy. In this approach, applications processes are co-scheduled in differ-
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ent system partitions and configured with identical EDF parameters. This approach

can be used, for example, to reschedule analytics workloads time-sharing CPU cores

with simulation, resulting in frequent, limited-duration interruptions of the simula-

tion application.

Bin Lin et al. [61] present an approach based on per-node EDF schedulers. This

technique provides mitigation capabilities comparable to those offered by gang sche-

duling by setting the same slice and period values to all of the application’s parallel

components. This approach schedules virtual cores to the same host CPU cores and

leverages the synchronization and isolation capabilities of EDF to mitigate the effects

of contention and keep the virtual machines’ computation rate constant. In this dis-

sertation, I use this approach to study the performance interference mitigation effects

of using periodic real scheduling to schedule co-located workloads.

Kato et. al. [50] propose a gang EDF scheduler for multithreaded applications on

multicore systems. In this approach, they claim that all the threads of a multithread

application must be scheduled together. For that, they enhanced the global EDF

policy by scheduling the set of threads of the same application at the same time

when there where enough physical cores available. When there are not enough cores

available, threads must wait for a time slice with sufficient core availability. This

approach may cause CPU fragmentation, priority inversion [58], and execution delay.

In order to solve these problems, Sukwong et al. in [80] propose a scheduler based built

on top of KVM’s Completely Fair Scheduler (CFS) in which sibling virtual cores are

balanced to different physical cores, and which does not use strict synchronization.

2.5 Summary

In this chapter, I presented two examples of composite applications, and the system

support required to assist their interactions. This dissertation focuses on studying the
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impacts of time-sharing HPC systems between application’s components or any other

pair of workloads and the trade-offs of selecting scheduling techniques to support that

resource sharing.

LogGOPSim [42] has been widely used in many HPC application interference stud-

ies because of its ability to handle different interference traces and to simulate inter-

ference impact at large scales. This dissertation leverages and extends LogGOPSim

for quantifying the performance impact of various interference sources, for collect-

ing BSP intervals’ start and end times and to validate and evaluate our modeling

approach.

In addition, our study of the GEV model extends LogGOPSim with additional

capabilities, allowing it to be used to examine application performance at scales

that were previously computationally intractable because of runtime considerations.

For example, there are a number of LogGOPSim workloads which can take days or

weeks to simulate, and the discrete-event structure of LogGOPSim makes it difficult

to parallelize. Using the model described in this dissertation, researchers can instead

use LogGOPSim to simulate the impact of interference on HPC applications with

many small-scale parallel runs and then use our model to extrapolate large-scale

application performance impact.

I compared the analytical model approach proposed on this dissertation against

related work developed using extreme value concepts. The work described in this

dissertation is the first of which I am aware that provides an analytical underpinning

to studies of emerging HPC application interference other than shor-lived system

activities and that can be used to make quantitative predictions in that regard.

Finally, I presented past work focused on performance impact mitigation strate-

gies for HPC applications. The model I describe in this dissertation provides the

theoretical foundations to understand how those mitigation techniques work on Bulk
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Synchronous Parallel HPC applications.
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Characterizing Performance

Impact

3.1 Introduction

Running analytics on the same processor as the application minimizes data move-

ment and provides much finer-granularity control over resource allocation, but can

potentially interfere with application performance. Unfortunately, there has been

little work quantifying the costs of application/analytics time sharing. Some recent

work has shown that applications and runtimes can be modified to schedule analyt-

ics in ways that minimize interference [90], but the generality of such approaches is

unclear.

This chapter presents a framework that I developed in collaboration with Kurt

Ferreira, Scott Levy, Patrick Widener, and Patrick Bridges to quantify the costs and

benefits of different approaches to time-sharing processors between applications and

analytics. Section 3.2 describes this framework. In Section 3.3, we characterize two

different analytics codes and quantify the degree to which time-sharing analytics and

34



Chapter 3. Characterizing Performance Impact

simulation perturbs overall performance. We show that uncoordinated time sharing

of cores between applications and analytics can have catastrophic performance con-

sequences. Gang-scheduled time sharing, however, can significantly reduce these

overheads to that of dedicating cores to analytics, but requires global synchroniza-

tion.

We also use the framework to study the degree of synchronization provided by

frequently used synchronization mechanisms, as well as the synchronization require-

ments of gang scheduling-based mitigation mechanisms. In Section 3.4 we show that

system-based mechanisms generally offer synchronization certainties within tens of

microseconds, but in some cases uncertainties of hundreds of milliseconds are ob-

served in HPC systems. On the other hand, synchronizing collectives offer synchro-

nization guarantees in the order of 10 ms.

Because of the importance of gang scheduling, we then evaluate the degree to

which analytics needs to be gang scheduled to minimize application performance

perturbation. Our results show that coarse synchronization of analytics activities

across nodes, within approximately 10-100 ms, is sufficient to eliminate most time-

sharing overheads for many applications. Some applications, however, require gang

scheduling to an accuracy of less than 1 ms to eliminate these overheads. These

results suggest that alternatives to traditional gang scheduling must be explored.

My contributions to the work presented in this chapter are the design of the

performance impact experiments, and the approach to study the impact of in situ

analytics codes by modeling scheduling events as application jitter. I also collected

and characterized all the analytics’ scheduling traces required for this model while

analytics codes were running in co-location with their coupled simulation codes.

The experiments to study the synchronization requirements of gang scheduling were

performed by Scott Levy, Kurt Ferreira, and Patrick Widener using the LogGOPSim

version currently under development in Sandia National Labs.
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Overall, this chapter makes the following contributions:

• A simulation-based approach that exploits the concept of application jitter as

a means to model the costs of time-sharing in situ analytics;

• A comparison between coordinated time-sharing, uncoordinated time-sharing,

and a simple analytical model of the performance of space-sharing of analytics;

and

• A study of how the degree of synchronization in the gang scheduling of analytics

impacts application performance.

3.2 Evaluating Application/Analytics Performance

Interactions

Quantifying the costs and benefits of different approaches to scheduling main appli-

cation and analytics tasks is potentially challenging, particularly for the case of time

sharing an application and analytics on a CPU core [65]. In this section, I present

an approach which leverages simulation to study time-sharing impacts and a simple

model to analyze space-sharing effects. Additionally, I describe the workloads that

we use for these analyses.

3.2.1 Quantifying Analytics Scheduling Impacts

We use a modeling and simulation approach to understand the impact of different

strategies to scheduling application codes and analytics. This approach allows a level

of fidelity and control not always possible in implementation-based approaches. It
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also allows us to examine performance at scales not generally available for systems

research.

We model the impact of an analytics task on application performance by modeling

the effect of the lost CPU cycles used by the analytics. In the space-sharing case, we

assume near perfect strong-scaling of the application. The application slowdown is

modeled as the time needed to carry out the computation that would otherwise be

performed by the cores that are lost to the analytics task. As an example, if one core

out of every 32 cores is dedicated to analytics, the application will take 1
31

= 3.225

percent longer time to compute the same problem. For the time-sharing case, we

model the impact of fine-grained analytics scheduling using an analogy to OS noise.

From the perspective of the application, each analytics scheduling instance is a CPU

detour which is characterized by the start time and duration of the event.

While this approach focuses on the first-order cost of analytics interference from

the perspective of lost CPU cycles, it does have important limitations. First, second-

order effects of how communication within an analytics task may interfere with appli-

cation performance are not captured by this approach. Second, this analytics-as-OS-

noise approach ignores slowdowns due to increased memory and network pressure.

Modern HPC applications and analytics are optimized to access memory in strided

and blocked patterns that are easily predicted by hardware mechanisms that should

mitigate these effects so long as the granularity of time sharing is not extremely low.

3.2.2 Simulating Time-sharing

To understand the interactions and quantify the costs of time-sharing cores between

analytics and simulation codes, we use LogGOPSim. We determine time sharing per-

formance interference using LogGOPSim by treating the co-located analytics tasks as

OS noise. To do so, we first measure the computational requirements of unperturbed
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analytics when running in-line with simulation using the Linux ftrace utility [75].

The sched switch events provide a trace of CPU time slices used by analytics when

best-effort scheduled by Linux alongside the application. We provide these events as

a noise trace to the simulator. In each of these cases, the average amount of CPU

time allocated to analytics remains unchanged; all that changes is the period over

which this time is allocated.

As described in Chapter 2, LogGOPSim allows the study of the impact of scheduling

synchronization. In this section, I study the effects of using completely uncoordinated

scheduling and perfectly gang-scheduling of analytics on simulation performance. A

more detailed analysis of the effects of synchronization is presented in Section 3.5.

3.2.3 Application Workload Details

For the experiments performed in this chapter we selected a set of representative HPC

computational-science codes based on the variety of operations that they perform and

on the different communication patterns that they use. In this section we describe

those codes.

• LAMMPS: a multi-domain computational-science application used in molecular

dynamics research. In this work, we study the LAMMPS 2D Crack and Lenard-

Jones potentials [73].

