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Abstract

Answer set programming (ASP) is a form of logic
programming in which negation-as-failure is de-
fined in a purely declarative way, based on the no-
tion of a stable model. This short paper briefly ex-
plains how a recent generalization of possibilistic
logic (GPL) can be used to characterize the seman-
tics of answer set programming. This characteriza-
tion has several advantages over existing character-
izations of the stable model semantics. First, un-
like reduct-based approaches, it does not rely on a
syntactic procedure: we can directly characterize
answer sets based on the minimally specific mod-
els of a GPL theory. Second, GPL enables us to
study extensions of ASP in an intuitive way: unlike
in existing generalizations of ASP such as equilib-
rium logic and autoepistemic logic, all formulas in
GPL have a meaning which is intuitively clear. Fi-
nally, being based on possibilistic logic, GPL offers
a natural way of dealing with uncertainty in answer
set programs.

1 Introduction

An answer set program is a set of rules of the form:

a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not cr (1)

where a1, ..., an, b1, ..., bm, c1, ..., cr are propositional liter-
als, i.e. either atomic propositions from a given finite set At or
the negation of such atomic propositions. We call a1∨ ...∨an
the head of the rule while b1∧ ...∧ bm∧not c1∧ ...∧not cr is
called the body. An extended literal is a literal or an expres-
sion of the form not ci (with ci a literal). Intuitively, (1) states
that if we cannot derive that any of c1, ..., cr are true and we
can derive that all of b1, ..., bm are true, then we should as-
sume that one of a1, ..., an must be true. Formally, the se-
mantics of an answer set program is defined in terms of the
Gelfond-Lifschitz reduct [10]. In particular, given a set of
literals M , the reduct PM of an answer set program P is de-
fined as follows:

PM=
{

a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm |M ∩ {c1, ..., cr} = ∅,

(a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not cr) ∈ P
}

We say that M is a model of PM if for each rule a1 ∨ ... ∨
an ← b1 ∧ ... ∧ bm in PM such that {b1, ..., bm} ⊆ M it
holds that M ∩ {a1, ..., an} 6= ∅. We say that M is an an-
swer set of PM if M is a model of PM and there does not
exist a model M ′ of PM such that M ′ ⊂ M . Intuitively, the
condition not ci is satisfied if ci cannot be derived from the
program. However, what literals can be derived depends on
which assumptions we make about what other literals can be
derived, which introduces a circular dependency. When us-
ing the Gelfond-Lifschitz reduct, this dependency is broken
by making a guess M about what literals can be derived, and
then verifying that M indeed coincides with the set of literals
that can be derived.

A large number of equivalent characterizations of answer
sets have been proposed [15]. For example, autoepistemic
logic (AEL [16]), the logic of minimal belief and negation as
failure (MBNF [14]) and equilibrium logic (EL [18]) can be
used to define answer sets in a model-theoretic way. More-
over, MBNF and EL can be used to define answer sets of ar-
bitrary propositional combinations of extended literals (e.g.
containing disjunctions of rules, negation as failure in the
head of rules, etc.).

In this paper, we show how a recent generalization of pos-
sibilistic logic (GPL [5; 7; 8]) can be used to characterize an-
swer sets. This characterization has several advantages over
existing characterizations, in particular w.r.t. how it enables
us to extend ASP. For example, GPL has the advantage over
MBNF and EL that its models can be naturally interpreted
as the epistemic state of an agent, which allows us to give
an intuitive interpretation to answer set programs in which
not c1 means that “the agent does not know that c1 is true”.
As a result, even when the syntax of ASP is extended to ar-
bitrary propositional combinations of extended literals, the
corresponding GPL formulas still have an intuitive meaning.
In contrast, the intuitive meaning of EL formulas is not al-
ways clear. Moreover, since every propositional formula in
GPL is encapsulated by a modal operator (see Section 2), we
can distinguish between situations in which “the agent knows
that either a or b holds” from “either the agent knows a or
the agent knows b”, whereas EL can only model the latter.
The GPL characterization also ensures that all answer sets
are minimal, i.e. that there cannot be two answer sets M1 and
M2 such that M1 ⊂ M2. While this is true for any charac-
terization of ASP when only rules of the form (1) are consid-



ered, existing characterizations do not guarantee minimality
when negation-as-failure is allowed in the head of rules [13].
Finally, as the semantics of GPL is based on possibility dis-
tributions, the proposed characterization can be naturally ex-
tended to give a semantics to answer set programs in which
rules can have uncertain conclusions.

In the next section, we briefly recall the syntax and seman-
tics of GPL. Section 3 then explains how answer sets can be
characterized using GPL, and how GPL can be used to define
extensions of ASP. Finally, in Section 4 we consider uncer-
tain answer set programs, and show how GPL can be used to
define the possibilistic answer sets of such programs.

