10,748 research outputs found

    Characterizing and Extending Answer Set Semantics using Possibility Theory

    Full text link
    Answer Set Programming (ASP) is a popular framework for modeling combinatorial problems. However, ASP cannot easily be used for reasoning about uncertain information. Possibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP. In PASP a weight is associated with each rule, where this weight is interpreted as the certainty with which the conclusion can be established when the body is known to hold. As such, it allows us to model and reason about uncertain information in an intuitive way. In this paper we present new semantics for PASP, in which rules are interpreted as constraints on possibility distributions. Special models of these constraints are then identified as possibilistic answer sets. In addition, since ASP is a special case of PASP in which all the rules are entirely certain, we obtain a new characterization of ASP in terms of constraints on possibility distributions. This allows us to uncover a new form of disjunction, called weak disjunction, that has not been previously considered in the literature. In addition to introducing and motivating the semantics of weak disjunction, we also pinpoint its computational complexity. In particular, while the complexity of most reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for programs with weak disjunctions is easier.Comment: 39 pages and 16 pages appendix with proofs. This article has been accepted for publication in Theory and Practice of Logic Programming, Copyright Cambridge University Pres

    Combining and Relating Control Effects and their Semantics

    Full text link
    Combining local exceptions and first class continuations leads to programs with complex control flow, as well as the possibility of expressing powerful constructs such as resumable exceptions. We describe and compare games models for a programming language which includes these features, as well as higher-order references. They are obtained by contrasting methodologies: by annotating sequences of moves with "control pointers" indicating where exceptions are thrown and caught, and by composing the exceptions and continuations monads. The former approach allows an explicit representation of control flow in games for exceptions, and hence a straightforward proof of definability (full abstraction) by factorization, as well as offering the possibility of a semantic approach to control flow analysis of exception-handling. However, establishing soundness of such a concrete and complex model is a non-trivial problem. It may be resolved by establishing a correspondence with the monad semantics, based on erasing explicit exception moves and replacing them with control pointers.Comment: In Proceedings COS 2013, arXiv:1309.092

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Extending Answer Set Programming using Generalized Possibilistic Logic

    Get PDF
    This international workshop is one of the joint ontology workshops JOWO 2015 affiliated with the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015)International audienceAnswer set programming (ASP) is a form of logic programming in which negation-as-failure is defined in a purely declarative way, based on the notion of a stable model. This short paper briefly explains how a recent generalization of possibilistic logic (GPL) can be used to characterize the semantics of answer set programming. This characterization has several advantages over existing characterizations of the stable model semantics. First, unlike reduct-based approaches, it does not rely on a syntactic procedure: we can directly characterize answer sets based on the minimally specific models of a GPL theory. Second, GPL enables us to study extensions of ASP in an intuitive way: unlike in existing generalizations of ASP such as equilibrium logic and autoepistemic logic, all formulas in GPL have a meaning which is intuitively clear. Finally, being based on possibilistic logic, GPL offers a natural way of dealing with uncertainty in answer set programs

    Strong Equivalence of Qualitative Optimization Problems

    Get PDF
    We introduce the framework of qualitative optimization problems (or, simply, optimization problems) to represent preference theories. The formalism uses separate modules to describe the space of outcomes to be compared (the generator) and the preferences on outcomes (the selector). We consider two types of optimization problems. They differ in the way the generator, which we model by a propositional theory, is interpreted: by the standard propositional logic semantics, and by the equilibrium-model (answer-set) semantics. Under the latter interpretation of generators, optimization problems directly generalize answer-set optimization programs proposed previously. We study strong equivalence of optimization problems, which guarantees their interchangeability within any larger context. We characterize several versions of strong equivalence obtained by restricting the class of optimization problems that can be used as extensions and establish the complexity of associated reasoning tasks. Understanding strong equivalence is essential for modular representation of optimization problems and rewriting techniques to simplify them without changing their inherent properties
    corecore