• CTH: a simulator used to study deformations generated by strong shocks [39].

• HPCCG: an application used to solve conjugate gradient problems [38,77].

• LULESH: a hydrodynamics simulator [49].
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3.3 Performance Interference Characterization

To better understand performance interactions between analytics and simulation, we

first characterize the performance behavior of the selected representative analytics

codes, Bonds and PreDatA. We then use the approach described in Section 3.2

to obtain an initial evaluation of how co-locating these workloads with different

applications influences performance. Specifically, we evaluate how the performance

characteristics of these analytics workloads perturb the performance of applications

using a time-sharing strategy versus a space-sharing policy that dedicates a portion

of the system’s processors to analytics.

3.3.1 Noise Characterization

We collected scheduling traces of PreDatA and Bonds while they where running co-

located with GTC-P and LAMMPS Crack, using the ftrace Linux kernel tracer as

described in Section 3.2. For comparison, we also include an OS noise trace from

the Chester Cray XK7 TDS (Test and Development System) at Oak Ridge National

Lab collected using the selfish detour benchmark of the netgauge tool [40].

Figure 3.1 shows the resulting CPU detour traces. In addition to the Chester OS

noise trace, we consider OS noise traces collected as part of previous work [85] from

Volta, Muzia, and RedSky, which are Cray XC30, Cray XE6 and SunBlade x6275

systems, respectively. Table 3.1 shows the CPU overhead and the mean (µd) of the

duration of the interference events, as well as the mean (µi) of the inter-arrival noise

events times.

With the exception of the Volta OS noise, the collected OS noise traces have

significantly less CPU overhead than the analytics codes. Moreover, the means of

the duration for PreDatA and Bonds are several orders of magnitude above the ones
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found in the OS noise traces. Similarly, the analytics codes’ mean inter-arrival times

are considerably higher (i.e. lower-frequency events). This is critical, because, as

shown in a previous work [29], high-duration, low-frequency application noise events

generally have dramatically higher impacts on applications performance.

in-situ analytics codes
duration inter-arrival time

Trace µd(µs) cpu(%) µi(µs)
PreDatA 460.2 2.44 18904.8

Bonds 722.5 2.80 25810.4
Collected OS noise traces in HPC Systems

duration inter-arrival time
Trace µd(µs) cpu(%) µi(µs)
Volta 14.0 4.43 316.2

Chester 1.5 0.07 2282.6
Redsky 2.7 0.63 435.5
Muzia 1.5 0.04 3979.5

Table 3.1: Mean CPU overhead, duration and inter-arrival times for the two in situ
analytics workloads, along with comparative the OS noise profile statistics.

3.3.2 Noise Performance Impact

We next examine the impact of either time-sharing Bonds and PreDatA with simula-

tion or running it space-shared on dedicated cores. To do so, we use the CPU detour

traces analyzed in Section 3.3.1 along with the LogGOPSim simulator, as discussed in

Section 3.2. For the space-sharing case, we allocate either one core out of 16 or one

core out of 32 to analytics.

Figure 3.2 shows the effects of time-sharing and space-sharing CPU cores between

simulation and analytics codes. For time-sharing, we consider the impact both with

and without perfectly coordinated gang scheduling. This figure demonstrates that

unsynchronized time-sharing of analytics codes is incredibly disruptive to the per-
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formance of all applications, resulting in simulation slowdowns of almost of 1600%

in some cases despite the fact that the analytics runs for only 2.5% of the time on

average. Bonds and PreDatA result in similar slowdowns. In contrast, the impact of

our optimistic model of space-sharing on application performance is minimal, either

3.23% or 6.67%. On real systems, the performance impact would be higher due to

data movement and non-uniform memory access penalties.

On the other hand, using perfectly coordinated gang scheduling to schedule an-

alytics across the nodes of the system results in minimal slowdowns. In particular,

the overhead of analytics drops to near its baseline (2.44% for PreDatA, 2.80% for

Bonds) for every application that we considered. This result is consistent with the

existing research on OS noise (cf. [41]).
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(a) Bonds scheduling traces
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(b) PreDatA scheduling traces
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(c) Chester OS noise trace

Figure 3.1: Scheduling traces for Bonds and PreDatA in-situ analytics codes and
noise profile collected for Chester Cray XK7 TDS system.
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(a) LAMMPS Crack
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(b) LAMMPS LJ
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(c) HPCCG
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(e) LULESH

Completely uncoordinated time-sharing (Bonds)

Completely uncoordinated time-sharing (PreDatA)

Perfectly coordinated time-sharing (Bonds)

Perfectly coordinated time-sharing (PreDatA)

Space-sharing (1 core out of 16)

Space-sharing (1 core out of 32)

Figure 3.2: Performance impact on applications co-located with Bonds and PreDatA
in-situ analytics for a completely uncoordinated time-sharing policy, a perfectly co-
ordinated time-sharing policy, and two space-sharing policies.
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3.4 Synchronization Mechanisms

Coordination of interference sources across processes has shown benefits on applica-

tions’ performance. This synchronization can be achieved in several ways. Among

the prevalent approaches to coordinate interference activities are leveraging system-

based gang scheduling, which requires tight system synchronization services, and

using synchronizing collective operations. This section studies the synchronization

guarantees provided by those mechanisms.

3.4.1 System-based Synchronization Services

In [45], we examined the degree of synchronization and time-agreement levels of-

fered by two large-scale supercomputers which leverage the Network Time Protocol

(NTP) services as synchronization mechanism. Using a simple benchmark we col-

lected clock skew data from two systems: Titan a Cray XK7 system located at Oak

Ridge National Laboratory, which use a Gemini interconnet with a 3D torus topol-

ogy [1]; and Mira system located at Argonne National Laboratory with a 5D torus

interconnet [56]. Each of these systems has end-point latencies of less than 3 µs.

The results of these experiments show that NTP can offer synchronization cer-

tainties of around 10 µs on Mira. However, surprisingly this level of synchronization

is not supported on Titan, where we observed levels of uncertainty of hundreds of

milliseconds, with a worst case of 600 ms. This is critical, since applications using

system-based gang scheduling often require synchronization guarantees of tens of

milliseconds or less to properly mitigate interference, Section 3.5 shows.

The data supporting this study and additional details are publicly available [46]

under the DOI 10.13139/1130048.
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3.4.2 Synchronizing Collective Operations

An alternative to provide synchronization to workloads is to incorporate synchro-

nizing collectives in the workload code. As we show in [59], this approach provides

synchronization guarantees of 10 ms when using a dissemination algorithm (e.g.,

MPI Allreduce). However, MPI standard 3.0 warns about relying on the synchro-

nization capabilities offered by collectives [32]. Additionally, this approach may

require modifications of existing workloads code.

3.5 Synchronization Requirements

As shown in this chapter, gang scheduling of analytics can reduce the overhead of

time-scheduled analytics to as low or lower than space-sharing. However, perfectly

synchronizing activities across nodes is impossible in a real distributed system; com-

munication delays and hardware variation limit the degree to which distributed activ-

ities can be coordinated. Modern HPC systems, network latency, jitter, and system

software concerns limit reliable inter-node synchronization to a few microseconds or

possibly tens or even hundreds of milliseconds, depending on the mechanism used

and system hardware and software characteristics [45], as described in the previous

section.

In this section, we study the level of synchronization required to schedule analyt-

ics codes in order to effectively mitigate their impact on applications. To accomplish

this, we conduct a series of experiments in which we vary the degree of inter-node syn-

chronization using the capabilities that LogGOPSim offers for this, which I described

in Chapter 2.

Figure 3.3 shows how the performance of different applications changes as we vary

the degree to which the time-shared analytics are synchronized. This figure shows
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Figure 3.3: Slowdowns for applications co-located with Bonds and PreDatA in-situ
analytics for analytics synchronization levels varying from the perfectly coordinated
case to the completely uncoordinated case for 64 Ki processes. Different levels of
synchronization are simulated adding offsets to the time at which noise traces start
on different analytics processes.
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the performance impact on each application running on 64 Ki processes. Results at

other scales are very similar and are elided for clarity of presentation.

In these results, the LAMMPS Crack potential exhibits both the highest perfor-

mance impact for co-located analytics and the tightest synchronization requirements.

For example, if we compose LAMMPS Crack with Bonds analytics, the synchroniza-

tion variance must be 10 ms or less in order to keep overhead below 10%. The CTH

results show similarly high overhead and tight synchronization requirements. In con-

trast, the overhead of composing LULESH with either Bonds and PreDatA analytics

remains below 10% even for an order of magnitude more synchronization variance

(100ms). The LAMMPS LJ potential can tolerate much less inter-node synchroniza-

tion; even just coordinating the execution analytics to within one second is sufficient

to significantly reduce the slowdown of the application. Finally, we observe that as

the analytics workload is less and less synchronized across processes, the performance

impact approaches that of the completely unsynchronized case.

