42,697 research outputs found

    Astrocladistics: Multivariate Evolutionary Analysis in Astrophysics

    Full text link
    The Hubble tuning fork diagram, based on morphology and established in the 1930s, has always been the preferred scheme for classification of galaxies. However, the current large amount of data up to higher and higher redshifts asks for more sophisticated statistical approaches like multivariate analyses. Clustering analyses are still very confidential, and do not take into account the unavoidable characteristics in our Universe: evolution. Assuming branching evolution of galaxies as a 'transmission with modification', we have shown that the concepts and tools of phylogenetic systematics (cladistics) can be heuristically transposed to the case of galaxies. This approach that we call "astrocladistics", has now successfully been applied on several samples of galaxies and globular clusters. Maximum parsimony and distance-based approaches are the most popular methods to produce phylogenetic trees and, like most other studies, we had to discretize our variables. However, since astrophysical data are intrinsically continuous, we are contributing to the growing need for applying phylogenetic methods to continuous characters.Comment: Invited talk at the session: Astrostatistics (Statistical analysis of data related to Astronomy and Astrophysics

    Fast Integrated Spectra Analyzer: A New Computational Tool For Age and Reddening Determination of Small Angular Diameter Open Clusters

    Full text link
    We present a new algorithm called 'Fast Integrated Spectra Analyzer" (FISA) that permits fast and reasonably accurate age and reddening determinations for small angular diameter open clusters by using their integrated spectra in the (3600-7400) \AA \ range and currently available template spectrum libraries. This algorithm and its implementation help to achieve astrophysical results in shorter times than from other methods. A brief review is given of the integrated spectroscopic technique applied to the study of open clusters as well as the basic assumptions that justify its use. We describe the numerical algorithm employed in detail, show examples of its application, and provide a link to the code. Our method has successfully been applied to integrated spectroscopy of open clusters, both in the Galaxy and in the Magellanic Clouds, to determine ages and reddenings.Comment: 27 Pages, 7 Figures, 1 table. Accepted to PAS

    Promotion of cooperation induced by nonlinear attractive effect in spatial Prisoner's Dilemma game

    Full text link
    We introduce nonlinear attractive effects into a spatial Prisoner's Dilemma game where the players located on a square lattice can either cooperate with their nearest neighbors or defect. In every generation, each player updates its strategy by firstly choosing one of the neighbors with a probability proportional to Aα\mathcal{A}^\alpha denoting the attractiveness of the neighbor, where A\mathcal{A} is the payoff collected by it and α\alpha (\geq0) is a free parameter characterizing the extent of the nonlinear effect; and then adopting its strategy with a probability dependent on their payoff difference. Using Monte Carlo simulations, we investigate the density ρC\rho_C of cooperators in the stationary state for different values of α\alpha. It is shown that the introduction of such attractive effect remarkably promotes the emergence and persistence of cooperation over a wide range of the temptation to defect. In particular, for large values of α\alpha, i.e., strong nonlinear attractive effects, the system exhibits two absorbing states (all cooperators or all defectors) separated by an active state (coexistence of cooperators and defectors) when varying the temptation to defect. In the critical region where ρC\rho_C goes to zero, the extinction behavior is power law-like ρC\rho_C \sim (bcb)β(b_c-b)^{\beta}, where the exponent β\beta accords approximatively with the critical exponent (β0.584\beta\approx0.584) of the two-dimensional directed percolation and depends weakly on the value of α\alpha.Comment: 7 pages, 4 figure

    Characterizing Scales of Genetic Recombination and Antibiotic Resistance in Pathogenic Bacteria Using Topological Data Analysis

    Full text link
    Pathogenic bacteria present a large disease burden on human health. Control of these pathogens is hampered by rampant lateral gene transfer, whereby pathogenic strains may acquire genes conferring resistance to common antibiotics. Here we introduce tools from topological data analysis to characterize the frequency and scale of lateral gene transfer in bacteria, focusing on a set of pathogens of significant public health relevance. As a case study, we examine the spread of antibiotic resistance in Staphylococcus aureus. Finally, we consider the possible role of the human microbiome as a reservoir for antibiotic resistance genes.Comment: 12 pages, 6 figures. To appear in AMT 2014 Special Session on Advanced Methods of Interactive Data Mining for Personalized Medicin

    Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster

    Full text link
    We present a comprehensive analysis of structure in the young, embedded cluster, NGC 1333 using members identified with Spitzer and 2MASS photometry based on their IR-excess emission. In total, 137 members are identified in this way, composed of 39 protostars and 98 more evolved pre-main sequence stars with disks. Of the latter class, four are transition/debris disk candidates. The fraction of exposed pre-main sequence stars with disks is 83% +/- 11%, showing that there is a measurable diskless pre-main sequence population. The sources in each of the Class I and Class II evolutionary states are shown to have very different spatial distributions relative to the distribution of the dense gas in their natal cloud. However, the distribution of nearest neighbor spacings among these two groups of sources are found to be quite similar, with a strong peak at spacings of 0.045 pc. Radial and azimuthal density profiles and surface density maps computed from the identified YSOs show that NGC 1333 is elongated and not strongly centrally concentrated, confirming previous claims in the literature. We interpret these new results as signs of a low velocity dispersion, extremely young cluster that is not in virial equilibrium.Comment: 59 pages, 20 figures, accepted to ApJ, verion with full resolution figures available at http://www.cfa.harvard.edu/~rgutermuth/preprints/gutermuth_ngc1333.pdf . Updated to fix astro-ph figure garblin

    Characterizing precursors to stellar clusters with Herschel

    Get PDF
    Context. Despite their profound effect on the universe, the formation of massive stars and stellar clusters remains elusive. Recent advances in observing facilities and computing power have brought us closer to understanding this formation process. In the past decade, compelling evidence has emerged that suggests infrared dark clouds (IRDCs) may be precursors to stellar clusters. However, the usual method for identifying IRDCs is biased by the requirement that they are seen in absorption against background mid-IR emission, whereas dust continuum observations allow cold, dense pre-stellar-clusters to be identified anywhere. Aims: We aim to understand what dust temperatures and column densities characterize and distinguish IRDCs, to explore the population of dust continuum sources that are not IRDCs, and to roughly characterize the level of star formation activity in these dust continuum sources. Methods: We use Hi-GAL 70 to 500 mdatatoidentifydustcontinuumsourcesintheell=30degandell=59degHiGALsciencedemonstrationphase(SDP)fields,tocharacterizeandsubtracttheGalacticcirrusemission,andperformpixelbypixelmodifiedblackbodyfitsoncirrussubtractedHiGALsources.WeutilizearchivalSpitzerdatatoindicatethelevelofstarformingactivityineachpixel,frommidIRdarktomidIRbright.Results:WepresenttemperatureandcolumndensitymapsintheHiGALell=30degandell=59degSDPfields,aswellasarobustalgorithmforcirrussubtractionandsourceidentificationusingHiGALdata.WereportonthefractionofHiGALsourcepixelswhicharemidIRdark,midIRneutral,ormidIRbrightinbothfields.WefindsignificanttrendsincolumndensityandtemperaturebetweenmidIRdarkandmidIRbrightpixels;midIRdarkpixelsareabout10Kcolderandhaveafactorof2highercolumndensityonaveragethanmidIRbrightpixels.WefindthatHiGALdustcontinuumsourcesspanarangeofevolutionarystatesfrompretostarforming,andthatwarmersourcesareassociatedwithmorestarformationtracers.Additionally,thereisatrendofincreasingtemperaturewithtracertypefrommidIRdarkatthecoldest,tooutflow/masersourcesinthemiddle,andfinallyto8and24m data to identify dust continuum sources in the ell = 30deg and ell = 59deg Hi-GAL science demonstration phase (SDP) fields, to characterize and subtract the Galactic cirrus emission, and perform pixel-by-pixel modified blackbody fits on cirrus-subtracted Hi-GAL sources. We utilize archival Spitzer data to indicate the level of star-forming activity in each pixel, from mid-IR-dark to mid-IR-bright. Results: We present temperature and column density maps in the Hi-GAL ell = 30deg and ell = 59deg SDP fields, as well as a robust algorithm for cirrus subtraction and source identification using Hi-GAL data. We report on the fraction of Hi-GAL source pixels which are mid-IR-dark, mid-IR-neutral, or mid-IR-bright in both fields. We find significant trends in column density and temperature between mid-IR-dark and mid-IR-bright pixels; mid-IR-dark pixels are about 10 K colder and have a factor of 2 higher column density on average than mid-IR-bright pixels. We find that Hi-GAL dust continuum sources span a range of evolutionary states from pre- to star-forming, and that warmer sources are associated with more star formation tracers. Additionally, there is a trend of increasing temperature with tracer type from mid-IR-dark at the coldest, to outflow/maser sources in the middle, and finally to 8 and 24 m bright sources at the warmest. Finally, we identify five candidate IRDC-like sources on the far-side of the Galaxy. These are cold (20 K), high column density (N(H2_2) gt 1022^22 cm2^-2) clouds identified with Hi-GAL which, despite bright surrounding mid-IR emission, show little to no absorption at 8 $m. These are the first inner Galaxy far-side candidate IRDCs of which the authors are aware. Herschel in an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation by NASA.The FITS files discussed in the paper would be released publicly WITH the Hi-GAL data (on the Hi-GAL website) when the Hi-GAL data is released publicly.Peer reviewe
    corecore