
IMPROVING SOFTWARE MIDDLEBOXES AND DATACENTER
TASK SCHEDULERS

Hugo de Freitas Siqueira Sadok Menna Barreto

Dissertação de Mestrado apresentada ao
Programa de Pós-graduação em Engenharia
Elétrica, COPPE, da Universidade Federal do
Rio de Janeiro, como parte dos requisitos
necessários à obtenção do título de Mestre em
Engenharia Elétrica.

Orientadores: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski
Costa

Rio de Janeiro
Outubro de 2018

IMPROVING SOFTWARE MIDDLEBOXES AND DATACENTER
TASK SCHEDULERS

Hugo de Freitas Siqueira Sadok Menna Barreto

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO INSTITUTO
ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE
ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE
JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A
OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS EM ENGENHARIA
ELÉTRICA.

Examinada por:

Prof. Miguel Elias Mitre Campista, D.Sc.

Prof. Otto Carlos Muniz Bandeira Duarte, Dr.Ing.

Prof. Artur Ziviani, Dr.

Prof. Ítalo Fernando Scotá Cunha, Dr.

RIO DE JANEIRO, RJ – BRASIL
OUTUBRO DE 2018

Barreto, Hugo de Freitas Siqueira Sadok Menna
Improving Software Middleboxes and Datacenter

Task Schedulers/Hugo de Freitas Siqueira Sadok Menna
Barreto. – Rio de Janeiro: UFRJ/COPPE, 2018.

XV, 69 p.: il.; 29, 7cm.
Orientadores: Miguel Elias Mitre Campista

Luís Henrique Maciel Kosmalski Costa
Dissertação (mestrado) – UFRJ/COPPE/Programa de

Engenharia Elétrica, 2018.
Referências Bibliográficas: p. 59 – 69.
1. Middleboxes. 2. Task Schedulers. 3.

Fairness. I. Campista, Miguel Elias Mitre et al.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Elétrica. III. Título.

iii

To my parents and grandmother.

iv

Agradecimentos

Muitas pessoas contribuíram para esta dissertação de forma direta ou indireta. A
seguir há uma tentativa de agradecer a elas.

Primeiro agradeço aos meus pais Marcelo e Márcia Sadok, e à minha vó Carmen
Siqueira, por sempre acreditarem em mim e por me darem suporte incondicional.
Sem eles nada disso seria possível. Agradeço também aos meus irmãos Bruno e Luna
Sadok. Bruno por aturar minhas piadas inoportunas, pelas excelentes conversas e
por até mesmo revisar alguns textos (chatos segundo ele). Luna por jogar comigo e
pelos desenhos mais legais que já recebi.

Esta dissertação também não existiria se não fossem os meus orientadores Miguel
Campista e Luís Costa. Eles me orientaram desde a graduação e me deram liberdade
para trabalhar nos problemas que eu mais gostava—por mais ecléticos que fossem.
Sou muito grato por terem me introduzido à pesquisa em redes de computadores
e por todos os ensinamentos que recebi nesses anos (como fazer pesquisa, como
escrever, como apresentar, etc.).

Além dos meus orientadores sou grato aos demais professores do GTA. Agradeço
ao Otto Duarte, pelas palavras de sabedoria, alegorias, por aceitar fazer parte da
banca e pelas críticas valiosas durante a defesa; ao Pedro Velloso, por ter sido mais
colega do que professor; e ao Rodrigo Couto, por ter me ajudado muito desde quando
entrei no GTA.

Meus agradecimentos também vão para os demais membros e ex-membros do
GTA. Em especial para o Pedro Cruz, Fernando Molano, Dianne Medeiros e
Leopoldo Mauricio. O Pedro não cansou de dar inúmeras sugestões nos momen-
tos em que eu empacava, e não cansou de receber meus inúmeros pitacos quando
ele era o empacado. O Molano é uma das pessoas mais solícitas que já conheci e
também me ajudou incontáveis vezes. A Dianne foi minha colega de sala por boa
parte do mestrado e me deu várias lições valiosas. Finalmente o Leopoldo, mesmo
sendo aluno parcial, me ajudou a conseguir máquinas para simulação em momento
de desespero e me forneceu uma visão prática de alguns dos temas desta dissertação.
Agradeço também ao Antonio Silvério, Diogo Mattos, Eric Oliveira, Edvar Afonso,
Igor Sanz, Lucas Gomes, Mariana Maciel, Martin Andreoni e Thales Almeida.

Fora do GTA, agradeço aos professores Daniel Figueiredo, José Gabriel Gomes

v

e Valmir Barbosa pelas excelentes aulas, e aos professores Artur Ziviani e Ítalo
Cunha por terem aceitado fazer parte da banca e pelas excelentes críticas e sugestões
durante a defesa.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.
Além disso este trabalho contou com apoio do Conselho Nacional de Desenvolvi-
mento Científico e Tecnológico (CNPq), da Fundação de Amparo à Pesquisa do
Estado do Rio de Janeiro (FAPERJ), e da Fundação de Amparo à Pesquisa do
Estado de São Paulo (FAPESP), processos #15/24494-8 e #15/24490-2.

vi

Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

APRIMORANDO MIDDLEBOXES EM SOFTWARE E ESCALONADORES
DE TAREFAS DE DATACENTERS

Hugo de Freitas Siqueira Sadok Menna Barreto

Outubro/2018

Orientadores: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski Costa

Programa: Engenharia Elétrica

Nas últimas décadas, sistemas compartilhados contribuíram para a popularidade
de muitas tecnologias. Desde Sistemas Operacionais até a Internet, esses sistemas
trouxeram economias significativas ao permitir que a infraestrutura subjacente fosse
compartilhada. Um desafio comum a esses sistemas é garantir que os recursos sejam
divididos de forma justa, sem comprometer a eficiência de utilização. Esta disserta-
ção observa problemas em dois sistemas compartilhados distintos—middleboxes em
software e escalonadores de tarefas de datacenters—e propõe maneiras de melhorar
tanto a eficiência como a justiça. Primeiro é apresentado o sistema Sprayer, que
usa espalhamento para direcionar pacotes entre os núcleos em middleboxes em soft-
ware. O Sprayer elimina os problemas de desbalanceamento causados pelas soluções
baseadas em fluxos e lida com os novos desafios de manipular estados de fluxo, con-
sequentes do espalhamento de pacotes. É mostrado que o Sprayer melhora a justiça
de forma significativa e consegue usar toda a capacidade, mesmo quando há apenas
um fluxo no sistema. Depois disso, é apresentado o SDRF, uma política de alocação
de tarefas para datacenters que considera as alocações passadas e garante justiça ao
longo do tempo. Prova-se que o SDRF mantém as propriedades fundamentais do
DRF—a política de alocação em que ele se baseia—enquanto beneficia os usuários
com menor utilização. Para implementar o SDRF de forma eficiente, também é
introduzida a árvore viva, uma estrutura de dados genérica que mantém ordenados
elementos cujas prioridades variam com o tempo. Simulações com dados reais in-
dicam que o SDRF reduz o tempo de espera na média. Isso melhora a justiça, ao
aumentar o número de tarefas completas dos usuários com menor demanda, tendo
um impacto pequeno nos usuários de maior demanda.