3.6 Analysis and Discussion of Results

3.6.1 Time-sharing vs. Space-sharing

Based on the results of the previous sections, time sharing of analytics can equal

or beat the performance of space-shared analytics, given sufficient scheduling sup-

port. In particular, both OS-level scheduling techniques and coarse gang scheduling

are sufficient to lower the overheads of time sharing of analytics to below that of

an optimistic estimate of the performance of space-shared analytics. In addition,

time sharing can more precisely match the actual performance needs of analytics, as

opposed coarse-grained resource allocation via space sharing.
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3.6.2 Variations in Application Response

Applications response to time sharing of analytics varied greatly. Some workloads,

particularly LAMMPS Crack and CTH, were much more sensitive to interference

and required significantly greater efforts to mitigate this interference.

To more broadly understand the source of this variation, we examined the col-

lective communication inter-arrival times of each of the applications we tested. Past

research [30] has shown that this characteristic can influence application response to

interference from resilience actions. To do so, we analyzed each application commu-

nication trace, and plotted the minimum, maximum, and mean collective communi-

cation inter-arrival times.

Figure 3.4 shows the mean, minimum, and maximum collective inter-arrival times

for collective communications in the five applications studied in this chapter. For

comparison, I also reproduce the Bonds subfigure of Figure 3.3, supplementing labels

with the mean collective inter-arrival times. This figure shows that collective inter-

arrival times correspond well with the degree to which different applications are per-

turbed by time-sharing the processor with analytics. Specifically, applications with

lower collective inter-arrival times (that is, more frequent use of collectives) are both

more sensitive to interference from analytics, and require tighter synchronization to

mitigate this interference.

3.6.3 Effectiveness of Gang Scheduling

Coarse gang scheduling, for example at the 10 ms granularity, is sufficient to miti-

gate time-sharing overheads for applications with high collective inter-arrival times.

For applications in this regime, existing synchronization techniques are sufficient to

reduce the overheads of time sharing analytics on current machines. For applications
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Figure 3.4: Measured mean, minimum, and maximum collective inter-arrival times
for MPI collective operations for the five studied applications. For reference, the
data from Figure 3.3 is reproduced again, with application names supplemented
with measured mean collective inter-arrival (IA) time.

with lower collective inter-arrival times, for example CTH and the LAMMPS Crack

workload, other methods are needed.
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3.7 Summary

In this chapter, I characterized the performance impact of two modern in-situ ana-

lytics codes on next generation HPC applications. In comparison with other perfor-

mance interference examined in extreme-scale systems, these workloads have CPU

usage patterns of longer duration and lower frequency, which tend to have high im-

pact on applications performance. Although we observed higher requirements in

terms of overall CPU overhead, we expect a cap of at most 3% of total CPU reser-

vations for the new analytics codes designs. This allows these workloads to make

progress without affecting the applications performance significantly.

I also presented a new approach to simulate next-generation in-situ HPC compo-

sitions, drawing an analogy with OS interference. Using that approach, we simulated

the compositions of analytics with five key applications commonly used for HPC re-

search, and quantified the performance impact of those compositions using different

scheduling policies. We showed that time sharing policies provide similar or better

performance to applications than space sharing policies, with the benefit of fewer

computational resources.

Finally, We also evaluated the synchronization requirements when analytics codes

are gang-scheduled using global synchronization mechanisms. We demonstrated that

in order to effectively mitigate the impact on applications performance, the systems

must provide time agreement within a few tens of milliseconds across nodes. We also

showed that applications with shorter inter-collectives times require more stringent

levels of scheduling synchronization in order to avoid performance degradation.

Those levels of synchronization certainties are hard to guarantee for some of the

current synchronization mechanisms. Alternative approaches with less synchroniza-

tion requirements may be needed to support performance interference mitigation in

next generation large-scale systems. If synchronization within a few milliseconds is
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sufficient, current synchronization mechanisms are sufficient to schedule analytics.

If tighter synchronization is necessary, on the other hand, then either tighter clock

synchronization must be provided, alternative time-sharing performance mitigation

strategies must be found, or general time-sharing of analytics should be abandoned

in favor of space-sharing.
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Chapter 4

Modeling HPC Application

Interference

4.1 Introduction

This chapter presents a novel framework for modeling, characterizing, and predicting

the impact of interfering activities on bulk-synchronous programming HPC applica-

tions. This framework uses extreme value theory (EVT) to analyze the impact of

interference on bulk synchronous applications; EVT provides tools both for character-

izing how the “shape” of BSP periods is impacted by interference and for predicting

how changes in the number of application processes will impact the length of these

periods. This method allows us to quantify both existing and emerging sources of

HPC performance interference and to compare and contrast their behavior.

This chapter describes the following contributions:

• A stochastic model that can be used to characterize and extrapolate the per-

formance of HPC applications in the presence of representative sources of in-
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terference in next-generation HPC systems, including predicting the runtime

of HPC applications and the effect of interference on BSP computing periods

as the application scales;

• A simple and efficient method of characterizing sources of interference and their

impact on BSP computing periods of different lengths; and

• An evaluation of the ability of the model to predict the performance impact of

different sources of interference on HPC applications.

4.2 Modeling HPC Performance Interference

I propose a stochastic model of HPC application performance interference in order

to better explain the impact of different types of interference on application per-

formance, quantify interference sources, and predict how interference will impact

application performance at large scales. This section presents an overview of my

modeling approach and discusses issues related to the use of this model with real

HPC applications. Specifically, this section discusses:

• The general stochastic model I propose for HPC applications and its assump-

tions about application structure;

• How I estimate parameters for this stochastic model with small-scale runs of

applications and interfering workloads;

• How I determine the size and number of application runs needed for estimation;

and

• How I extrapolate application runtime performance in the presence of interfer-

ing workloads to larger scales.
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4.2.1 Modeling Approach

I assume HPC applications can be modeled as BSP applications perturbed by inter-

ference. As shown in Figure 4.1, this assumes that an application can be described

as a sequence of k intervals each of which comprises local computation followed by

synchronization. For each interval, I assume the BSP interval lengths at each process

are independently and identically distributed according to an unknown (i.e., general)

distribution. I similarly assume that perturbation changes the distribution in each

interval. Note that I do not assume that the distributions of BSP interval lengths at

each process in different intervals are identically distributed, as sequences of intervals

that correlate to realistic HPC applications contain a number of intervals which may

behave differently.

App. start App. end

rank 0

rank 1
rank 2

rank n

...
... ......

Local computation time
Waiting

Synchronization

Interval 1 Interval 2 Interval k

Interference

Figure 4.1: BSP Application affected by interference

In terms of the model, the global synchronization at the end of each BSP interval

causes that interval to have a length that is the maximum of the generally-distributed

i.i.d. random variables that comprise that interval. As such, I model the distribution
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of the set of processes in a particular BSP interval using the generalized extreme

value distribution. I can then use standard estimation techniques to estimate the

GEV parameters for each BSP interval in a perturbed application.

Unlike previous approaches [78, 81], this approach does not assume an a priori

distribution of the compute times in a particular interval on a single process. Positing

a distribution for every BSP interval in an application would be both error-prone

and unwieldy, particularly when those intervals are perturbed by different sources

of interference. In contrast, using the GEV distribution requires only comparatively

weak independence assumptions; while point-to-point communications potentially

violate independence, their impact on the accuracy of this model is modest for real

applications, as shown in Section 4.5.

4.2.2 Estimating Model Parameters

For every BSP interval in an application being modeled, I estimate the location

(µ), scale (σ), and shape (ξ) parameters of the corresponding GEV distribution. I

do so using the block maxima method and maximum likelihood estimation (MLE)

previously outlined in Chapter 2. In this method, individual samples are grouped into

fixed block sizes in which a maximum is taken, and a set of these block maxima are

used to estimate GEV parameters. In our cases, the number of processes computing

in the BSP interval being sampled is the block size, while the number of instances

of that BSP interval (generally from independent application executions) are the

number of block samples used for MLE estimation. Determining an appropriate

block size and number of block samples needed is somewhat complex and described

in Section 4.2.3.

For data collection, I run the application and interfering workload at modest

scale either on real hardware or in a simulator such as LogGOPSim. In these runs,
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I record the process-relative times (e.g. the times from the end of MPI Init()) at

which each process exits a synchronizing collective operation (e.g., MPI Barrier). I

then group pairs of times from each process into BSP intervals, providing a sample

of the maximum of each block.

4.2.3 Choosing Block Sizes and Number of Blocks

Determining the block size and the number of blocks to use for estimation is a key

challenge when using the block maxima method. Using both large blocks and large

numbers of blocks is preferable but can be computationally expensive. For example,

obtaining 1000 blocks samples with a block size of 1024 can potentially require 1000

application runs each with 1024 processes. On the other hand, choosing block sizes

that are too small can lead to significant model bias, and using too few blocks results

in high variance in model parameter estimates [14].