2 Generalized possibilistic logic

Let Λk = {0, 1
k
, ..., 1} be the considered set of certainty de-

grees and let Λ+
k = Λk \ {0}. GPL formulas are then defined

as follows:

• If λ ∈ Λ+
k and α is a propositional formula, then Nλ(α)

is a GPL formula;

• if α and β are GPL formulas, then so are ¬α and α ∧ β.

As usual, we use α → β and α ∨ β as abbreviations for
¬(α ∧ ¬β) and ¬(¬α ∧ ¬β). Furthermore we write Πλ(α)
as an abbreviation for ¬Nn(λ)(¬α), where n(λ) = 1−λ+ 1

k

for λ ∈ Λ+
k . GPL is useful to reason about the knowledge of

another agent. Intuitively Nλ(α) means that the agent knows
α with certainty λ, while Πλ(α) means that the agent con-
siders α possible to the degree λ. An expression of the form
Nλ(α) or Πλ(α) will be called a meta-literal.

The semantics of GPL is defined in terms of possibility
distributions. Let π be a normalized possibility distribution
over the set of possible worlds Ω, i.e. π is a mapping from Ω
to [0, 1] such that π(ω) = 1 for at least one ω in Ω. Then π is
said to satisfy the GPL formula Nλ(α), written π |= Nλ(α),
iff

N(α) = min{1− π(ω) |ω ∈ Ω, ω |= ¬α} ≥ λ

where N denotes the necessity measure from possibility the-
ory. The satisfaction relation |= is extended to arbitrary GPL
formulas in the usual way, i.e. π |= α ∧ β iff π |= α and
π |= β, while π |= ¬α iff π 6|= α. A possibility distribution
π is called a model of a set of GPL formulas Θ if π satis-
fies every formula in Θ. An axiomatization of GPL has been
presented in [7].

Let π1 and π2 be two possibility distributions over Ω. We
say that π1 is less specific than π2, written π1 � π2, if
π1(ω) ≥ π2(ω) for all ω ∈ Ω. If π1 � π2 and π1 6= π2,
we write π1 ≺ π2. We say that π is a minimally specific
model of a set of GPL formulas Θ if π is a model of Θ and
there is no model π′ of Θ such that π′ ≺ π. Let α be a GPL
formula and let Θ be a set of GPL formulas. The following
three inference relations are considered in GPL:

standard entailment Θ |= α iff α is satisfied by every
model of Θ.

cautious entailment Θ |=c α iff α is satisfied by all mini-
mally specific models of Θ.

brave entailment Θ |=b α iff α is satisfied by at least one
minimally specific model of Θ.

The problems of checking whether Θ |= α, Θ |=c α and
Θ |=b α hold are respectively coNP-complete, ΠP

2 -complete
and ΣP

2 -complete [8].
GPL generalizes standard possibilistic logic [4; 6] in that

the latter only allows sets of meta-literals of the form Nλ(α),
which are usually written as weighted propositional formulas
of the form (α, λ). At the semantic level, a theory in possi-
bilistic logic corresponds to a single possibility distribution,
which is the unique minimally specific model of that theory,
whereas theories in GPL can have several minimally specific
models.

3 Characterizing and extending ASP using

GPL

Given an answer set program P , we let ΘP be the GPL theory
which contains for each rule of the form (1) in P the follow-
ing formula:

N1(b1) ∧ ... ∧N1(bm) ∧Π1(¬c1) ∧ ... ∧Π1(¬cr)

→ N1(a1) ∨ ... ∨N1(an) (2)

In other words, the body of a rule of the form (1) is satisfied if
the agent knows each bi with maximal certainty and moreover
the agent considers ¬cj fully possible for each j. Note that
Π1(¬cj) is equivalent to ¬N 1

k

(cj).

The transformation in (2) is by itself not enough, as ASP is
based on the idea of forward chaining and in particular does
not allow contrapositive reasoning (e.g. from the rule a ← b
and the fact ¬a we should not derive ¬b). To see how forward
chaining could be enforced using GPL, first note that there
are three ways in which the formula (2) can be satisfied by a
minimally specific model π of ΘP :

1. one of the meta-literals N1(bi) is not satisfied by π;

2. one of the meta-literals Π1(ci) is not satisfied by π, i.e.
N 1

k

(ci) is satisfied by π;

3. one of the meta-literals N1(ai) is satisfied by π.

