2,729 research outputs found

    Characterization of image sets: the Galois Lattice approach

    Get PDF
    This paper presents a new method for supervised image classification. One or several landmarks are attached to each class, with the intention of characterizing it and discriminating it from the other classes. The different features, deduced from image primitives, and their relationships with the sets of images are structured and organized into a hierarchy thanks to an original method relying on a mathematical formalism called Galois (or Concept) Lattices. Such lattices allow us to select features as landmarks of specific classes. This paper details the feature selection process and illustrates this through a robotic example in a structured environment. The class of any image is the room from which the image is shot by the robot camera. In the discussion, we compare this approach with decision trees and we give some issues for future research

    Percolation on hyperbolic lattices

    Full text link
    The percolation transitions on hyperbolic lattices are investigated numerically using finite-size scaling methods. The existence of two distinct percolation thresholds is verified. At the lower threshold, an unbounded cluster appears and reaches from the middle to the boundary. This transition is of the same type and has the same finite-size scaling properties as the corresponding transition for the Cayley tree. At the upper threshold, on the other hand, a single unbounded cluster forms which overwhelms all the others and occupies a finite fraction of the volume as well as of the boundary connections. The finite-size scaling properties for this upper threshold are different from those of the Cayley tree and two of the critical exponents are obtained. The results suggest that the percolation transition for the hyperbolic lattices forms a universality class of its own.Comment: 17 pages, 18 figures, to appear in Phys. Rev.

    Portraits of Complex Networks

    Full text link
    We propose a method for characterizing large complex networks by introducing a new matrix structure, unique for a given network, which encodes structural information; provides useful visualization, even for very large networks; and allows for rigorous statistical comparison between networks. Dynamic processes such as percolation can be visualized using animations. Applications to graph theory are discussed, as are generalizations to weighted networks, real-world network similarity testing, and applicability to the graph isomorphism problem.Comment: 6 pages, 9 figure

    Random walks on graphs: ideas, techniques and results

    Full text link
    Random walks on graphs are widely used in all sciences to describe a great variety of phenomena where dynamical random processes are affected by topology. In recent years, relevant mathematical results have been obtained in this field, and new ideas have been introduced, which can be fruitfully extended to different areas and disciplines. Here we aim at giving a brief but comprehensive perspective of these progresses, with a particular emphasis on physical aspects.Comment: LateX file, 34 pages, 13 jpeg figures, Topical Revie

    New critical phenomena in 2d quantum gravity

    Full text link
    We study q=10q=10 and q=200q=200 state Potts models on dynamical triangulated lattices and demonstrate that these models exhibit continuous phase transitions, contrary to the first order transition present on regular lattices. For q=10q=10 the transition seems to be of 2nd order, while it seems to be of 3rd order for q=200q=200. For q=200q=200 the phase transition also induces a transition between typical fractal structures of the piecewise linear surfaces corresponding to the triangulations. The typical surface changes from having a tree-like structure to a fractal structure characterizing pure gravity when the temperature drops below the critical temperature. An investigation of the alignment of spin clusters shows that they are strongly correlated to the underlying fractal structure of the triangulated surfaces.Comment: 22 pages, uuencoded compressed ps-file. Use csh file.uu to get ps-fil

    The abelian sandpile and related models

    Full text link
    The Abelian sandpile model is the simplest analytically tractable model of self-organized criticality. This paper presents a brief review of known results about the model. The abelian group structure allows an exact calculation of many of its properties. In particular, one can calculate all the critical exponents for the directed model in all dimensions. For the undirected case, the model is related to q= 0 Potts model. This enables exact calculation of some exponents in two dimensions, and there are some conjectures about others. We also discuss a generalization of the model to a network of communicating reactive processors. This includes sandpile models with stochastic toppling rules as a special case. We also consider a non-abelian stochastic variant, which lies in a different universality class, related to directed percolation.Comment: Typos and minor errors fixed and some references adde
    corecore