vii

Abstract of Dissertation presented to COPPE/UFRJ as a partial fulfillment of the
requirements for the degree of Master of Science (M.Sc.)

IMPROVING SOFTWARE MIDDLEBOXES AND DATACENTER
TASK SCHEDULERS

Hugo de Freitas Siqueira Sadok Menna Barreto

October/2018

Advisors: Miguel Elias Mitre Campista
Luís Henrique Maciel Kosmalski Costa

Department: Electrical Engineering

Over the last decades, shared systems have contributed to the popularity of
many technologies. From Operating Systems to the Internet, they have all brought
significant cost savings by allowing the underlying infrastructure to be shared. A
common challenge in these systems is to ensure that resources are fairly divided
without compromising utilization efficiency. In this thesis, we look at problems
in two shared systems—software middleboxes and datacenter task schedulers—and
propose ways of improving both efficiency and fairness. We begin by presenting
Sprayer, a system that uses packet spraying to load balance packets to cores in soft-
ware middleboxes. Sprayer eliminates the imbalance problems of per-flow solutions
and addresses the new challenges of handling shared flow state that come with packet
spraying. We show that Sprayer significantly improves fairness and seamlessly uses
the entire capacity, even when there is a single flow in the system. After that, we
present Stateful Dominant Resource Fairness (SDRF), a task scheduling policy for
datacenters that looks at past allocations and enforces fairness in the long run. We
prove that SDRF keeps the fundamental properties of DRF—the allocation policy
it is built on—while benefiting users with lower usage. To efficiently implement
SDRF, we also introduce live tree, a general-purpose data structure that keeps ele-
ments with predictable time-varying priorities sorted. Our trace-driven simulations
indicate that SDRF reduces users’ waiting time on average. This improves fairness,
by increasing the number of completed tasks for users with lower demands, with
small impact on high-demand users.

viii

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1
1.1 Efficient Use of Multiple Cores in Software Middleboxes 2
1.2 Improving Datacenter Scheduling by Considering Long-Term Fairness 3
1.3 Outline . 4

2 Background 5
2.1 Middleboxes and the Move to Software 5

2.1.1 The Move to Software . 6
2.1.2 Packet Processing on x86 . 6
2.1.3 Using Multiple CPU Cores . 9

2.2 Datacenter Task Scheduling . 10
2.2.1 Resource Allocation . 10
2.2.2 Multiple Resource Types . 11

3 Sprayer 13
3.1 Motivation . 13
3.2 Design . 15

3.2.1 How to spray packets? . 15
3.2.2 How to handle flow state? . 16
3.2.3 Architecture . 17
3.2.4 Programming Model . 18

3.3 Implementation . 19
3.4 Evaluation . 21
3.5 Discussion . 24
3.6 Related Work . 25
3.7 Conclusion . 26

ix

4 Stateful Dominant Resource Fairness 27
4.1 System Model . 28

4.1.1 Multi-Resource Setting and Allocation Mechanism 28
4.1.2 Repeated Game . 29

4.2 DRF and Allocation Properties . 29
4.2.1 DRF Mechanism . 30
4.2.2 Static Allocation Properties 31
4.2.3 Fairness in the Dynamic Setting 32
4.2.4 Users’ Commitments . 33

4.3 Stateful Dominant Resource Fairness 33
4.3.1 Stateful Max-Min Fairness . 33
4.3.2 SDRF Mechanism . 35
4.3.3 Analysis of SDRF Allocation Properties 36

4.4 Implementation Using a Live Tree . 37
4.4.1 Continuous Time . 37
4.4.2 Indivisible Tasks . 38
4.4.3 Live Tree . 39
4.4.4 Live Tree Applied to SDRF 42

4.5 Simulation Results . 43
4.6 Related Work . 46
4.7 Conclusion . 47
4.8 Deferred Proofs . 48

5 Conclusions and the Future of Networks and Datacenters 56
5.1 Domain-Specific Architectures . 57
5.2 Decentralized Control and Computation 57

Bibliography 59

x

List of Figures

1.1 Example of bandwidth allocation with different performance objec-
tives for four flows (A, B, C, and D) sharing a network with three
links (with 9 Mbps, 8 Mbps, and 4 Mbps). In this example, every flow
requires the same bandwidth of 10 Mbps—which is more than what
the network is able to provide. 2

2.1 Evolution of Ethernet standards. 6
2.2 Packet processing using Linux network stack. 7
2.3 Packet processing using DPDK. 8
2.4 Microprocessor trend (adapted from Rupp [53]). 9
2.5 Resource allocation among four users using Max-Min Fairness. . . . 10
2.6 DRF allocation for two users with different dominant resources. The

share of memory for user A is the same as the share of CPU for user B. 11

3.1 Distribution of number of flows with a given size and distribution of
bytes across different flow sizes. 14

3.2 Number of concurrent flows in every 150 µs window, considering all
flows or only large flows. 14

3.3 Hardware packet classification. The NIC is responsible for directing
packets to cores. 15

3.4 Overview of Sprayer from the perspective of a single core. Regu-
lar packets are processed locally, while connection packets may be
transferred to other cores. 17

3.5 Sample implementation of a NAT. Sprayer’s API functions and
packet handlers are underlined. 20

3.6 Effect of increasing the number of processing cycles per packet on
processing rate (with 64 B packets) and TCP throughput, while using
a single flow. 22

3.7 Effect of increasing the number of flows on processing rate (with 64 B
packets) and TCP throughput. Processing cycles per packet remain
fixed at 10,000. 22

xi

3.8 99th percentile RTT for 64 B packets at 70% load for a single flow. . . 23
3.9 Jain’s fairness index for an increasing number of flows. 23

