20 research outputs found

    Arithmetic Branching Programs with Memory

    Get PDF
    We extend the well known characterization of VPws as the class of polynomials computed by polynomial size arithmetic branching programs to other complexity classes. In order to do so we add additional memory to the computation of branching programs to make them more expressive. We show that allowing different types of memory in branching programs increases the computational power even for constant width programs. In particular, this leads to very natural and robust characterizations of VP and VNP by branching programs with memory. 1

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    Information theory : proceedings of the 1990 IEEE international workshop, Eindhoven, June 10-15, 1990

    Get PDF

    PCD

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Page 96 blank. Cataloged from PDF version of thesis.Includes bibliographical references (p. 87-95).The security of systems can often be expressed as ensuring that some property is maintained at every step of a distributed computation conducted by untrusted parties. Special cases include integrity of programs running on untrusted platforms, various forms of confidentiality and side-channel resilience, and domain-specific invariants. We propose a new approach, proof-carrying data (PCD), which sidesteps the threat of faults and leakage by reasoning about properties of a computation's output data, regardless of the process that produced it. In PCD, the system designer prescribes the desired properties of a computation's outputs. Corresponding proofs are attached to every message flowing through the system, and are mutually verified by the system's components. Each such proof attests that the message's data and all of its history comply with the prescribed properties. We construct a general protocol compiler that generates, propagates, and verifies such proofs of compliance, while preserving the dynamics and efficiency of the original computation. Our main technical tool is the cryptographic construction of short non-interactive arguments (computationally-sound proofs) for statements whose truth depends on "hearsay evidence": previous arguments about other statements. To this end, we attain a particularly strong proof-of-knowledge property. We realize the above, under standard cryptographic assumptions, in a model where the prover has blackbox access to some simple functionality - essentially, a signature card.by Alessandro Chiesa.M.Eng

    The Computational Power of Non-interacting Particles

    Full text link
    Shortened abstract: In this thesis, I study two restricted models of quantum computing related to free identical particles. Free fermions correspond to a set of two-qubit gates known as matchgates. Matchgates are classically simulable when acting on nearest neighbors on a path, but universal for quantum computing when acting on distant qubits or when SWAP gates are available. I generalize these results in two ways. First, I show that SWAP is only one in a large family of gates that uplift matchgates to quantum universality. In fact, I show that the set of all matchgates plus any nonmatchgate parity-preserving two-qubit gate is universal, and interpret this fact in terms of local invariants of two-qubit gates. Second, I investigate the power of matchgates in arbitrary connectivity graphs, showing they are universal on any connected graph other than a path or a cycle, and classically simulable on a cycle. I also prove the same dichotomy for the XY interaction. Free bosons give rise to a model known as BosonSampling. BosonSampling consists of (i) preparing a Fock state of n photons, (ii) interfering these photons in an m-mode linear interferometer, and (iii) measuring the output in the Fock basis. Sampling approximately from the resulting distribution should be classically hard, under reasonable complexity assumptions. Here I show that exact BosonSampling remains hard even if the linear-optical circuit has constant depth. I also report several experiments where three-photon interference was observed in integrated interferometers of various sizes, providing some of the first implementations of BosonSampling in this regime. The experiments also focus on the bosonic bunching behavior and on validation of BosonSampling devices. This thesis contains descriptions of the numerical analyses done on the experimental data, omitted from the corresponding publications.Comment: PhD Thesis, defended at Universidade Federal Fluminense on March 2014. Final version, 208 pages. New results in Chapter 5 correspond to arXiv:1106.1863, arXiv:1207.2126, and arXiv:1308.1463. New results in Chapter 6 correspond to arXiv:1212.2783, arXiv:1305.3188, arXiv:1311.1622 and arXiv:1412.678

    A Holant Dichotomy: Is the FKT Algorithm Universal?

    Get PDF
    We prove a complexity dichotomy for complex-weighted Holant problems with an arbitrary set of symmetric constraint functions on Boolean variables. This dichotomy is specifically to answer the question: Is the FKT algorithm under a holographic transformation a \emph{universal} strategy to obtain polynomial-time algorithms for problems over planar graphs that are intractable in general? This dichotomy is a culmination of previous ones, including those for Spin Systems, Holant, and #CSP. A recurring theme has been that a holographic reduction to FKT is a universal strategy. Surprisingly, for planar Holant, we discover new planar tractable problems that are not expressible by a holographic reduction to FKT. In previous work, an important tool was a dichotomy for #CSP^d, which denotes #CSP where every variable appears a multiple of d times. However its proof violates planarity. We prove a dichotomy for planar #CSP^2. We apply this planar #CSP^2 dichotomy in the proof of the planar Holant dichotomy. As a special case of our new planar tractable problems, counting perfect matchings (#PM) over k-uniform hypergraphs is polynomial-time computable when the incidence graph is planar and k >= 5. The same problem is #P-hard when k=3 or k=4, which is also a consequence of our dichotomy. When k=2, it becomes #PM over planar graphs and is tractable again. More generally, over hypergraphs with specified hyperedge sizes and the same planarity assumption, #PM is polynomial-time computable if the greatest common divisor of all hyperedge sizes is at least 5.Comment: 128 pages, 36 figure

    Turku Centre for Computer Science – Annual Report 2013

    Get PDF
    Due to a major reform of organization and responsibilities of TUCS, its role, activities, and even structures have been under reconsideration in 2013. The traditional pillar of collaboration at TUCS, doctoral training, was reorganized due to changes at both universities according to the renewed national system for doctoral education. Computer Science and Engineering and Information Systems Science are now accompanied by Mathematics and Statistics in newly established doctoral programs at both University of Turku and &Aring;bo Akademi University. Moreover, both universities granted sufficient resources to their respective programmes for doctoral training in these fields, so that joint activities at TUCS can continue. The outcome of this reorganization has the potential of proving out to be a success in terms of scientific profile as well as the quality and quantity of scientific and educational results.&nbsp; International activities that have been characteristic to TUCS since its inception continue strong. TUCS&rsquo; participation in European collaboration through EIT ICT Labs Master&rsquo;s and Doctoral School is now more active than ever. The new double degree programs at MSc and PhD level between University of Turku and Fudan University in Shaghai, P.R.China were succesfully set up and are&nbsp; now running for their first year. The joint students will add to the already international athmosphere of the ICT House.&nbsp; The four new thematic reseach programmes set up acccording to the decision by the TUCS Board have now established themselves, and a number of events and other activities saw the light in 2013. The TUCS Distinguished Lecture Series managed to gather a large audience with its several prominent speakers. The development of these and other research centre activities continue, and&nbsp; new practices and structures will be initiated to support the tradition of close academic collaboration.&nbsp; The TUCS&rsquo; slogan Where Academic Tradition Meets the Exciting Future has proven true throughout these changes. Despite of the dark clouds on the national and European economic sky, science and higher education in the field have managed to retain all the key ingredients for success. Indeed, the future of ICT and Mathematics in Turku seems exciting.</p

    Proceedings of the Fifth Meeting on Mathematics of Language : MOL5

    Get PDF
    corecore