I address this problem iteratively. I begin by choosing an initial estimate of

the number of blocks to use and block size empirically based on the amount of

computation time available for estimation and the desired variance in parameter

estimates. I then repeatedly test if model extrapolations pass a statistical test for

all of the BSP intervals in the application. If all tests pass, I use the current block

size; if any test fails, I increase the block size up to a limit again determined by

available computational resources. If I reach the maximum feasible block size, I

then determine a threshold BSP interval below which to smooth sample maxima, as

described below.

Testing for Parameter Bias

I use a method based on normality tests [10] to determine if the block size is suffi-

ciently large to have an unbiased estimate. In particular, I seek to find the block size
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at which expected maximum value (EMV) extrapolations are normally distributed.

For each tested block size, I use a combination of observed BSP intervals and (un-

smoothed) bootstrap samples in order to compute sets of expected maximum values

for a given extrapolation. I then perform normality tests on the set of results to de-

termine if the resulting predictions are normally distributed with a 95% confidence

interval.

Reducing Required Block Sizes

In some cases, the block sizes required to achieve normally-distributed EMV esti-

mates can be very large. This is particularly true when BSP intervals are very short.

Those cases, require large block sizes in order to obtain normally-distributed EMV

extrapolations.

To address this, I adapt a technique for smoothing sample extremes [13, 17, 33,

36, 69, 74] developed for when the asymptotic assumption for the normality of the

MLE estimators is hard to satisfy for a given block size. Because this smoothing

process can modify distributions, however, I seek to minimize its use. In particular,

I only smooth after reaching the largest block size at which it is feasible to sample, at

which point I choose a threshold BSP interval length θs such that all intervals which

do not result in normally-distributed extrapolations are below this threshold. I then

smooth BSP sample maxima for all intervals with a length below this threshold. I

smooth using a simple 5-sample running average low-pass filter; I do not consider

more sophisticated smoothing strategies, though this is a potentially important area

for future work.
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4.2.4 Extrapolating Model Performance

Once model parameters for each BSP interval have been estimated, I then use the

EMMA approximation in Equation 2.2 to compute the expected length of each BSP

interval at larger scales [81]. In my approach, F corresponds to the estimated GEV

distribution for a given interval and m corresponds to the target number of blocks at

the extrapolated scale. In this case, m = p
n
, where p is the number of processes at

the extrapolated scale and n is the block size used for model estimation as described

in Section 4.2.1.

Summing the expected values of all BSP intervals at a given scale estimates the

runtime of an application subject to interference at that scale. This assumes that the

lengths of successive BSP intervals are statistically independent; this is a reasonable

assumption because, by definition, BSP interval k − 1 ends on all processes before

BSP interval k begins.

4.3 Model Validation

To validate this modeling approach, I developed a synthetic BSP application in which

the distribution of process runtime between synchronizing collectives can be carefully

controlled, a set of interfering workloads, and both empirical measurement and sim-

ulation. I first use this framework to validate the approach’s ability to estimate

and extrapolate runtimes with known BSP interval distributions. Following this, I

validate the model’s handling of varying interference workloads. Finally, I compare

predictions generated by the proposed model with this test against those made using

the previously-published EMMA model.
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4.3.1 Validation Framework

The framework used for validation consists of three main components: a synthetic

BSP test program, a set of interfering workloads, and systems on which to evaluate

the ability of the model to handle these workloads.

Synthetic BSP Application

I implemented a synthetic BSP application to be able to carefully control computa-

tion intervals and validate the model’s ability to capture the impact of variations in

BSP interval duration. This synthetic application consists of a loop which repeat-

edly performs local computation and then executes MPI Barrier. It takes as input

the desired number of local computation intervals (e.g., number of iterations), the

distribution of those times (e.g., Pareto, exponential), and the parameters associ-

ated to each distribution (e.g., Pareto scale and shape, exponential mean, etc.). For

each iteration, the benchmark uses the GNU Scientific Library (GSL) [34] and the

Scalable Parallel Random Number Generators library (SPRNG) [64] to randomly

generate a local computation time that follows the provided distribution. Listing 4.2

shows pseudo-code for the synthetic application.

barrier_loop(distribution, distribution_params, iterations) {

for( i = 0; i < iterations; i++) {

local_comp_time = gen_random_time(distribution, distribution_params);

local_computation(local_comp_time);

MPI_Barrier(MPI_COMM_WORLD);

}

}

Figure 4.2: Synthetic test pseudo-code

In this test, each iteration of the loop constitutes a sample of the BSP distri-

bution in question. Note that this differs from the modeling approach described in
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Section 4.2 for real applications, where each pair of synchronizing collectives delin-

eates a BSP interval to be modeled independently, with each application comprising

many independent intervals. As a result, this synthetic test can be used to gather a

large number of samples for a given BSP interval length distribution very quickly.

Interference Sources

I assembled a collection of multiple interference sources representing different sources

and distributions of interference against which to validate my modeling approach:

• OS noise: I use OS noise traces from two HPC systems at Oak Ridge National

Laboratory to validate the model’s ability to handle well-known OS-based in-

terference source, as well as one synthetic trace similar to the described by

Ferreira et al. [29]. For real-world systems, I use interference traces from Ti-

tan, a Cray XK7 system, and Rhea, an Infiniband Linux cluster. I used the

netgauge tool [40] to collect these interference profiles. I also use a 3.34% CPU

overhead synthetic trace with noise events and inter-arrival times following a

Gaussian distribution with a mean event duration of 100 ms, inter-arrival times

of 3 seconds, and standard deviations of 10 ms and 300 ms. This is similar to

the noise traces used by Ferreira et al.

• Asynchronous checkpointing: I used a synthetic interference trace that rep-

resents asynchronous checkpointing interference containing noise events with a

1-second duration and a two minute period. This profile matches traces used in

recent studies of the performance impact of asynchronous checkpointing [30].

• In situ analytics: I validate the model against the interference effects of

in situ analytics in two representative applications, the Gyrokinetic Toroidal

Code (GTC) [51] and LAMMPS [73]. For this, I used the traces collected for
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the experiments described in Chapter 3; for convenience, I refer to the GTC

analytics as “PreDatA” (the framework used to implement them in [89]) and

the LAMMPS analytics as “Bonds”. These CPU overheads of these noise traces

are 2.44% (PreDatA) and 2.8% (Bonds).

Workload Execution

I executed the benchmark and interference workloads on both a real-world system and

a simulator. When validating against varying BSP interval lengths and no additional

interference, I collected results using Titan; the low baseline level of interference of its

Cray Linux Environment OS [48] provides a low-variance environment for validation.

Titan does not provide a simple means of controlling co-located workloads, making

it difficult to use for validation against varying interference sources. Consequently, I

use LogGOPSim to validate model predictions with varying interference loads.

4.3.2 Validation Against Varying Local Computation Distri-

butions

To validate the model with different application computation distributions, I ran the

synthetic application without interfering workloads on the Oak Ridge Titan HPC

system. For these tests, the synthetic application runs 1000 iterations with each

process, and I used local compute times that were either exponentially distributed

with means of 10 ms, 40 ms, and 160 ms, or Pareto distributed with scales of 10 ms,

20 ms, and 40 ms, along with a Pareto shape parameter of α = 3. These tests were

chosen to represent both exponentially and heavy-tailed compute distributions.

I conducted a single 512-core, 1000-iteration run on Titan to estimate GEV pa-

rameters for each computation distribution, resulting in 1000 BSP interval samples
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with a block size of 512. I then used the methodology described in Section 4.2 to es-

timate the runtime of the test-case up to 16,384 cores and compared both measured

and extrapolated runtimes. In all cases, extrapolations were normally distributed

with no smoothing.

In addition, I also analytically computed the runtime for exponentially-distributed

BSP intervals using the well-known formula for the maximum of n i.i.d. exponential

random variables:

E(Xn) =
1

λ
Hn (4.1)

where n is the number of random variables, 1
λ

is the mean and Hn is the harmonic

number. For comparison, I also include predictions made using the EMMA method

with a priori knowledge of the distribution of local computation times in the test-

case.

Exponential
mean (ms)

shape (ξ) location (µ) (ms) scale (σ) (ms)

10 0.01 62.2576 9.755
40 0.01 248.757 39.019
160 0.01 994.806 156.0348

Table 4.1: Estimated GEV parameters for the exponential distribution experiments

Pareto
scale (ms)

shape (ξ) location (µ) (ms) scale (σ) (ms)

10 0.37 80.662 27.218
20 0.37 161.131 54.451
40 0.37 322.158 108.891

Table 4.2: Estimated GEV parameters for the pareto distribution experiments

Tables 4.1 and 4.2 show the estimated GEV parameters for each experiment, and

Figures 4.3 and 4.4 show the observed, modeled, and analytically predicted runtimes
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for the synthetic application exponentially distributed with a mean of 160 ms and

when using a Pareto distribution with scale parameter of 40 ms and shape 3, respec-

tively. In each case, my proposed modeling approach correctly predicted the exper-

imentally observed execution times with prediction errors less than 1.3% and 2.8%

at 16,384 processes for the exponential and Pareto distributions, respectively. For

the heavy-tailed Pareto distribution, both EMMA and my method under-estimate

execution times; this is a result of limitations of using the EMMA method with

heavy-tailed distributions, an effect previously observed by EMMA’s creators [81].
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Figure 4.3: Runtime estimates for the synthetic application with local computation
times exponentially distributed with mean = 160 ms. The runtimes estimated using
the model are compared against the observed runtimes, the runtimes estimated by
the model proposed in [81], and the harmonic function of the n-node count.

