12 research outputs found

    ADAPTIVE FRAMWORK FOR DATA DISTRIBUTION IN CLOUD-ELASTIC SERVER ARCHITECTURE

    Get PDF
    ABSTRACT The increasing quantity of information to be processed and store in a data center and cloud also, th

    Progressive data stream mining and transaction classification for workload-aware incremental database repartitioning

    Get PDF
    Minimising the impact of distributed transactions (DTs) in a shared-nothing distributed database is extremely challenging for transactional workloads. With dynamic workload nature and rapid growth in data volume the underlying database requires incremental repartitioning to maintain acceptable level of DTs and data load balance with minimum physical data migrations. In a workload-aware repartitioning scheme transactional workload is modelled as graph or hyper graph, and subsequently perform k-way min-cut clustering guaranteeing minimum edge cuts can reduce the impact of DTs significantly by mapping the workload clusters into logical database partitions. However, without exploring the inherent workload characteristics, the overall processing and computing times for large-scale workload networks increase in polynomial orders. In this paper, a workload-aware incremental database repartitioning technique is proposed, which effectively exploits proactive transaction classification and workload stream mining techniques. Workload batches are modelled in graph, hyper graph, and compressed hyper graph then repartitioned to produce a fresh tuple-to-partition data migration plan for every incremental cycle. Experimental studies in a simulated TPC-C environment demonstrate that the proposed model can be effectively adopted in managing rapid data growth and dynamic workloads, thus progressively reduce the overall processing time required to operate over the workload networks

    Feedback-control & queueing theory-based resource management for streaming applications

    Get PDF
    Recent advances in sensor technologies and instrumentation have led to an extraordinary growth of data sources and streaming applications. A wide variety of devices, from smart phones to dedicated sensors, have the capability of collecting and streaming large amounts of data at unprecedented rates. A number of distinct streaming data models have been proposed. Typical applications for this include smart cites & built environments for instance, where sensor-based infrastructures continue to increase in scale and variety. Understanding how such streaming content can be processed within some time threshold remains a non-trivial and important research topic. We investigate how a cloud-based computational infrastructure can autonomically respond to such streaming content, offering Quality of Service guarantees. We propose an autonomic controller (based on feedback control and queueing theory) to elastically provision virtual machines to meet performance targets associated with a particular data stream. Evaluation is carried out using a federated Cloud-based infrastructure (implemented using CometCloud) – where the allocation of new resources can be based on: (i) differences between sites, i.e. types of resources supported (e.g. GPU vs. CPU only), (ii) cost of execution; (iii) failure rate and likely resilience, etc. In particular, we demonstrate how Little’s Law –a widely used result in queuing theory– can be adapted to support dynamic control in the context of such resource provisioning

    Elastic Highly Available Cloud Computing

    Get PDF
    High availability and elasticity are two the cloud computing services technical features. Elasticity is a key feature of cloud computing where provisioning of resources is closely tied to the runtime demand. High availability assure that cloud applications are resilient to failures. Existing cloud solutions focus on providing both features at the level of the virtual resource through virtual machines by managing their restart, addition, and removal as needed. These existing solutions map applications to a specific design, which is not suitable for many applications especially virtualized telecommunication applications that are required to meet carrier grade standards. Carrier grade applications typically rely on the underlying platform to manage their availability by monitoring heartbeats, executing recoveries, and attempting repairs to bring the system back to normal. Migrating such applications to the cloud can be particularly challenging, especially if the elasticity policies target the application only, without considering the underlying platform contributing to its high availability (HA). In this thesis, a Network Function Virtualization (NFV) framework is introduced; the challenges and requirements of its use in mobile networks are discussed. In particular, an architecture for NFV framework entities in the virtual environment is proposed. In order to reduce signaling traffic congestion and achieve better performance, a criterion to bundle multiple functions of virtualized evolved packet-core in a single physical device or a group of adjacent devices is proposed. The analysis shows that the proposed grouping can reduce the network control traffic by 70 percent. Moreover, a comprehensive framework for the elasticity of highly available applications that considers the elastic deployment of the platform and the HA placement of the application’s components is proposed. The approach is applied to an internet protocol multimedia subsystem (IMS) application and demonstrate how, within a matter of seconds, the IMS application can be scaled up while maintaining its HA status