4.1 Unfairness in the long run. User B hardly uses the system but receives
the same shares as user A. 32

4.2 Water-filling diagram for (a) MMF and (b) SMMF. 34
4.3 Illustration of a live tree with its data structures. Positions in the

array link to elements in the tree. Some elements link to events in
the events tree. 39

4.4 Example of insertion: Insert(4, κ4). 40
4.5 Example of event update: UpdateEvent(3). 40
4.6 Example of time update: Update(t). 41
4.7 Example of deletion: Delete(3). 41
4.8 Same example as Figure 4.1 but using SDRF (δ = 1−10−6). Note how

user B receives more resources and is able to complete her workload
faster. 44

4.9 Mean wait time reduction for every user relative to DRF. 44
4.10 Task completion ratio using DRF and SDRF. Each bubble is a dif-

ferent user. The bubble’s size is logarithmic to the number of tasks
submitted by the user. Users above the y = x are better with SDRF. 45

4.11 Live tree events for different values of discount factor and system
resources (50% to 100% of R from top to bottom). 46

xii

List of Tables

3.1 Example of state scope and access pattern of some popular stateful
NFs. Most NFs only update flow states when connections start or
finish. 16

3.2 Flow state API. 18

4.1 Summary of notations. 30

xiii

List of Abbreviations

ACL Access Control List, p. 24

API Application Programming Interface, p. 9

ASIC Application-Specific Integrated Circuit, p. 57

BMF Bottleneck Max Fairness, p. 47

CDF Cumulative Distribution Function, p. 14

CPU Central Processing Unit, p. 1

DDIO Data Direct I/O, p. 9

DMA Direct Memory Access, p. 7

DPDK Data Plane Development Kit, p. 8

DPI Deep Packet Inspection, p. 5, 16

DRF Dominant Resource Fairness, p. 3, 11, 30

DSA Domain-Specific Architecture, p. 57

DSO Distributed Shared Object, p. 25

ECMP Equal Cost Multi-Path, p. 3

FIN TCP flag to indicate the last packet from a sender, p. 17

GPU Graphics Processing Unit, p. 57

GTA Teleinformatics and Automation Group (Grupo de Teleinfor-
mática e Automação), p. v

I/O Input/Output, p. 3

IP Internet Protocol, p. 5

IPv4 Internet Protocol, version 4, p. 5

xiv

IPv6 Internet Protocol, version 6, p. 5

MMF Max-Min Fairness, p. 10, 30, 34

NAT Network Address Translator, p. 2, 5

NFV Network Function Virtualization, p. 6

NF Network Function, p. 2, 6

NIC Network Interface Controller, p. 7

OS Operating System, p. 7

PO Pareto Optimality, p. 31

QUIC Quick UDP Internet Connection, p. 25

RAM Random-access Memory, p. 21

RFC Request for Comments, p. 5

RSS Receive-Side Scaling, p. 2, 9

RST TCP flag to reset the connection, p. 17

RTT Round-Trip Time, p. 14

SDRF Stateful Dominant Resource Fairness, p. 27, 33

SI Sharing Incentives, p. 31

SMMF Stateful Max-Min Fairness, p. 34

SP Strategyproofness, p. 31

SQL Structured Query Language, p. 10

SYN TCP flag to synchronize sequence numbers, p. 17

TCP Transmission Control Protocol, p. 3

TPU Tensor Processing Unit, p. 57

UDP User Datagram Protocol, p. 25

UIO User-space I/O, p. 8

VoIP Voice over IP, p. 25

YARN Yet Another Resource Negotiator, p. 10

xv

Chapter 1

Introduction

Over the last decades, shared systems brought significant cost savings that have
contributed to the popularity of many technologies. Packet switching networks al-
low hosts around the globe to communicate with one another using the same links;
operating systems allow multiple processes to use the same CPU; and datacen-
ter schedulers allow tasks from multiple users to run in the same pool of servers.
Resource sharing, however, imposes some tradeoffs, such as increasing the control
overhead and making achieving consistent performance harder.

Instead of trying to provide performance guarantees, most shared systems try
to provide performance isolation [1–4]. Performance isolation ensures that if a user
tries to use too much resources, this has minimal impact on the other users sharing
the same system. To provide performance isolation, many shared systems have
fairness as their primary objective [3–6]. Fairness can be quantified in a variety of
ways, such as Jain’s fairness index [7] or Max-Min fairness [1]. The most suitable
metric to use depends on the system. A major challenge is that the fairest allocation
is often not the most efficient one [8].

To illustrate the fairness-efficiency tradeoff, Figure 1.1 shows an example of mul-
tiple flows sharing a network. The example shows different bandwidth allocations
obtained when we consider different performance objectives. The first allocation val-
ues efficiency and therefore ensures that all the links are fully utilized; however, to
do so, it gives flow A a low bandwidth. The second allocation considers Jain’s fair-
ness and as such ensures that every flow receives the same bandwidth. Finally, the
third allocation considers max-min fairness and is arguably better than the second,
since flow D now receives more bandwidth without harming the other flows.

The fairness-efficiency tradeoff presents itself in a variety of ways and in different
levels of system design [8–10]. In this thesis we look at how to improve both efficiency
and fairness in two distinct systems: software middleboxes and datacenters. In the
following sections we present the problems we will investigate in these two systems.

1

Efficiency

C
D

B
A

9 Mbps
4 M

bps

8 Mbps
Jain’s Fairness

Max-Min Fairness

A B C D
1 4 4 4
3 3 3 3
3 3 3 5

Bandwidth Allocation
Objective

Figure 1.1: Example of bandwidth allocation with different performance objectives
for four flows (A, B, C, and D) sharing a network with three links (with 9 Mbps,
8 Mbps, and 4 Mbps). In this example, every flow requires the same bandwidth of
10 Mbps—which is more than what the network is able to provide.

1.1 Efficient Use of Multiple Cores in Software
Middleboxes

Today middleboxes are a primary component of both enterprise and Internet
provider networks [11, 12]. Middleboxes1 allow network operators to deploy a wide
range of network functions (NFs), such as Network Address Translators (NATs),
firewalls, and load balancers. Yet, the cost and lack of flexibility of purpose-built
hardware middleboxes are pushing operators to software running on commodity
servers [13]. Moving to software, however, does not come for free. Software middle-
boxes have significant overhead and often need to use multiple CPU cores [14–20]—or
even multiple hosts [17, 21–25]—to achieve line rates. Moreover, the rapid increase
of network link capacities only exacerbates this need.