4.3.3 Validation Against Varying Interference Sources

For validation against varying interference sources, I use the test-case with determin-

istic BSP intervals and the interfering workloads described in Section 4.3.1. Because

of the difficulty in co-locating arbitrary interference workloads with an application
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Figure 4.4: Runtime estimates for the synthetic benchmark with Pareto-distributed
local computation times (Pareto shape (α) = 3, scale = 40 ms). The runtimes
estimated using the model are compared against the observed runtimes and the
runtimes estimated by the model proposed in [81].

on production systems, I use the LogGOPSim simulator as described in Section 4.3.1.

For these experiments I run the synthetic benchmarks with local computation times

in the range of 100 µs to 10 seconds. I estimate the GEV model parameters using

1000 blocks of 512 processes and extrapolate the runtime to process counts up to

16,384 nodes. I use a smoothing parameter of θs = 600 ms to reduce the required

block size to 512 processes.

Figure 4.5 shows the GEV model predictions of the performance impact on the

synthetic benchmark. The model accuracy improves as the length of local compu-

tation times increase. For example, it predicts runtimes up to 16,384 nodes with

a prediction error of less than 3.9% for a 100 ms interval. Larger local computa-

tion times produce uniformly smaller prediction errors. Smaller local compute times

also result in reasonable prediction errors for all interference sources. In particular,

prediction errors at 100 µs are approximately 30% or less, sufficient for making per-

formance predictions for most applications (as I discuss in Section 4.5). Predictions
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of the impact of the asynchronous checkpointing task are not accurate for small BSP

intervals (as discussed in Section 4.3.3) and are not shown for intervals below 100

ms.

4.3.4 Noise Performance Impact Comparison vs. EMMA

Method

I have shown (Section 4.3.2) that the EMMA method can successfully predict ex-

ecution time when the distribution of local computation times is known a priori.

To better understand the limitations of this approach compared to our proposed

GEV-based approach, I also validate its viability in the presence of interference us-

ing LogGOPSim simulation, the synthetic test-case with local computation times of

100 ms of duration, and the synthetic trace with Gaussian-distributed noise events.

Because the distribution of compute times in the presence of interference is difficult

to determine, I evaluate the use of EMMA fitted to multiple candidate distributions.

Figure 4.6 shows the results of these experiments. While the EMMA method

can predict application runtime if the correct prior distribution is known and fitted

(in this case, the Raleigh distribution is most effective), the performance of EMMA

is highly dependent on choosing the correct prior distribution, a choice that will

vary with both interference source and application BSP interval behavior. This is

particularly problematic for real applications which can contain tens or hundreds of

separate BSP intervals of varying length and distribution. In contrast, the method

described in this dissertation makes much weaker distributional assumptions and so

can be applied more easily to a large number of intervals, including those perturbed

by interference.

66



Chapter 4. Modeling HPC Application Interference

512 1Ki 2Ki 4Ki 8Ki 16Ki
Processes

0

50

100

150

R
u
n
ti
m

e
(s

e
c
.)

0

20

40

60

80

100

120

140

R
u
n
ti
m

e
 e

rr
o
r 

(%
)Titan

Rhea
Gaussian

Predata
Bonds

(a) local computation = 100 µs
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(b) local computation = 1 ms
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(c) local computation = 10 ms
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(d) local computation = 100 ms
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(e) local computation = 1 s
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(f) local computation = 10 s

Figure 4.5: GEV model performance impact predictions for the synthetic BSP test-
case co-located with different interfence sources. Solid lines are the predicted run-
times in seconds, and dashed lines the percent error of the predicted runtimes with
respect to the simulated runtimes. Separated figures showing predictions and errors
are provided in Appendix A.1.
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Figure 4.6: Performance impact prediction for the BSP synthetic application in the
presence of interference using EMMA EMV method. I use BSP intervals of 100
ms, and an interference source with Gaussian-distributed noise events with a mean
duration of 100 ms and an inter-arrival time of 3 seconds. The BSP intervals are
fitted to different candidate distributions.

69



Chapter 4. Modeling HPC Application Interference

4.4 Interference Workload Characterization

Understanding how a particular source of interference will affect HPC application

performance is difficult. As previous studies [29] have shown, interference sources

with the same mean interference duration can have radically different effects on

application performance. Because of the many potential sources of interference

in next-generation systems, including resilience, power management, and analyt-

ics, characterizing the potential effects of different interference sources is important

in next-generation systems.

The GEV-based model described in Section 4.2 and the synthetic application

described in Section 4.3.1 can be used to characterize different interference sources.

Specifically, the synthetic application can be used to measure how an interference

source perturbs BSP intervals of different lengths, and the proposed modeling ap-

proach can be used to project how this perturbance changes at scale. The result is

a profile of how an interference source behaves at a particular scale.

In order to demonstrate this capability, I generated a performance impact profile

for OS noise, asynchronous checkpointing, and in situ analytics (see Section 4.3.1)

on 16,384 nodes using simulation. For this analysis, I use a block size of 512 nodes

and 1000 block maxima samples. I performed this analysis for a range of local

computation times between 100 µs and 10 seconds.

Figure 4.7 shows the estimated performance impacts in terms of the projected

slowdowns of BSP intervals of different lengths for all validated BSP interval lengths.

These results demonstrate the impact of different noise sources on BSP intervals of

different lengths, and the importance of being able to characterize and predict the

impact of interference on application performance.
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Figure 4.7: Noise profiling of different interference sources using the GEV model
with a block size of 512 at 16,384 nodes.

4.5 Predicting Application Performance Impact

In addition to characterizing noise, this modeling approach can also be used to

directly predict the scaling performance of applications subject to interference. It

does so by applying the model to every BSP interval in a complete application.

In the remainder of this section, I evaluate the ability of the model to predict the

performance impact of three sources of interference on a set of applications and

mini-applications.

4.5.1 Evaluation Methodology

I use a set of four workloads, consisting of applications and mini-applications, to

evaluate the model’s ability to predict application scaling performance. In addi-

tion to HPCCG, LAMMPS-LJ, and LULESH, described in Chapter 3, I studied

CoMD, which is a molecular dynamics code created as part of Mantevo suite of
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mini-applications [77].

Figure 4.8 shows the minimum, mean, and maximum lengths of the intervals

between synchronizing collectives for the selected applications. As this figure shows,

the statistical distributions of the interval lengths for these applications are diverse,

as are the lengths of the intervals.

Because I am evaluating multiple interference workloads, I again use LogGOPSim:

small-scale runs collect BSP interval length information for estimation, and large-

scale runs obtain simulated runtimes against which to compare model predictions.

All experiments in this section estimate GEV parameters using simulation runs of

512 processes (i.e. estimation block size is 512), and each 512-process simulation

is run 500 times to generate estimation samples for each BSP block. I again use a

smoothing threshold of θs = 600 ms, the lowest threshold such that all BSP intervals

with non-normally distributed extrapolations are smoothed, for all tests.
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Figure 4.8: Measured intervals between synchronizing MPI collective operations for
four applications.
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4.5.2 OS Noise and Analytics Interference

Figure 4.9 shows how each of three OS noise profiles affect application slowdown.

This figure also shows the error in predicted runtime. Similarly, Figure 4.10 shows

how these four applications respond to interference from two analytics workloads.

These results demonstrate that our modeling approach accurately captures a wide

range of application and interference behaviors, in all cases with prediction error of

less than 3.2%.

In the case of OS noise, for example, my approach correctly predicts the per-

formance differences between the low-interference OS noise profiles used in modern

supercomputing systems and the high impact of synthetic traces of historical OS

noise interference patterns. It similarly correctly predicts the difference in applica-

tion sensitivities, for example between HPCCG and the other applications.

4.5.3 Asynchronous Checkpointing Interference

In contrast, Figure 4.11 illustrates the current limitations of this model with cer-

tain extreme interference workloads. In this figure, I consider one such source of

interference: asynchronous checkpointing. As discussed in Section 4.3, my modeling

approach accurately predicts the impact of this workload on longer BSP intervals,

but is inaccurate for very small BSP intervals. As a result, the approach success-

fully predicts the performance scaling of LULESH, which has almost exclusively long

BSP intervals, but makes very inaccurate predictions for the other three applications,

which contain a large number of BSP intervals of 100 ms or less.

Addressing the model’s ability to handle low-frequency noise and very small BSP

intervals is a key direction for future work.