The first case intuitively corresponds to an answer set which
does not include bi, i.e. to a situation in which the rule (1)
does not apply. The third case intuitively corresponds to an
answer set in which ai has been included to make the rule (1)
satisfied, i.e. to a situation in which ai has been derived using
(non-deterministic) forward chaining. The second case, how-
ever, intuitively corresponds to a contrapositive inference, i.e.
(1) has been satisfied by making ci true. The latter inference
is not allowed in ASP and the second case should thus be ex-
cluded. To this end, we take advantage of the fact that it is
only in the second case that certainty degrees other than 0 or
1 are needed. Note that here we do not use degrees for mod-
elling uncertainty, but intuitively for differentiating between
literals that are assumed to be true and literals that can effec-
tively be derived. In particular, it turns out that answer sets
correspond to the minimally specific models of ΘP in which
only the certainty degrees 0 and 1 occur. Formally, the re-
quirement that only these certainty degrees occur is encoded



by the GPL formula Φ, defined as follows:

Φ ≡
∧

a∈At

N1(a) ∨N1(¬a) ∨ (Π1(a) ∧Π1(¬a)) (3)

The formula Φ expresses that for every atom a, the agent is
either fully certain about the truth value of a (in which case
N1(a) ∨N1(¬a) holds) or the agent is completely ignorant
about a (in which case Π1(a) ∧Π1(¬a) holds). It turns out
that the answer sets of P correspond to the minimally specific
models of ΘP that satisfy Φ. In particular, assuming that
k ≥ 2 (i.e. |Λk| ≥ 3), it holds that P has a consistent answer
set iff

ΘP |=
b Φ

Moreover, for each consistent answer set M of P , it holds
that the following possibility distribution πM is a minimally
specific model of ΘP which satisfies Φ:

πM (ω) =

{

1 if ω satisfies every literal in M

0 otherwise

Conversely, for every minimally specific model π of ΘP

which satisfies Φ, it holds that the following set of literals
Mπ is an answer set of P :

Mπ = {l |N(l) = 1}

where N is the necessity measure induced by π. Note that it
follows that a literal l is included in at least one answer set of
P iff

ΘP |=
b Φ ∧N1(l)

and that that l is included in all answer sets of P iff

ΘP |=
c Φ→ N1(l)

This means in particular that the main reasoning tasks from
ASP correspond to the standard forms of GPL inference.

This characterization of answer sets in GPL can be straight-
forwardly generalized to arbitrary propositional combinations
of extended literals. When negation-as-failure in the head is
considered, however, our characterization deviates from the
existing characterizations in terms of EL and MBNF. This is
illustrated in the next example.

Example 1. We consider a single atom a, in which case
Ω = {∅, {a}}, where we identify models with the set of atoms
they make true. Consider the formula a∨not a, and the corre-
sponding GPL encoding N1(a)∨Π1(¬a). Clearly, the latter
formula has a unique minimally specific model π, defined by
π(∅) = π({a}) = 1. In other words, the only answer set we
find for a ∨ not a is the empty set. However, both the charac-
terization of ASP in MBNF [14] and the characterization in
EL [18] find two answer sets for this example, viz. M1 = ∅
and M2 = {a}.

As the intuition behind the stable model semantics is based
on the idea of minimal commitment, the GPL semantics ap-
pears more natural.

The use of the modal operators Nλ in GPL allows us to
further extend ASP. In the standard semantics of ASP, rules
with disjunctions in the head intuitively correspond to a non-
deterministic choice, e.g. a ∨ b ← c means that when the

agent knows c then either it knows a or it knows b. When
modelling epistemic reasoning, however, it often seems more
natural to interpret a ∨ b as “the agent knows that either a or
b is true (but may not know which is the case)”. This latter
reading was referred to as weak disjunction in [2], where the
inference problems resulting from interpreting ASP rules in
this way have been investigated. Using GPL, the ASP rule
a∨b← c can be modelled as N1(c)→ N1(a∨b) when weak
disjunction is considered, and as N1(c) → N1(a) ∨ N1(b)
otherwise.

Finally, the use of possibilistic logic enables us to consider
uncertain answer set programs. This is discussed in more de-
tail in the next section.

4 Modelling uncertain answer set programs

An uncertain ASP rule is an expression of the form

λ : a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not cr (4)

where λ is a certainty degree from Λ+
k . An uncertain answer

set program is a set of uncertain ASP rules. As has been
observed in [1], there are two fundamentally different ways
to interpret uncertain ASP rules. On the one hand, we may
view λ as reflecting the certainty that the corresponding ASP
rule is valid. This interpretation leads us to view an uncertain
ASP program as a possibility distribution over classical ASP
programs; at the semantic level, we can then consider a pos-
sibility distribution over classical answer sets. On the other
hand, we may view λ as reflecting the certainty with which
we can derive the head of the rule, given that its body is sat-
isfied. This view leads to a semantics in which answer sets
correspond to weighted epistemic states, which are modelled
as possibility distributions. Note that a similar distinction is
often made in first-order probabilistic logics [11] and in first-
order conditional logics [9]. The former interpretation of un-
certain ASP programs has been considered in [1] and [12].
The latter interpretation has been considered, among others,
in [17], [2] and [3].