When using multiple cores, middleboxes must determine which core to direct
packets to. Today, this is often done using Receive-Side Scaling (RSS). RSS is a
feature of multi-queue network cards that directs packets to different cores using
a hash of the five-tuple (protocol, source and destination IP, source and destina-
tion port). Doing so, all packets from the same flow end up in the same core.
The reasons for coupling packets from the same flow are twofold. First, processing
same-flow packets sequentially avoids packet reordering. Second, having same-flow
packets processed in the same core simplifies flow state handling. RSS, however,
has significant shortcomings. It is inefficient, since it cannot use all the available
cores when the number of concurrent flows is small—which happens frequently in
real workloads (§3.1). Moreover, since RSS directs flows to cores using a hash of
the five-tuple, hash collisions cause asymmetry in flow distribution.2 This results in

1Middleboxes are devices placed inside the network to perform different functionality than
routers and switches. Chapter 2 explains middleboxes in greater depth (§2.1).

2Even when the number of cores is comparable to the number of flows, hash collisions happen
with high probability due to the birthday problem [26].

2

unfairness even with a larger number of flows (§3.4).
Interestingly enough, the same problem also appears in a different context. Da-

tacenter networks use per-flow Equal Cost Multi-Path (ECMP) to direct packets to
different paths. Similarly to RSS, ECMP directs all packets from the same flow to
the same path and, as such, has similar shortcomings [27, 28]. The problems with
ECMP have led many [10, 29–32] to consider load-balancing packets to paths ignor-
ing their flows. This approach, known as packet spraying, introduces reordering but,
because datacenter networks have paths with low and very similar latencies [33], the
amount of reordering is not enough to significantly harm TCP [10]. In face of these
similarities, in Chapter 3 we will look for an answer to the following question: can
software middleboxes also improve efficiency and fairness by load balancing packets
at a finer granularity?

1.2 Improving Datacenter Scheduling by Consid-
ering Long-Term Fairness

Datacenters are shared by users with different resource constraints [6, 34, 35]. The
amount of resources given to each user directly impacts the system performance from
both fairness and efficiency standpoints [8]. In single-resource systems, max-min
fairness is the most widely used and studied allocation policy [2, 36]. The main idea
is to maximize the minimum allocation a user receives. It was originally proposed
to ensure a fair share of link capacity for every flow in a network [1]. Since then,
max-min has been applied to a variety of individual resource types, including CPU,
memory and I/O [2]. Nevertheless, datacenters need to allocate multiple resource
types at the same time (such as CPU and memory) and max-min is unable to ensure
fairness [2, 37].

In a datacenter environment, users often have heterogeneous demands and dy-
namic workloads [2, 35]. Different mechanisms have been proposed to address the
multi-resource allocation problem [2, 37, 38], most notably, Dominant Resource Fair-
ness (DRF) [2]. DRF generalizes max-min to the multi-resource setting, by giving
users an equal share of their mostly demanded resource—their dominant resource.
Using this approach, DRF achieves several desirable properties. Despite the exten-
sive literature on fair allocation, most allocation policies focus only on instantaneous
or short term fairness, ensuring that users receive an equal share of the resources
regardless of their past behaviors. DRF is no exception, it guarantees fairness only
when users’ demands remain constant. In practice, however, users’ workloads are
quite dynamic [35, 39] and ignoring this fact leads to unfairness in the long run [5].
In Chapter 4 we will look for an answer to the following question: can we improve

3

long-term fairness—ensuring that users that use the system sporadically get a greater
share of resources—by looking at past allocations?

1.3 Outline
The remainder of this thesis is organized as follows. In Chapter 2 we provide back-
ground on software middleboxes and task scheduling in datacenters. In Chapter 3 we
present Sprayer, a framework for developing network functions using packet spray-
ing. Then, in Chapter 4 we present SDRF, an extension of DRF that accounts
for the past behavior of users and improves fairness in the long run. Finally, in
Chapter 5 we conclude the thesis and present conjectures for future work.

The content of this thesis is adapted from our previously published work. The
material in Chapter 3 is adapted from [40, 41] and the material in Chapter 4 is
adapted from [42].

4

Chapter 2

Background

This chapter provides background on the topics that will be covered in the chapters
that come after. We start with an overview of middleboxes and the technical chal-
lenges of moving from specialized hardware to software (§2.1). Then, we delve into
the basics of task scheduling in datacenters (§2.2).

2.1 Middleboxes and the Move to Software
In the early days of the Internet, network elements operated in a stateless manner
and their functions were limited to simple IP forwarding [43]. This was compatible
with one of the fundamental goals of achieving continued connectivity even under
the loss of network elements. Internet’s popularity boom, however, brought new
requirements to the table. For example, the need for improved security led many
network operators to deploy firewalls and Deep Packet Inspection (DPI), allowing
them to have a finer control over what packets are allowed in their networks, as well
as to mitigate possible attacks. These more elaborated network elements are what
we call middleboxes.

Middleboxes are defined in RFC 3234 [44] as “any intermediary device performing
functions other than the normal, standard function of an IP router on the datagram
path between a source host and a destination host.” Besides improving security,
middleboxes can be used to improve performance (e.g., redundancy elimination),
provide accountability and monitoring (e.g., traffic monitor), make different proto-
cols compatible (e.g., IPv4 to IPv6 protocol translator), and work around existing
limitations (e.g., Network Address Translator – NAT, that allows the Internet to
keep scaling in face of the IPv4 address exhaustion).

Although one may argue that middleboxes are fundamentally harmful, breaking
the end-to-end principle [45], and that their layer violations make innovation on
the Internet harder [46], their popularity is undeniable. In fact, middleboxes are so
common today that in some enterprise networks the number of middleboxes is close

5

1980 1990 2000 2010 2020 2030
Year

10M

100M

1G

10G

100G

1T

Ba
nd

w
id

th
(b

/s
)

10MbE

100MbE

1GbE

10GbE
40GbE
100GbE

400GbE

Figure 2.1: Evolution of Ethernet standards.

to the number of routers and switches [11, 12].

2.1.1 The Move to Software

Until recent years, middleboxes were primarily deployed using purpose-built hard-
ware. This, however, has several shortcomings [47]:

• Rigidity: Since functionality is implemented directly on hardware, change is
very hard—often impossible.