As an initial solution, I propose a hybrid GEV model that consists in a com-
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bination of the direct GEV model explained in Section 4.2 and the noise profiling

technique presented in Section 4.4. This technique uses a hybrid threshold θh to

decide the method to model the BSP intervals. I use as reference the application

intervals without contention: BSP intervals less than θh are modeled using the noise

profiling technique, while BSP intervals above θh are directly modeled.

Since the noise profile of a interference source is constructed using a discrete num-

ber of BSP intervals lengths, I use interpolation to find the slowdown generated for a

specific interval length. As I found that the logarithmic function of the slowdowns is

approximately linear with respect to the interval lengths, the interpolated slowdown

for the target interval length is based on the linear interpolation of the logarithm of

the slowdowns generated by the neighbor lengths. For BSP intervals outside the set

of modeled interval lengths, I use nearest neighbor extrapolation.

The use of this hybrid approach is appropiate to study the impact of interference

sources with large minimum block size requirements, for which accurate approxima-

tions are hard to achieve. This is particularly useful when BSP intervals are small

and the interference source has a bursty behaviour that makes difficult to collect the

required number of samples to obtain regular likelihood estimators even after using

the smoothing approach described in Section 4.2.3.

As shown in Figure 4.12, initial results show that this technique may be able to

address the estimation and accuracy problems the current techniques encounter when

modeling asynchronous checkpointing. Fully exploring and integrating this technique

into our overall methodology is a work in progress, however, and completing this

research remains a direction for future work. In particular, developing a methodology

for determining when to directly estimate BSP interval perturbance and when to

interpolate between synthetic measurements is a key outstanding challenge in this

direction.
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Figure 4.9: Impact estimation using the GEV model of two OS noise interference
sources and a synthetic noise trace on a set of applications. Solid lines are the
applications’ slowdown (percent) and dashed lines are the percent error of the pre-
dicted runtimes with respect to the simulated runtimes. Separated figures showing
predictions and errors are provided in Appendix A.2.
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Figure 4.10: Impact estimation using the GEV model of two in situ analytics on a
set of applications. Solid lines are the applications’ slowdown (percent) and dashed
lines are the percent error of the predicted runtimes with respect to the simulated
runtimes. Separated figures showing predictions and errors are provided in Ap-
pendix A.2.
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Figure 4.11: Estimation using the GEV model of an asynchronous checkpointing
task producing noise events of 1 second duration every two minutes on a set of
applications. Solid lines are the applications’ slowdown (percent) and dashed lines are
the percent error of the predicted runtimes with respect to the simulated runtimes.
Separated figures showing predictions and errors are provided in Appendix A.2.
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Figure 4.12: Preliminary results estimating the impact of asynchronous checkpoint-
ing on application performance using a hybrid combining direct estimation of large
BSP interval perturbance and estimation of small BSP interval perturbance using
synthetic benchmark results. Separated figures showing predictions and errors are
provided in Appendix A.2.
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4.6 Summary

This chapter presented a new stochastic modeling approach to understanding, char-

acterizing, and predicting the impact of interference sources on HPC applications.

It does so by leveraging properties of the generalized extreme value distribution,

making use of prior work on extrapolating the expected value of sets of maximum

distributions, and developing a step-by-step methodology to apply these techniques

to real HPC applications. The resulting technique has been validated against multi-

ple interference sources, and successfully predicts the performance impact for these

sources for multiple HPC applications and mini-applications.

The main direction for future work in this area is improving the methodology’s

ability to handle very low-frequency interference sources for applications with small

BSP intervals. This case presents a fundamental challenge due to the disparity

between scope of the interference being sampled and the granularity at which small

BSP intervals sample that interference. As a result, directly characterizing such

interference in these cases is very challenging.

I propose two different approaches for addressing this challenge. One approach is

to examine more sophisticated smoothing schemes than the simple running average

low-pass filter technique considered in this dissertation. Other technique is to use a

hybrid approach where instead of directly estimating the distribution of very small

application BSP intervals when perturbed by noise, large numbers of samples are used

with the synthetic application as a proxy for these intervals, as they can be sampled

much more cheaply, and different BSP length slowdowns interpolated between.
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Understanding Performance

Impact Mitigation Strategies

5.1 Introduction

This chapter examines the use of fine-grained OS scheduling techniques to mitigate

time-sharing overheads. This approach is motivated both by past results showing

that high-frequency, low-duration interference has little impact on application perfor-

mance [29,30], as well as research using EDF scheduling [62] to gang schedule virtual

machines [61]. My results demonstrate that careful earliest-deadline first scheduling

of analytics workloads can virtually eliminate the overheads of time-sharing analytics

with applications in most cases, and reduce overheads for the most sensitive applica-

tions to 10% or less. I also use my GEV model to understanding how this mitigation

technique works.

This chapter makes the following contributions:

• An evaluation of the viability of using a fine-grained OS scheduling approach
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based on periodic real-time scheduling to mitigate performance interference;

and

• A demonstration of the use of GEV modeling techniques for understanding the

potential impact of such interference mitigation technique.

5.2 EDF-based Mitigation of Analytics Interfer-

ence

I investigate the viability of using EDF scheduling to mitigate time-sharing perfor-

mance interference. For a given EDF period, I allocate sufficient time to analytics

to guarantee its average CPU utilization is at least as high as that measured in

Section 3.3.1. Thus, I generally simulate allocating a 3% utilization factor to the

analytics code. In this section, I examine how well EDF scheduling mitigates analyt-

ics interference at a single period and utilization. Then, I examine how integrating

the gang scheduling techniques studied in the previous section with EDF scheduling

lowers time sharing overheads.

5.2.1 EDF vs. Best-effort Scheduling

I first compare the impact of using fine-grained EDF-scheduled time sharing of pro-

cessors. I simulate an EDF scheduler with a period of Ti = 10 ms and analytics

utilization factor of ui = 3%. To simulate EDF scheduling, I process the noise trace

with a utility that transforms it using an earliest-deadline schedule with a given pe-

riod and slice. Note that this assumes that analytics can be delayed significantly

without perturbing application performance. Existing systems such as ADIOS [63]

and TCASM [3] use actual or virtual copy techniques to do so. In addition, I simu-
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late schedulers with both completely uncoordinated scheduling periods and periods

that are perfectly synchronized across nodes.
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(e) LULESH

Uncoordinated EDF time-sharing (U=3%, T=10ms)

Perfectly Coord. time-sharing - PreDatA (U=2.435%)

Perfectly Coord. time-sharing - Bonds (U=2.801%)
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Space-sharing (1 core out of 32)

Figure 5.1: Performance impact of various applications time-sharing CPU cores with
Bonds and PreDatA under different scheduling policies. For EDF policy, I use a
period of 10 ms and an utilization factor of 3%
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Figure 5.1 shows the results for those experiments. Most importantly, uncoordi-

nated EDF scheduling of analytics dramatically reduces the performance impact of

time-shared analytics across the range of node counts. For example, the performance

slowdown of EDF-scheduled LAMMPS Crack on 64 Ki nodes is approximately 10%,

compared with the almost 1600% observed in Section 3.3.2. For every other work-

load, uncoordinated EDF scheduling reduces the performance impact of time-shared

analytics to less than 4%, compared to the 50-300% slowdown observed when using

uncoordinated time-shared execution previously shown in Figure 3.2. Synchronizing

the scheduling periods of the EDF schedulers across nodes further reduces interfer-

ence, particularly for LAMMPS Crack.

5.2.2 EDF Scheduler Synchronization Impact

Based on the results of Section 5.2.1, I next examine how different levels of synchro-

nization between different EDF schedulers impact simulation performance. For these

experiments, I used the same offsetting mechanism used in Section 3.5. I again used

a period of Ti = 10 ms and a utilization factor of ui = 3%, and used synchronization

offsets with five different standard deviation values: 0s (perfectly coordinated), 300

µs, 1500 µs, 3000 µs, and ∞ (completely uncoordinated).

Figure 5.2 shows that most applications benefit little from EDF scheduler syn-

chronization. While the most sensitive applications, specifically LAMMPS Crack

and CTH, do obtain some additional benefits, the general amount of overhead is

low and the necessary synchronization needed to further reduce this overhead is

comparatively high.
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Figure 5.2: Slowdowns for applications co-located with an EDF-scheduled workload
with a utilization factor of 3% and 10 ms period for a 64ki nodes count. I use different
levels of synchronization for the co-located workload by adding offsets to the time at
which noise traces start on different processes.

5.2.3 Gang Scheduling vs. EDF Scheduling

Gang scheduling and EDF scheduling both successfully mitigate noise, though with

effectiveness depending on the application characteristics. Based on these results, the

most appropriate technique depends heavily on the expected application load. As

described in Chapter 3, current synchronization techniques can effectively mitigate

performance interference for applications with high inter-collective times.