Modelling the former type of uncertain ASP programs in
GPL would require nested modalities, encapsulating formu-
las of the form (2) with a modality of the form Nλ. As nested
modalities are not allowed in GPL, this would require us to
define a variant of GPL in which every (standard) GPL for-
mula would be encapsulated by a modality, similar to how
propositional formulas are encapsulated in standard GPL. At
the semantic level, models would then correspond to possi-
bility distributions over possibility distributions over possible
worlds.

Here we focus on modelling the second type of uncertain
ASP programs in GPL. Let us first consider rules without
negation-as-failure:

l

k
: a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm

The corresponding GPL formula is given by

l
∧

i=1

(

N i

k

(b1) ∧ ... ∧N i

k

(bm)→ N i

k

(a1) ∨ ... ∨N i

k

(an)
)



Let P be an uncertain ASP program without negation-as-
failure and let ΘP be the set of corresponding GPL formu-
las. It is not hard to see that a possibility distribution π is
a possibilistic answer set of P in the sense of [2] iff π is a
minimally specific model of ΘP . In absence of negation-as-
failure, the semantics from [1] moreover coincides with the
semantics from [17].

To deal with negation-as-failure, [2] and [17] rely on a gen-
eralization of the Gelfond-Lifschitz reduct. Consider a rule of
the following form:

l

k
: a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm ∧ not c1 ∧ ... ∧ not cr

The reduct of this rule w.r.t. a possibility distribution π, ac-
cording to the semantics from [2], is given by:

λ : a1 ∨ ... ∨ an ← b1 ∧ ... ∧ bm (5)

where λ = min( l
k
,Π(¬c1), ...,Π(¬cr)), for Π the possibility

measure induced by π. The reduct considered in [17] boils
down to choosing λ = l

k
if Π(¬c1) = ...Π(¬cr) = 1 and

λ = 0 otherwise (where rules whose certainty is 0 are simply
omitted).

Using GPL, we can avoid the use of a reduct, if we assume
that k is even and only certainty degrees from { 2

k
, 4
k
, ..., 1}

are used in the uncertain ASP program P . We can always
ensure that this assumption is satisfied by replacing the set of
certainty degrees Λk by the set Λ2k, since every element from
Λk is equal to l

2k for some even value of l. The GPL theory
ΘP corresponding to P is then obtained by replacing every
rule of the form (4) by the following formula:

l
∧

i=1

(

N i

k

(b1) ∧ ... ∧N i

k

(bm) ∧Π i

k

(¬c1) ∧ ... ∧Π i

k

(¬cr)

→ N i

k

(a1) ∨ ... ∨N i

k

(an)
)

(6)

where we assume λ = l
k

. We again need to exclude models
which intuitively rely on contrapositive reasoning. Similar as
in Section 3, these correspond to minimally specific models
π which make (6) satisfied by making one of the meta-literals
Π i

k

(¬c1) false, i.e. by making a meta-literal N k−i+1

k

( c1)

true. Noting that k − i + 1 is odd iff i is even, we find that
it suffices to exclude models in which certainty degrees l

k
are

used with l odd. Such models can be avoided by considering
the following GPL formula Φk

Φk ≡
∧

a∈At

k

2
∧

i=1

(

N 2i−1

k

(a)→ N 2i
k

(a))

∧ (N 2i−1

k

(¬a)→ N 2i
k

(¬a)
)

Note that Φ2 is equivalent to the formula Φ defined in (3). We
propose the following definition: φ is a possibilistic answer
set of P iff π is a minimally specific model of ΘP which sat-
isfies Φk. As in Section 3, we can then formulate the main
reasoning tasks for possibilistic ASP in terms of standard en-
tailment in GPL. For example, checking whether the certainty

of a is at least l
k

(with l even) in every possibilistic answer set
of P corresponds to:

ΘP |=
c Φk → N l

k

(a)

We can show that the proposed definition of possibilistic an-
swer set corresponds to the reduct-based definition from [2].

5 Conclusions

We have shown how generalized possibilistic logic (GPL) can
be used to characterize answer sets without the need for a
reduct operation, and how this characterization allows us to
consider a range of different extensions of ASP in a natu-
ral way. In particular, the GPL characterization enables us
to define answer sets for arbitrary propositional combinations
of extended literals (while keeping the intuition of minimal
commitment), for modelling weak disjunction, and for defin-
ing answer sets of uncertain programs.
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