    Improving software middleboxes and datacenter task schedulers

    Get PDF
    Over the last decades, shared systems have contributed to the popularity of many technologies. From Operating Systems to the Internet, they have all brought significant cost savings by allowing the underlying infrastructure to be shared. A common challenge in these systems is to ensure that resources are fairly divided without compromising utilization efficiency. In this thesis, we look at problems in two shared systems—software middleboxes and datacenter task schedulers—and propose ways of improving both efficiency and fairness. We begin by presenting Sprayer, a system that uses packet spraying to load balance packets to cores in software middleboxes. Sprayer eliminates the imbalance problems of per-flow solutions and addresses the new challenges of handling shared flow state that come with packet spraying. We show that Sprayer significantly improves fairness and seamlessly uses the entire capacity, even when there is a single flow in the system. After that, we present Stateful Dominant Resource Fairness (SDRF), a task scheduling policy for datacenters that looks at past allocations and enforces fairness in the long run. We prove that SDRF keeps the fundamental properties of DRF—the allocation policy it is built on—while benefiting users with lower usage. To efficiently implement SDRF, we also introduce live tree, a general-purpose data structure that keeps elements with predictable time-varying priorities sorted. Our trace-driven simulations indicate that SDRF reduces users’ waiting time on average. This improves fairness, by increasing the number of completed tasks for users with lower demands, with small impact on high-demand users.Nas últimas décadas, sistemas compartilhados contribuíram para a popularidade de muitas tecnologias. Desde Sistemas Operacionais até a Internet, esses sistemas trouxeram economias significativas ao permitir que a infraestrutura subjacente fosse compartilhada. Um desafio comum a esses sistemas é garantir que os recursos sejam divididos de forma justa, sem comprometer a eficiência de utilização. Esta dissertação observa problemas em dois sistemas compartilhados distintos—middleboxes em software e escalonadores de tarefas de datacenters—e propõe maneiras de melhorar tanto a eficiência como a justiça. Primeiro é apresentado o sistema Sprayer, que usa espalhamento para direcionar pacotes entre os núcleos em middleboxes em software. O Sprayer elimina os problemas de desbalanceamento causados pelas soluções baseadas em fluxos e lida com os novos desafios de manipular estados de fluxo, consequentes do espalhamento de pacotes. É mostrado que o Sprayer melhora a justiça de forma significativa e consegue usar toda a capacidade, mesmo quando há apenas um fluxo no sistema. Depois disso, é apresentado o SDRF, uma política de alocação de tarefas para datacenters que considera as alocações passadas e garante justiça ao longo do tempo. Prova-se que o SDRF mantém as propriedades fundamentais do DRF—a política de alocação em que ele se baseia—enquanto beneficia os usuários com menor utilização. Para implementar o SDRF de forma eficiente, também é introduzida a árvore viva, uma estrutura de dados genérica que mantém ordenados elementos cujas prioridades variam com o tempo. Simulações com dados reais indicam que o SDRF reduz o tempo de espera na média. Isso melhora a justiça, ao aumentar o número de tarefas completas dos usuários com menor demanda, tendo um impacto pequeno nos usuários de maior demanda

    Service-Level-Driven Load Scheduling and Balancing in Multi-Tier Cloud Computing

    Get PDF
    Cloud computing environments often deal with random-arrival computational workloads that vary in resource requirements and demand high Quality of Service (QoS) obligations. A Service Level Agreement (SLA) is employed to govern the QoS obligations of the cloud service provider to the client. A service provider conundrum revolves around the desire to maintain a balance between the limited resources available for computing and the high QoS requirements of the varying random computing demands. Any imbalance in managing these conflicting objectives may result in either dissatisfied clients that can incur potentially significant commercial penalties, or an over-sourced cloud computing environment that can be significantly costly to acquire and operate. To optimize response to such client demands, cloud service providers organize the cloud computing environment as a multi-tier architecture. Each tier executes its designated tasks and passes them to the next tier, in a fashion similar, but not identical, to the traditional job-shop environments. Each tier consists of multiple computing resources, though an optimization process must take place to assign and schedule the appropriate tasks of the job on the resources of the tier, so as to meet the job’s QoS expectations. Thus, scheduling the clients’ workloads as they arrive at the multi-tier cloud environment to ensure their timely execution has been a central issue in cloud computing. Various approaches have been presented in the literature to address this problem: Join-Shortest-Queue (JSQ), Join-Idle-Queue (JIQ), enhanced Round Robin (RR) and Least Connection (LC), as well as enhanced MinMin and MaxMin, to name a few. This thesis presents a service-level-driven load scheduling and balancing framework for multi-tier cloud computing. A model is used to quantify the penalty a cloud service provider incurs as a function of the jobs’ total waiting time and QoS violations. This model facilitates penalty mitigation in situations of high demand and resource shortage. The framework accounts for multi-tier job execution dependencies in capturing QoS violation penalties as the client jobs progress through subsequent tiers, thus optimizing the performance at the multi-tier level. Scheduling and balancing operations are employed to distribute client jobs on resources such that the total waiting time and, hence, SLA violations of client jobs are minimized. Optimal job allocation and scheduling is an NP combinatorial problem. The dynamics of random job arrival make the optimality goal even harder to achieve and maintain as new jobs arrive at the environment. Thus, the thesis proposes a queue virtualization as an abstract that allows jobs to migrate between resources within a given tier, as well, altering the sequencing of job execution within a given resource, during the optimization process. Given the computational complexity of the job allocation and scheduling problem, a genetic algorithm is proposed to seek optimal solutions. The queue virtualization is proposed as a basis for defining chromosome structure and operations. As computing jobs tend to vary with respect to delay tolerance, two SLA scenarios are tackled, that is, equal cost of time delays and differentiated cost of time delays. Experimental work is conducted to investigate the performance of the proposed approach both at the tier and system level