Applications with lower inter-collective times require other methods. EDF or

another similar fine-grained fair share scheduling algorithm are possible, as is adding

collective communications to the analytics to tightly coordinate their activities. Var-

ious fair share schedulers are available as optional features in modern commodity

operating systems; many HPC operating systems do not necessarily include them,
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however. Similarly, current HPC job launch systems do not currently support time-

sharing of cores between different executables; some applications implement this

sharing themselves.

Finally, while each technique is valuable, combining the two appears to provide

only marginal additional benefits. System software and application designers should

consider the costs and benefits of each, and choose the appropriate one for their

application and system based on the application’s communication requirements, the

ease with which sufficient gang scheduling can be provided, and the availability of

fine-grained scheduling disciplines in the underlying operating system.

5.3 Guiding Interference Mitigation

In addition to predicting application performance impact, extreme value modeling

of HPC application interference can also provide guidance on approaches to mitigate

the performance impact of interference. In this section, I demonstrate the use of the

modeling approach described in Chapter 4 to predict the mitigation impact of EDF

and to explain its effect on application performance. Previous work has hypothesized

that EDF scheduling can decentralize the gang scheduling of interference events [61].

Using the extreme value model that I propose in this dissertation, I profile the impact

of EDF scheduling on interference sources and examine how it impacts application

performance to better understand its potential effectiveness.

5.3.1 Using EVT to Characterize EDF-scheduling Mitiga-

tion Impacts

I first model and simulate the performance impact of the PreDatA in situ analytics

interference source on different BSP interval lengths, simulating scheduling of the
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interference with both best-effort scheduling and EDF scheduling with a scheduling

period of 10 ms. Because the average CPU utilization of PreDatA is 2.44%, I sim-

ulate allocating a 3% utilization factor to the EDF-scheduled workload, enough to

meet PreDatA’s CPU demands. I use the synthetic application described in Sec-

tion 4.3.1 with local computation times ranging from 100 µsec to 10 sec and 1000

loop iterations, and I gather estimation data using 16,384 process runs.

Figure 5.3 shows the impact of EDF scheduling on BSP interval slowdown. Using

EDF scheduling reduces the slowdowns for these intervals by several orders of magni-

tude, and works particularly well for BSP intervals longer than the EDF scheduling

period. The predicted slowdown for these intervals falls to the level of the amount

of CPU allocated to the analytics workload, 3%.
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Figure 5.3: EDF (Ti = 10 ms, ui = 3%) scheduling mitigation effect on the synthetic
BSP test-case for a range of interval lengths at 16,384 processes

This performance impact also carries through to applications. Figure 5.4 shows

how EDF scheduling of the PreDatA analytics interference source impacts a set of

applications both in terms of runtime and prediction error. As shown in the figure,

the GEV modeling approach accurately predicts the performance reduction when
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interference is EDF scheduled, and has a runtime prediction error of less than 3.2%

at 65,536 nodes.
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Illustrating the source of this performance improvement, Figure 5.5 shows the cu-

mulative distribution functions of the different BSP intervals perturbed by PreDatA

for a 512 node count (the number of nodes that I used for the base case in order to

compute GEV parameters). EDF-scheduled interference results in BSP intervals of
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Figure 5.4: Impact estimation using the GEV model of PreDatA on a set of appli-
cations using EDF and best-effort scheduling policies. Solid lines are applications’
runtimes in seconds and dashed lines are the percent error of the predicted runtimes
with respect to the simulated runtimes. Separated figures showing predictions and
errors are provided in Appendix A.3.

essentially fixed length, while the best-effort scheduled interference has a significant

tail.
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Table 5.1 shows the estimated GEV parameters. The values of the estimated

parameters help to explain the mitigation effects of EDF. As described in Chapter 2,

the value of the scale parameter defines the dispersion of a probability distribution.

In this case small values are preferable. As can be seen, the scale parameter is

significantly smaller when analytics is scheduled using EDF for any size of the BSP

interval, meaning that one of the effects of EDF is that the application’s BSP intervals

lengths become more concentrated around a central value.

The shape parameter which defines the tail of the probability distribution provide

more information on the effects of mitigation. For both cases and for all interval

lengths the shape parameter is greater than -0.5, which means that the likelihood

estimators are regular and meet the asymptotic condition of the GEV distribution,

as described in Chapter 2. This parameter has a maximum value of 0.11 for PreDatA

EDF-scheduled and a maximum value of 0.42 when a best effort policy is used. The

greater this parameter, the more heavy-tailed is the distribution. The impact of

PreDatA is particularly high on very small intervals (e.g., less than 10 ms) where

the resulting distribution is Fréchet.

The location parameter shows that the effect of EDF is to reduce significantly

the right shift of the distribution with respect to best-effort. This is especially true

for very small intervals. For example, for the 100 µs interval length the shift to the

right is reduced by 30 times. In general, the combination of small location and small

value of shape is desirable, and define well-behaved BSP interval distributions with

potentially low impact on applications.

5.3.2 Trade-offs with Selecting EDF Scheduling Parameters

In this section, I demonstrate the capability of the GEV-based model as a tool to

inform the design of EDF schedules. For this analysis, I simulate the synthetic
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Best effort EDF
Interval shape (ξ) location (µ) scale (σ) shape (ξ) location (µ) scale (σ)

0.1 0.42 19.45 8.9 -0.11 0.6 0.05
1 0.42 21.25 8.81 -0.34 1.66 0.03
10 0.09 42.05 12.66 -0.11 10.81 0.04
100 -0.11 191.06 20.78 0.11 103.49 0.04
1000 -0.22 1237.03 124.63 0.11 1030.42 0.2
10000 -0.25 10508.77 218.19 0.09 10300.44 0.18

Table 5.1: Estimated GEV parameters for PreDatA using best-effort and EDF (Ti =
10 ms, ui = 3%) scheduling for the synthetic benchmark with BSP intervals between
100 µs and 10 s for a 512 nodes count (base case).

benchmark time-sharing CPU cores with an EDF-scheduled workload with different

EDF parameters configurations.

First, I study the effects of varying EDF slices and periods while keeping a con-

stant utilization factor of 3%. I use different EDF periods in the range on 10 ms to

10 s. For this analysis I applied the GEV modeling approach described in Chapter 4

with a block size of 512 nodes, and a block number of 1000. Figure 5.6a shows the

impacts of those EDF workloads at 16,384 processes for different BSP intervals and

Figure 5.6b shows the impacts across different process counts for a BSP interval of

100 ms.

Next, I compute the cumulative density functions of the resulting distributions

for a BSP interval of 100 ms. Table 5.2 and Figure 5.6c show the computed GEV

parameters and the resulting CDFs for the 100 ms BSP interval. The resulting GEV

distribution parameters confirm that the granularity of the implicit synchronization

provided by EDF can be controlled by the length of the period. Smaller periods

provide better synchronization.

The scale parameter helps to explain this observation. For example, the scale pa-

rameter for a 10 ms EDF period is 8 and 130 times smaller than the scale parameter
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for a 100 ms and a 1000 ms EDF period, respectively. This means that the distribu-

tion of BSP intervals is less dispersed in the former case and better synchronization

can be achieved, Figures 5.6a and 5.6b confirm this with lower EDF periods having

a significantly greater mitigation effect despite that all the EDF workloads have the

same utilization factor (e.g., ui = 3%).

EDF period (ms) shape (ξ) location (µ) scale (σ)
10 0.13 103.5 0.04
100 -0.03 106.11 0.32
1000 -0.1 146.41 5.22
10000 -0.22 447.49 40.14

Table 5.2: Estimated GEV parameters for EDF scheduled analytics for different EDF
periods and ui = 3% for the synthetic benchmark with BSP intervals of 100 ms.

For all the cases, the shape parameters have small values determining distri-

butions tending to be lightly tailed. However, an interesting observation is that

EDF-scheduling periods equal or greater than the length of the BSP interval (i.e.,

100 ms in this case) have slightly better behaved tails (i.e., smaller shape values) but

larger location and scales parameter (as shown in Table 5.2 and Figure 5.6c) which

have a high impact on application performance (see Figure 5.6a).

Next, I performed a similar experiment but this time using a constant EDF-

period of 10 ms and varying the utilization factor. Table 5.3 shows how the scale

parameter increases as the utilization factor increases; the same is true for the loca-

tion parameter. The shape parameter values are small for all cases. These resulting

GEV parameters are consistent with the slowdowns shown in Figures 5.7a and 5.7b.

Figure 5.8 summarizes all the tradeoffs that I presented above. Short periods

improve synchronization of interference events across processes and therefore reduce

the performance impact on applications. However, short periods increase scheduling

overheads, so the cost of short scheduling periods is potentially relevant to understand
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utilization factor (%) shape (ξ) location (µ) scale (σ)
3 0.13 103.5 0.04
5 0 105.83 0.11
10 -0.09 111.95 0.23

Table 5.3: Estimated GEV parameters for EDF scheduled analytics for different EDF
utilization factors and an EDF period of 10 ms for the synthetic benchmark with
BSP intervals of 100 ms

if using EDF scheduling is actually viable in real systems or requires short scheduling

periods that may not be desirable.