• Hard to manage: Middleboxes from multiple vendors have their own man-
agement interfaces that do not work together.

• Slow development: Hardware is slower and harder to develop than software.

• Cost: Some middleboxes are very expensive. Moreover, underutilized boxes
offer no opportunity for consolidation.

This started to change in 2012, when major carriers established a cooperation
to build what they called Network Function Virtualization (NFV) [13]. NFV aims
to solve the above problems by moving middlebox functionality, called Network
Functions (NFs), from dedicated boxes to software running on commodity servers.
The move to software, however, is not a panacea. Purpose-built hardware generally
offers line-rate performance that is challenging to achieve in software. In fact, with
the fast adoption of higher-speed Ethernet standards, achieving line rates is only
getting harder (see Figure 2.1).

2.1.2 Packet Processing on x86

A straightforward way of implementing NFs using software is to run an application
on top of an operating system and leverage its network stack to receive and transmit
packets. We will now see that, although this approach works, it is not a good idea
from a performance standpoint.

6

Kernel Space User SpaceI/O

NIC Driver Network Stack App

Interrupt Syscall

Memory

Packet Buffers
Copy

Descriptor Rings / Packet BuffersDMA

Figure 2.2: Packet processing using Linux network stack.

An application that uses the Linux network stack runs in user space and inter-
acts with the stack in kernel space using system calls (syscalls). Figure 2.2 shows an
overview of packet processing using the Linux network stack, dashed arrows repre-
sent control signals, while solid arrows represent data transfer. When the Network
Interface Controller (NIC) receives a packet, it writes it to a buffer in the memory1

and issues an interrupt. The interrupt triggers the NIC driver’s interrupt handler
that reads the packet from the buffer and passes it to the network stack. Finally,
the network stack parses the packet and copies it to the application’s packet buffer
in user space. A reverse process happens when the application wants to transmit a
packet. The application writes the packet to memory in user space and invokes a
syscall. The network stack then copies the packet to a buffer in kernel space and
passes it to the driver which informs the NIC that the packet is ready to be trans-
mitted. At last, the NIC reads the packet from memory and sends it to the line,
completing the transmission.

The processes above impose significant overheads, most of them due to the sep-
aration between user space and kernel space. The first issue is the need to copy
packets from one space to another, wasting a considerable number of CPU cycles.
Another problem is the need to use syscalls and interrupts to transmit and receive
packets. Syscalls and interrupts cause a transition from user space to kernel space,
which requires saving the value of some registers to memory. The reason Linux
works like this is not because it is unconcerned with performance. Operating sys-
tems are designed to make sharing hardware resources possible, the same applies
to sharing a NIC. The most common use case for an OS is not packet processing,
usually different applications are running at the same time and need to receive and
transmit packets. This design makes sure that no application monopolizes the NIC,
but the need for better performance in packet processing applications justifies a
more restrictive design.

Since most of the overhead imposed by the Linux network stack is due to the
1The ability of I/O devices to write and read directly from memory is what we call Direct

Memory Access (DMA).

7

Kernel Space User SpaceI/O

NIC UIO Driver DPDK

Syscall

Memory

Descriptor Rings / Packet BuffersDMA

App

Figure 2.3: Packet processing using DPDK.

separation between user space and kernel space, a natural solution is to do packet
processing entirely in the kernel, or entirely in user space. User-space-only packet
processing, however, has advantages over kernel-space-only. First, kernel code must
be low profile, running fast and yielding the CPU to user-space processes. This is
certainly not the case with high-speed packet processing, that often needs multiple
dedicated CPU cores (§2.1.3). Second, kernel programming is less flexible, kernel
code only has access to a limited set of libraries and is harder to debug.

There are several frameworks for high-performance packet processing in user
space, some examples include DPDK [48], netmap [49], and PF_RING ZC [50]. In
Chapter 3 we use DPDK for two main reasons: it has better performance [51] and
it offers several libraries that aid the development of packet processing applications,
e.g., lockless rings and flow classifiers. Figure 2.3 shows an overview of packet
processing using DPDK. DPDK bypasses the kernel and communicates directly with
the NIC from user space. To do this, it replaces the NIC driver with the UIO
(User-space I/O) driver, a minimal driver provided by the Linux kernel to allow the
development of drivers in user space. DPDK uses the UIO driver to set up the NIC
and map its memory to user space. After the initialization is complete, the NIC
reads and writes packets directly to user-space memory and DPDK can configure
NIC registers without kernel intervention. There is a problem though, since DPDK
now talks directly to the NIC it cannot use the existing kernel drivers, drivers must
be implemented inside DPDK. This restricts the set of NICs that can work with it;
only NICs that had their drivers ported to DPDK can be used.

Kernel bypass also allows DPDK to avoid the interrupt overhead. Instead of
waiting for an interrupt, applications that use DPDK continuously check the mem-
ory for new packets. This technique, known as polling, wastes CPU cycles when
the traffic is low but achieves better performance under heavy loads. Another op-
timization employed in DPDK codebase is to process batches of packets, instead of
individual, whenever possible. These and other optimizations restrain DPDK from
being a drop-in replacement for Linux packet socket—which is the way applications
that rely on Linux network stack are able to send and receive raw packets [52]. As a

8

1970 1980 1990 2000 2010 2020

Year

101

103

105

107 Transistors (thousands)

Number of logical cores

Frequency (MHz)

Single-thread performance
(SpecINT ×103)

Figure 2.4: Microprocessor trend (adapted from Rupp [53]).

consequence, existing applications that use Linux packet sockets must be rewritten
to use the DPDK API.

2.1.3 Using Multiple CPU Cores

Even with all DPDK optimizations, a single CPU core is often not enough to process
packets at line rate. Moreover, with faster Ethernet standards (Figure 2.1) and newer
CPUs favoring core count over single-thread performance (Figure 2.4), multi-core
packet processing is likely to remain the norm in the next years. We will now look
at how to extend the design from §2.1.2 to accommodate multiple cores.

As we have seen, the NIC reads and writes packets directly to a packet buffer in
the memory.2 Now that we are using multiple cores, we may think of sharing this
packet buffer among all of them. Doing so, however, requires costly synchronization
mechanisms. To avoid this problem, we turn to a different solution. Modern NICs
have multiple queues that allow them to direct packets to different buffers in the
memory. Instead of using a single packet buffer, we associate a different packet
buffer to each core. This allows cores to receive and transmit packets independently
from one another. Having a separate memory region for each core is also desirable
to avoid cache invalidations [54].

