250 research outputs found

    Mobile Crowd Sensing in Edge Computing Environment

    Get PDF
    abstract: The mobile crowdsensing (MCS) applications leverage the user data to derive useful information by data-driven evaluation of innovative user contexts and gathering of information at a high data rate. Such access to context-rich data can potentially enable computationally intensive crowd-sourcing applications such as tracking a missing person or capturing a highlight video of an event. Using snippets and pictures captured from multiple mobile phone cameras with specific contexts can improve the data acquired in such applications. These MCS applications require efficient processing and analysis to generate results in real time. A human user, mobile device and their interactions cause a change in context on the mobile device affecting the quality contextual data that is gathered. Usage of MCS data in real-time mobile applications is challenging due to the complex inter-relationship between: a) availability of context, context is available with the mobile phones and not with the cloud, b) cost of data transfer to remote cloud servers, both in terms of communication time and energy, and c) availability of local computational resources on the mobile phone, computation may lead to rapid battery drain or increased response time. The resource-constrained mobile devices need to offload some of their computation. This thesis proposes ContextAiDe an end-end architecture for data-driven distributed applications aware of human mobile interactions using Edge computing. Edge processing supports real-time applications by reducing communication costs. The goal is to optimize the quality and the cost of acquiring the data using a) modeling and prediction of mobile user contexts, b) efficient strategies of scheduling application tasks on heterogeneous devices including multi-core devices such as GPU c) power-aware scheduling of virtual machine (VM) applications in cloud infrastructure e.g. elastic VMs. ContextAiDe middleware is integrated into the mobile application via Android API. The evaluation consists of overheads and costs analysis in the scenario of ``perpetrator tracking" application on the cloud, fog servers, and mobile devices. LifeMap data sets containing actual sensor data traces from mobile devices are used to simulate the application run for large scale evaluation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Crowd data analytics as seen from Wifi:a critical review

    Get PDF

    Systems and Methods for Measuring and Improving End-User Application Performance on Mobile Devices

    Full text link
    In today's rapidly growing smartphone society, the time users are spending on their smartphones is continuing to grow and mobile applications are becoming the primary medium for providing services and content to users. With such fast paced growth in smart-phone usage, cellular carriers and internet service providers continuously upgrade their infrastructure to the latest technologies and expand their capacities to improve the performance and reliability of their network and to satisfy exploding user demand for mobile data. On the other side of the spectrum, content providers and e-commerce companies adopt the latest protocols and techniques to provide smooth and feature-rich user experiences on their applications. To ensure a good quality of experience, monitoring how applications perform on users' devices is necessary. Often, network and content providers lack such visibility into the end-user application performance. In this dissertation, we demonstrate that having visibility into the end-user perceived performance, through system design for efficient and coordinated active and passive measurements of end-user application and network performance, is crucial for detecting, diagnosing, and addressing performance problems on mobile devices. My dissertation consists of three projects to support this statement. First, to provide such continuous monitoring on smartphones with constrained resources that operate in such a highly dynamic mobile environment, we devise efficient, adaptive, and coordinated systems, as a platform, for active and passive measurements of end-user performance. Second, using this platform and other passive data collection techniques, we conduct an in-depth user trial of mobile multipath to understand how Multipath TCP (MPTCP) performs in practice. Our measurement study reveals several limitations of MPTCP. Based on the insights gained from our measurement study, we propose two different schemes to address the identified limitations of MPTCP. Last, we show how to provide visibility into the end- user application performance for internet providers and in particular home WiFi routers by passively monitoring users' traffic and utilizing per-app models mapping various network quality of service (QoS) metrics to the application performance.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/146014/1/ashnik_1.pd

    Selected Papers from the 5th International Electronic Conference on Sensors and Applications