    Methodological approaches and techniques for designing ontologies in information systems requirements engineering

    Get PDF
    Programa doutoral em Information Systems and TechnologyThe way we interact with the world around us is changing as new challenges arise, embracing innovative business models, rethinking the organization and processes to maximize results, and evolving change management. Currently, and considering the projects executed, the methodologies used do not fully respond to the companies' needs. On the one hand, organizations are not familiar with the languages used in Information Systems, and on the other hand, they are often unable to validate requirements or business models. These are some of the difficulties encountered that lead us to think about formulating a new approach. Thus, the state of the art presented in this paper includes a study of the models involved in the software development process, where traditional methods and the rivalry of agile methods are present. In addition, a survey is made about Ontologies and what methods exist to conceive, transform, and represent them. Thus, after analyzing some of the various possibilities currently available, we began the process of evolving a method and developing an approach that would allow us to design ontologies. The method we evolved and adapted will allow us to derive terminologies from a specific domain, aggregating them in order to facilitate the construction of a catalog of terminologies. Next, the definition of an approach to designing ontologies will allow the construction of a domain-specific ontology. This approach allows in the first instance to integrate and store the data from different information systems of a given organization. In a second instance, the rules for mapping and building the ontology database are defined. Finally, a technological architecture is also proposed that will allow the mapping of an ontology through the construction of complex networks, allowing mapping and relating terminologies. This doctoral work encompasses numerous Research & Development (R&D) projects belonging to different domains such as Software Industry, Textile Industry, Robotic Industry and Smart Cities. Finally, a critical and descriptive analysis of the work done is performed, and we also point out perspectives for possible future work.A forma como interagimos com o mundo à nossa volta está a mudar à medida que novos desafios surgem, abraçando modelos empresariais inovadores, repensando a organização e os processos para maximizar os resultados, e evoluindo a gestão da mudança. Atualmente, e considerando os projetos executados, as metodologias utilizadas não respondem na totalidade às necessidades das empresas. Por um lado, as organizações não estão familiarizadas com as linguagens utilizadas nos Sistemas de Informação, por outro lado, são muitas vezes incapazes de validar requisitos ou modelos de negócio. Estas são algumas das dificuldades encontradas que nos levam a pensar na formulação de uma nova abordagem. Assim, o estado da arte apresentado neste documento inclui um estudo dos modelos envolvidos no processo de desenvolvimento de software, onde os métodos tradicionais e a rivalidade de métodos ágeis estão presentes. Além disso, é efetuado um levantamento sobre Ontologias e quais os métodos existentes para as conceber, transformar e representar. Assim, e após analisarmos algumas das várias possibilidades atualmente disponíveis, iniciou-se o processo de evolução de um método e desenvolvimento de uma abordagem que nos permitisse conceber ontologias. O método que evoluímos e adaptamos permitirá derivar terminologias de um domínio específico, agregando-as de forma a facilitar a construção de um catálogo de terminologias. Em seguida, a definição de uma abordagem para conceber ontologias permitirá a construção de uma ontologia de um domínio específico. Esta abordagem permite em primeira instância, integrar e armazenar os dados de diferentes sistemas de informação de uma determinada organização. Num segundo momento, são definidas as regras para o mapeamento e construção da base de dados ontológica. Finalmente, é também proposta uma arquitetura tecnológica que permitirá efetuar o mapeamento de uma ontologia através da construção de redes complexas, permitindo mapear e relacionar terminologias. Este trabalho de doutoramento engloba inúmeros projetos de Investigação & Desenvolvimento (I&D) pertencentes a diferentes domínios como por exemplo Indústria de Software, Indústria Têxtil, Indústria Robótica e Smart Cities. Finalmente, é realizada uma análise critica e descritiva do trabalho realizado, sendo que apontamos ainda perspetivas de possíveis trabalhos futuros

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules
    corecore