Associating packet buffers to cores has a subtle consequence, however. Once the
NIC chooses the destination buffer for a packet that arrives, it also chooses the core
that is going to process the packet. The NIC commonly makes this choice using
Receive-Side Scaling (RSS). RSS was conceived so that packets from the same flow
always go to the same buffer. To do this, it decides the destination buffer using
a hash of the packet’s five-tuple.3 A problem with hashing flows to cores is that
hash collisions occur, and cause significant imbalance in flow distribution, leading
to unfairness and inefficiency. This is the problem we will explore in Chapter 3.

2In fact, DMA is not the whole story. Modern CPUs use a technology called Data Direct I/O
(DDIO) that allow devices to read and write directly to the CPU cache.

3The five-tuple consists of five fields from the packet header: protocol, source IP, destination
IP, source port, and destination port. A common assumption is to say that packets with the same
five-tuple are part of the same flow.

9

Equal share
MMF allocation

User: A B C D

Figure 2.5: Resource allocation among four users using Max-Min Fairness.

2.2 Datacenter Task Scheduling
Clusters of commodity servers have become commonplace. They are responsible for
many web services as well as a growing number of data-processing and scientific
applications. Yet, managing these clusters is no easy task [55]; cluster managers
must ensure good availability in the presence of a high number of failures [56]. To
make matters more complicated, clusters are often shared among many users with
different requirements and workload types [6, 35]. Examples of cluster managers
include open source projects such as Mesos [6] and YARN [34], as well as private
solutions, such as Google’s Borg [57].

To use a cluster, users submit jobs composed of one or more tasks. Then, the
cluster manager is responsible for scheduling these tasks. Workloads differ substan-
tially among users, for example, users that run simulations and machine learning
trainings can use the cluster for hours or even days, while some that make interactive
SQL queries only need it for a few minutes [6, 35]. In a broad sense, when mul-
tiple users share a system, there must be a scheduler that determines the amount
of resources each user gets. The requisites for this decision vary among different
scenarios. For example, in a public cloud, users pay for the resources they use and
fairness is not a concern. In contrast, in a cluster within an institution (research
center, lab, or company), usually users do not need to pay for the resources they
use. This changes incentives considerably, users want to finish their jobs as fast as
possible and, when they need, will try to use the maximum amount of resources [2].

2.2.1 Resource Allocation

Task scheduling involves two different decisions: which task to run and where to run
it. In this thesis we focus on the “which” decision. The scheduler must be able to
fairly allocate tasks from different users. One of the most common allocation policies
is max-min fairness (MMF). MMF works by giving an equal share of resources for
every user; unless a user does not need her entire share, in such case the surplus is
divided among the other users. Figure 2.5 shows an example. Users B and C need

10

Memory
(total: 180 GB)

CPU
(total: 9)

A

A

B

B

Dominant share

Users’ Demands:
User A: 4 cores 160 GB
User B: 9 cores 30 GB

DRF Allocation:
User A: 3 cores 120 GB
User B: 6 cores 20 GB

Figure 2.6: DRF allocation for two users with different dominant resources. The
share of memory for user A is the same as the share of CPU for user B.

less than their fair share and their surplus is redistributed among users A and D,
that need more. This scheme ensures highly-desirable properties:

• Sharing Incentives: Being part of the system is at least as good as being
part of a hypothetical system with the same amount of resources but where
every user has a proportional and exclusive share.

• Strategyproofness: Users cannot improve their allocations by misreporting
their demands to the scheduler.

• Pareto Optimality: Resources are allocated in such a way that it is impos-
sible to increase the allocation of a user without decreasing the allocation of
another.

MMF works well when demands are static, however in practice, demands are
quite dynamic and users with long running jobs coexist with users that have sporadic
short jobs [6, 35]. As we will see in Chapter 4, MMF fails to ensure fairness in the
long run, resulting in users with long running jobs benefiting more from the system
than those that use the system sporadically. Moreover, as we will discuss next,
MMF can only be used when the system has a single resource type.

2.2.2 Multiple Resource Types

So far, in our discussion on resource allocation, we considered that a single resource
type is being shared. Nevertheless, when scheduling tasks, usually multiple resources
are shared (e.g., CPU and memory), which makes MMF unsuitable.

Dominant Resource Fairness (DRF) [2] is a notable policy4 that extends MMF
to multiple resource types. To do this, it uses the concept of dominant resource.
Dominant resource is the resource a user needs the most relative to the total in
the system. For example, if a system has a total of 10 CPU cores and 100 GB

4Both Mesos and YARN implement a DRF scheduler.

11

of memory, the dominant resource for a user that needs 5 CPU cores (50%) and
20 GB of memory (20%) is CPU. When allocating resources, DRF tries to equalize
users’ share of dominant resource (dominant shares). Figure 2.6 shows an example
of DRF allocation when two users share a system with two types of resources.
User A’s dominant resource is memory, while user B’s is CPU. DRF gives each user
the same dominant share. More broadly, the DRF allocation can be obtained by
applying MMF to users’ dominant shares. This means that if a user needs less than
her dominant share, DRF will reallocate the surplus among the other users. An
important aspect of DRF is that it inherits the MMF properties listed in §2.2.1.
Moreover, when there is a single resource type, DRF reduces to MMF. By being
an extension to MMF, DRF also has problems to ensure fairness in the long run.
In Chapter 4 we introduce an allocation policy that addresses these problems while
ensuring the same properties.

12

Chapter 3

Sprayer

In this chapter we present Sprayer, a framework for developing network functions
using packet spraying. Packet spraying solves the imbalance problems caused by
RSS, but makes flow state handling more challenging. Sprayer uses features of com-
modity NICs to spray packets to cores without software intervention. Moreover,
it equips NFs with abstractions for handling flow states. Sprayer’s flow state ab-
stractions build on the observation that most NFs only update flow state when TCP
connections start or finish (§3.2.2). Therefore, by directing packets at the beginning
or end of the same TCP connection (connection packets) to the same core, we ensure
that only this core will need to modify the state for this connection. This avoids
the introduction of synchronization primitives that would impact performance.