As expected, scheduling EDF workloads with lower utilization factors helps to im-

prove the application performance. However, there is a tradeoff between the perfor-

mance impact generated on applications as a result of the utilization factor allocated

to analytics and the associated analytic’s processes scheduling delay and scheduling

latency.

I next estimated the scheduling delay and scheduling latency of Bonds analytics

when scheduled using EDF with different values of period and utilization. In this

context, scheduling latency is the difference between a process wakeup time and the

process switch time. Scheduling delay is the difference between the observed process’s

end time and the computed end time if the process was running continuously starting

at process switch time. From the collected trace of best-effort scheduling events for

Bonds, I reschedule the tasks in EDF schedules with different values of slice and

period. The scheduling delay and scheduling latency are then computed according

with the definition I provided above. Figure 5.9 shows the result of this estimation.

The tradeoff between analytics utilization factor and scheduling latency is the most

important. Although lower values of analytics’ utilization factors have less impact

on simulation, they have a significant impact on scheduling latency, which could be

critical or not depending on the analytic’s degree of communication. In general,
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if communication is low in analytics and simulation does not depend on partial

analytics results, the impact of scheduling delay is potentially low.
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Figure 5.5: Cumulative density functions for different values of BSP intervals under
PreDatA interference source using best-effort and EDF scheduling policies for a 512
nodes count. EDF period is 10 ms and utilization 3% for all the experiments.
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Figure 5.6: Slowdowns of the synthetic benchmark time-sharing CPU cores with
EDF-scheduled workloads with an utilization factor of 3% and various values of EDF
period. Figure 5.6c shows the cumulative density functions for the BSP interval =
100 ms case.
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case.
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Figure 5.8: EDF parameters tradeoffs for different utilization factors
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5.4 Summary

In this chapter, I evaluated EDF-based mitigation strategies and used the model de-

scribed in Chapter 4 to better understand their impact on application performance.

These results demonstrate that, for applications with frequent collective communica-

tion operations, fine-grained EDF scheduling of analytics and application activities

can be used to mitigate overheads.

The GEV model explains that mitigation effect; EDF scheduling actually miti-

gates performance interference differently from gang scheduling — instead of reducing

the effective number of processes computing in a BSP interval, it instead shapes the

distribution of the interference. In other words, EDF scheduling reduces the impact

of interference by changing its tail behavior, thereby changing how this interference

scales.
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Conclusion & Future Work

6.1 Summary

In this dissertation, I investigated the impact of new sources of interference in next-

generation large-scale systems, studied traditional mitigation techniques, investi-

gated alternative mitigation approaches based on fine-grained OS scheduling, and

examined the synchronization requirements of those techniques. To that end I used

both empirical and analytical methods.

Chapter 2 described past work on application composition, and on characteri-

zation, modeling and mitigation of performance interference. None of these works

provide a comprehensive approach to study the impacts of emerging sources of in-

terference on HPC applications nor the effects of mitigation strategies. The more

closely related works to this dissertation are [78, 81], which leverage extreme value

theory concepts to study applications’ performance and the impacts of jitter but

unlike this dissertation, those works rely on assumptions about the distribution of

individual BSP intervals, and were not used to predict the performance impact of

interference on complete applications.
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Chapter 3 quantified the costs and benefits of different approaches to scheduling

applications and analytics on nodes in large-scale systems, including space sharing,

uncoordinated time sharing, and gang-scheduled time sharing. The results demon-

strated that coarse gang scheduling of analytics can reduce the overheads of time

sharing applications and analytics to as low or lower than space sharing. Addition-

ally, this chapter examined the synchronization mechanisms used in HPC systems

and the synchronization requirements of co-located codes in order to mitigate per-

formance impacts. The results of this analysis showed that alternative mitigation

strategies with reduced synchronization requirements are needed in next-generation

systems.

In Chapter 4, I presented a new model for analyzing the performance effects of

time-sharing on bulk-synchronous HPC applications based on the use of Extreme

Value Theory. After validating this model against both synthetic and real appli-

cations, I used both simulation and modeling techniques to profile next-generation

interference sources and characterize their behavior and performance impact on a

selection of HPC benchmarks, mini-applications, and applications.

Finally, Chapter 5 showed how the Extreme Value Theory-based model can be

used to understand how an alternative interference mitigation technique based on

periodic real time scheduling works. By using the model, I examined how EDF-

scheduling workloads time sharing CPUs with applications affect the distribution

of BSP intervals and the application’s performance. I also demonstrated how my

proposed model can be used to guide the design of mitigation alternatives based on

EDF scheduling, providing the needed tools to study the tradeoffs of selecting EDF

parameters.
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6.2 Future Work

In this dissertation I proposed a modeling and simulation based framework useful

to study a wide range of interference sources and mitigation approaches. A number

of additional sources of interference can be investigated using this approach. The

following are potentially interesting directions of future work related to those studies

that can leverage the work that I presented in this dissertation.

6.2.1 Characterizing Dynamic Hardware Impacts

The model that I propose in this dissertation is flexible enough to study interference

sources related to power management and other dynamic hardware activities such

as dynamic clock speeds and varying system temperature. These activities can be

modeled as interference events therefore our model should accurately predict their

impact in a similar fashion to the sources investigated in this work.

6.2.2 Investigating Emerging Programming Models

Emerging programming models seek to reduce global synchronization, for example

by allowing applications to overlap computation with collective operations whenever

possible or by using local collectives. This increases the length of the intervals be-

tween global synchronization, but does not eliminate it entirely however. It also

reduces the independence of distributed calculations. I expect my approach will re-

main feasible but addressing independence assumptions of the length of per-process

intervals will be important for such applications.
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6.2.3 Studying Interference Sources with Large Block Size

Requirements

Finally, as mentioned in Chapter 4, one of the model’s limitations is to accurately

predict the impact of interference sources with low-frequency noise events on ap-

plications with very small BSP intervals (e.g., less than 1 ms). For those cases, a

hybrid approach that combines the noise characterization method that I described in

Section 4.4 and the direct GEV model that I presented in Section 4.2 may allow to

effectively investigate those impacts. That hybrid model would use the noise char-

acterization technique to examine the impact of short BSP intervals, which require

large block sizes, and the direct GEV modeling for the rest of BSP intervals. Fig-

ure 4.12 shows some preliminary results of using that approach. Further research is

needed to understand the tradeoffs of selecting BSP interval lengths’ thresholds to

switching between these methods.

6.2.4 Investigating Communicating Analytics workloads

A number of new analytics codes are becoming to use a non-trivial amount of collec-

tive operations to communicate. The effects of that communication on applications’

performance have not been studied for previous works and is a potentially interesting

opportunity for future work.
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Appendix A

Predicting Interference

Performance Impact

The following sections reproduce the performance interference impact figures pre-

sented in Chapters 4 and 5, with the GEV model prediction results and prediction

errors in separated figures in order to show the prediction errors with more detail.

Figures in Section A.1 show the performance impact of different interference sources

on the synthetic BSP benchmark for different local computation times. Figures in

Section A.2 show the performance impact of different interference sources on appli-

cations. Finally, figures in Section A.3 show the performance impact of PreDatA in

situ analytics code scheduled using both best effort and EDF scheduling policies on

different applications.

A.1 Interference Performance Impact Prediction

on the Synthetic BSP Benchmark
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Figure A.1: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 100 µs.
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Figure A.2: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 1 ms.
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Figure A.3: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 10 ms.
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Figure A.4: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 100 ms.
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Figure A.5: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 1 s.
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Figure A.6: GEV model prediction of the performance impact of interference sources
on the BSP synthetic benchmark with local computation of 10 s.
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A.2 Interference Performance Impact Prediction

on Applications
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Figure A.7: Rhea OS noise performance impact on applications predictions using
the GEV model.
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Figure A.8: Titan OS noise performance impact on applications predictions using
the GEV model.
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Figure A.9: Synthetic gaussian noise performance impact on applications predictions
using the GEV model.
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Figure A.10: PreDatA performance impact on applications predictions using the
GEV model.
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Figure A.11: Bonds performance impact on applications predictions using the GEV
model.
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Figure A.12: Asynchronous checkpointing performance impact on applications pre-
dictions using the direct GEV model.
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Figure A.13: Asynchronous checkpointing performance impact on applications pre-
dictions using the hybrid GEV model.
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A.3 EDF-Scheduled Workloads Performance Im-

pact Prediction
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Figure A.14: PreDatA performance impact on CoMD prediction using the GEV
model. Best effort and EDF scheduling are compared.
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Figure A.15: PreDatA performance impact on LAMMPS-lj prediction using the GEV
model. Best effort and EDF scheduling are compared.
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Appendix A. Predicting Interference Performance Impact
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Figure A.16: PreDatA performance impact on HPCCG prediction using the GEV
model. Best effort and EDF scheduling are compared.
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Figure A.17: PreDatA performance impact on LULESH prediction using the GEV
model. Best effort and EDF scheduling are compared.
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