    Get PDF
    This Special Issue comprises selected papers from the proceedings of the 5th International Electronic Conference on Sensors and Applications, held on 15–30 November 2018, on sciforum.net, an online platform for hosting scholarly e-conferences and discussion groups. In this 5th edition of the electronic conference, contributors were invited to provide papers and presentations from the field of sensors and applications at large, resulting in a wide variety of excellent submissions and topic areas. Papers which attracted the most interest on the web or that provided a particularly innovative contribution were selected for publication in this collection. These peer-reviewed papers are published with the aim of rapid and wide dissemination of research results, developments, and applications. We hope this conference series will grow rapidly in the future and become recognized as a new way and venue by which to (electronically) present new developments related to the field of sensors and their applications

    A Survey on Mobile Crowdsensing Systems: Challenges, Solutions, and Opportunities

    Get PDF
    Mobile crowdsensing (MCS) has gained significant attention in recent years and has become an appealing paradigm for urban sensing. For data collection, MCS systems rely on contribution from mobile devices of a large number of participants or a crowd. Smartphones, tablets, and wearable devices are deployed widely and already equipped with a rich set of sensors, making them an excellent source of information. Mobility and intelligence of humans guarantee higher coverage and better context awareness if compared to traditional sensor networks. At the same time, individuals may be reluctant to share data for privacy concerns. For this reason, MCS frameworks are specifically designed to include incentive mechanisms and address privacy concerns. Despite the growing interest in the research community, MCS solutions need a deeper investigation and categorization on many aspects that span from sensing and communication to system management and data storage. In this paper, we take the research on MCS a step further by presenting a survey on existing works in the domain and propose a detailed taxonomy to shed light on the current landscape and classify applications, methodologies, and architectures. Our objective is not only to analyze and consolidate past research but also to outline potential future research directions and synergies with other research areas

    Experimenting with commodity 802.11 hardware: overview and future directions

    Get PDF
    The huge adoption of 802.11 technologies has triggered a vast amount of experimentally-driven research works. These works range from performance analysis to protocol enhancements, including the proposal of novel applications and services. Due to the affordability of the technology, this experimental research is typically based on commercial off-the-shelf (COTS) devices, and, given the rate at which 802.11 releases new standards (which are adopted into new, affordable devices), the field is likely to continue to produce results. In this paper, we review and categorise the most prevalent works carried out with 802.11 COTS devices over the past 15 years, to present a timely snapshot of the areas that have attracted the most attention so far, through a taxonomy that distinguishes between performance studies, enhancements, services, and methodology. In this way, we provide a quick overview of the results achieved by the research community that enables prospective authors to identify potential areas of new research, some of which are discussed after the presentation of the survey.This work has been partly supported by the European Community through the CROWD project (FP7-ICT-318115) and by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919).Publicad

    Discovering and Predicting Temporal Patterns of WiFi-interactive Social Populations

    Full text link
    Extensive efforts have been devoted to characterizing the rich connectivity patterns among the nodes (components) of such complex networks (systems), and in the course of development of research in this area, people have been prompted to address on a fundamental question: How does the fascinating yet complex topological features of a network affect or determine the collective behavior and performance of the networked system? While elegant attempts to address this core issue have been made, for example, from the viewpoints of synchronization, epidemics, evolutionary cooperation, and the control of complex networks, theoretically or empirically, this widely concerned key question still remains open in the newly emergent field of network science. Such fruitful advances also push the desire to understand (mobile) social networks and characterize human social populations with the interdependent collective dynamics as well as the behavioral patterns. Nowadays, a great deal of digital technologies are unobtrusively embedded into the physical world of human daily activities, which offer unparalleled opportunities to explosively digitize human physical interactions, who is contacting with whom at what time. Such powerful technologies include the Bluetooth, the active Radio Frequency Identification (RFID) technology, wireless sensors and, more close to our interest in this paper, the WiFi technology. As a snapshot of the modern society, a university is in the coverage of WiFi signals, where the WiFi system records the digital access logs of the authorized WiFi users when they access the campus wireless services. Such WiFi access records, as the indirect proxy data, work as the effective proxy of a large-scale population's social interactions.Comment: 11 pages, 10 page
    • …
    corecore