We conduct experiments to understand how effective Sprayer is in comparison
to RSS. Similarly to the datacenter observations, we find that the low difference
in delay between packets processed in different cores is not enough to significantly
impair TCP performance. Moreover, we observe that the overall TCP throughput
remains consistent for both low and high number of concurrent flows. Therefore,
for the typical number of concurrent flows found in real workloads, Sprayer greatly
improves TCP throughput, compared to RSS. Further, we show that Sprayer also
improves fairness, even with a higher number of flows.

This chapter is organized as follows. In §3.1 we use real packet traces to motivate
the need for packet spraying in middleboxes. Then, we detail Sprayer’s design in
§3.2, and implementation in §3.3. We conduct experiments to evaluate Sprayer in
§3.4 and discuss its limitations in §3.5. Finally, we survey related work in §3.6 and
conclude the chapter in §3.7.

3.1 Motivation
To motivate the need for packet spraying in middleboxes, we begin with a quick
analysis of real packet traces. We want to understand how diverse is the traffic at

13

103 105 107 109

Flow size (bytes)

0

0.25

0.5

0.75

1.0

C
D

F

Flows
Bytes

Figure 3.1: Distribution of number of flows with a given size and distribution of
bytes across different flow sizes.

0 5 10 15
Concurrent flows

0.0

0.25

0.5

0.75

1.0

C
D

F

All flows
> 10MB

Figure 3.2: Number of concurrent flows in every 150 µs window, considering all flows
or only large flows.

the small time frame that packets stay inside a middlebox.
We use a 48 h trace of a highly-utilized 1 Gbps backbone link [58] captured in

May 2018. The trace does not contain packet payloads, we determine packet sizes
using the “Total Length” field of the IP header. Figure 3.1 shows the CDF of TCP
flow sizes as well as the distribution of bytes across these flows. There are few large
flows, but they are responsible for the majority of the traffic. Flows with more than
10 MB account for more than 75% of the traffic. This confirms the long observed
“elephants and mice” phenomenon of Internet traffic [59].

The effectiveness of RSS on middleboxes depends on the number of concurrent
flows. If this number is large enough, RSS uses all cores with high probability.
Although the number of ongoing TCP connections can be very large,1 if we consider
only the number of flows active in the small amount of time it takes for a packet to
be processed by a middlebox, this assumption no longer holds.

To measure concurrent flows, we use a 150 µs window. This window is 10 times
the largest 99th percentile RTT we found in our experiments (§3.4).2 This RTT is
also comparable to the one measured by previous work [19, 47, 60]. Since the actual
time a packet takes to be processed by the middlebox is certainly less than the RTT,

1The number of ongoing TCP connections can exceed 1 million in this trace.
2This RTT is measured using a server directly connected to the middlebox. We explain this

experiment in §3.4.

14

core 0

core 1

core 2

core nRS
S

/
Fl

ow
 D

ire
ct

orNIC
(Rx)

NIC
(Tx)

Figure 3.3: Hardware packet classification. The NIC is responsible for directing
packets to cores.

the number of concurrent flows we report is a strict upper bound.
Figure 3.2 presents the CDF of the number of concurrent TCP flows. The

median number of concurrent flows is only 4 and the 99th percentile is 14. The
level of concurrency among large flows is even smaller. If we only consider flows
with more than 10 MB, the median number of concurrent flows is 1 and the 99th

percentile is 6. Yet, as we have seen, these flows account for the majority of the
traffic, which indicates a poor degree of statistical multiplexing.

Since these results are for a backbone link, we expect them to include more con-
current flows than the traffic of an enterprise network. Indeed, we repeated the same
analysis on traffic at our lab’s Internet gateway and on the M57 traces [61] (used
by some previous work on middleboxes [18, 23]) and found even fewer concurrent
flows.

3.2 Design
We now turn to the design of Sprayer. First we describe the challenges of processing
sprayed packets. Then we present an architecture that deals with these challenges.
Finally, we delve into a simple programming model used by NFs implemented on
top of Sprayer.

There are two main challenges in the design of Sprayer: spraying packets to
different cores and handling flow states.

3.2.1 How to spray packets?

When processing packets in a multi-core system, one has to choose between software
and hardware packet classification. As depicted in Figure 3.3, the hardware tech-
nique consists of using multi-queue NICs, which are common today, to classify and
direct packets to each core. The software alternative is to direct all packets to a sin-

15

Table 3.1: Example of state scope and access pattern of some popular stateful NFs.
Most NFs only update flow states when connections start or finish.

NF State Scope Access Pattern
packet flow

NAT,
IPv4 to IPv6

Flow map Per-flow R RW
Pool of IPs/ports Global - RW

Firewall Connection context Per-flow R RW

Load
Balancer

Flow-server map Per-flow R RW
Pool of servers Global - RW

Statistics Global RW -
Traffic
Monitor

Connection context Per-flow - RW
Statistics Global RW -

Redundancy
Elimination Packet cache Global RW -

DPI Automata Per-flow RW -

gle core and let software choose the destination cores. Using hardware classification
offers better performance and is usually the preferred method [11, 18]. Since current
NICs do not offer support for spraying packets to cores, one might be tempted to
turn to software-based classification. Fortunately, we discovered a way of spraying
packets using Flow Director, a functionality found in many commodity NICs. We
delay the implementation details to §3.3. For now, it is sufficient to know that the
NIC randomly delivers TCP packets to cores.

3.2.2 How to handle flow state?

The traditional approach of sending all the packets from the same flow to the same
core has the benefit that flow states are partitionable and each core only has to
keep state for its flows. Partitionable state is often desirable as it avoids the penalty
of enforcing cache coherence, as well as the use of synchronization primitives (e.g.,
locks). When we blindly spray packets from the same flow across all cores, we lose
this property. What we observe, however, is that we get similar benefits if we only
provide writing partition. As long as we guarantee that the state of a given flow
is only modified by a single core, we avoid the use of locks and significantly reduce
cache invalidations.

In order to provide writing partition, we depart from the observation that most
NFs only change flow state when TCP connections start or finish. Table 3.1 shows
the scope (per-flow or global state) and access pattern (read or write at every packet
or flow) for some popular stateful NFs. Deep Packet Inspection (DPI) is the only
NF in the list that needs to update flow state for every packet. Of course, some NFs
also need to update global state for every packet. Although this issue also has the

16

NIC

NF
regular_packets

Flow Table

SYN/FIN/RST ?

NF
connection_packets

Core Other Cores

Core picker

Flow Table

R
RW

NFNF
RW

Data
State

Y N

foreignlocal

foreign
packets

ring
ring

Figure 3.4: Overview of Sprayer from the perspective of a single core. Regular
packets are processed locally, while connection packets may be transferred to other
cores.

potential to affect performance, it is not specific to Sprayer, traditional approaches
must also deal with shared global state. Moreover—at least in the case of statistics—
looser consistency is often tolerable, which helps to reduce the problem [25].

We make a distinction between connection packets and regular packets. Con-
nection packets are those that have potential to modify TCP state (packets flagged
with SYN, FIN, or RST), while regular packets are all the others. Moreover, we say
that every flow has a designated core. We determine the designated core for a given
flow calculating a hash of its five-tuple. By default, we use a hash function that
maps upstream and downstream flows from the same TCP connection to the same
designated core. Sprayer enforces writing partition by keeping flow states in their
designated cores while making sure that all connection packets from a given flow
are processed in their designated core.

3.2.3 Architecture

Figure 3.4 shows an overview of Sprayer’s architecture. The key idea is to separate
the NF code that handles connection packets from the code that handles regular
ones. All cores run identical threads and have their own flow tables. Moreover,
cores can only write to their local flow tables, but can read from any. This ensures
writing partition.

After the NIC delivers a packet, Sprayer checks whether it is a connection packet.

17

Table 3.2: Flow state API.

Function Description
insert_local_flow(flow_id) Insert flow entry in local table
remove_local_flow(flow_id) Remove flow entry from local table
get_local_flow(flow_id) Retrieve modifiable flow entry from local table

get_flow(flow_id) Retrieve unmodifiable flow entry from its des-
ignated core

It then processes regular packets in the core they arrive but redirects connection
packets to ring buffers in their designated cores—unless the designated core is the
same as the current one (core picker in Figure 3.4). Note that Sprayer does not
transfer the entire packet to other cores, it transfers packet descriptors. Packet
descriptors contain information about a particular packet, including its memory
address. Also note that if NICs were able to deliver connection packets to cores
based on their five-tuples, while spraying the others, Sprayer would not need to
transfer those packets.3

For performance reasons, we use batches of packets whenever possible. For ex-
ample, if we need to transfer more than one packet to the same core, we send them
all together in a batch. Moreover, segregating the code that handles connection
packets from the code that handles regular packets allows us to deliver batches of
pre-classified packets to these functions. In the case of the function that processes
connection packets, packets from both local and foreign cores can be placed in the
same batch. This segregation also makes sense from an NF programmer’s stand-
point, as we will see next.

3.2.4 Programming Model

An NF built using Sprayer must implement two packet-handler functions. The
connection_packets function receives connection packets and therefore contains
logic to deal with opening or closing connections. As it is guaranteed to receive all
connection packets for a given flow, it can store state for this flow in its local flow
table. Later, since the designated core is deterministic, a regular_packets function
from any core that needs this state knows where to look.

Sprayer abstracts flow state accesses with its flow state API (Table 3.2). There
are functions to remove or insert state in the local flow table as well as to retrieve
local or global flow states. Only local states are modifiable. When the NF calls get_-
flow with a specific flow id, Sprayer determines its designated core and retrieves

3Although this is not possible with commodity hardware, it is an opportunity for future work
(see §3.5).

18

the flow state from its flow table. Note that the constness of the flow entry returned
by the get_flow function is only lightly enforced, we use a C pointer to a const
variable, that means that a programmer may remove the constness and modify
the variable. Although removing this constness is possible, it may cause undefined
behavior, and on some situations triggers compiler warnings. Besides the functions
in Table 3.2, Sprayer has an optimized version of get_flow for looking up multiple
flow states at a time.

Of course, there is much more complexity in programming an NF than flow
state access. Our focus here is not in providing a comprehensive set of tools for
NF programming—others have done it already [47, 62, 63]—instead we argue that
Sprayer’s flow state abstractions are simple to use and can be incorporated to other
solutions.

We use a simple implementation of a NAT to demonstrate how to use Sprayer’s
flow state abstractions (Figure 3.5). For brevity, we only consider TCP packets, and
omit variable declarations and flow removal logic. Moreover, a real implementation
will use batches of packets instead of separately handling each. The connection_-
packets function, upon receiving the first SYN packet from a TCP connection, selects
a port from a global pool (line 10) and uses insert_local_flow to save this trans-
lation in the local flow table (lines 18–19). Since the designated core is the same
for both sides of the same TCP connection, the NAT can also store the translation
for the other side (lines 25–26). NAT then treats all the packets that come after
(including SYN-ACK) as regular packets. The regular_packets function only has
to retrieve the translation using get_flow (line 31) and use it to update the packet
header (line 39). Sprayer API also helps NFs that need to record statistics but
tolerate looser consistency. These NFs can keep statistics for all flows in every core
and periodically aggregate them in their designated cores.

In addition to packet handlers, Sprayer also allows NFs to implement an initial-
ization function. Besides initialization work (e.g., memory allocation), NFs can use
this function to set parameters that Sprayer will use in its own initialization, such as
the size of the flow table and its entries. Stateless NFs can also set a flag to disable
flow state features, i.e., flow tables and the redirection of connection packets.

3.3 Implementation
We have implemented Sprayer on top of DPDK [48], taking advantage of many
state-of-the-art optimizations, such as polling and batching. In order to make the
NIC spray packets we also had to modify DPDK’s ixgbe driver [64]. At first glance,
it may seem impossible to spray packets using existing commodity NICs, since they
do not offer this functionality [65, 66]. We, however, circumvent this limitation using

19

1 void connection_packets(pkt_t* pkt) {
2 // we only care about the first SYN packet
3 if (!pkt->SYN || pkt->ACK) {
4 regular_packets(pkt);
5 return;
6 }
7 flow_id = get_five_tuple(pkt);
8

9 // select a port from pool
10 translated_flow_id = select_port(flow_id);
11

12 // no port available or invalid source IP
13 if (!translated_flow_id) {
14 drop_packet(pkt);
15 return;
16 }
17

18 flow_entry = insert_local_flow(flow_id);
19 *flow_entry = translated_flow_id;
20

21 update_header(pkt, translated_flow_id);
22

23 // we also include the other side
24 rev_flow_id = reverse(translated_flow_id);
25 flow_entry = insert_local_flow(rev_flow_id);
26 *flow_entry = reverse(flow_id);
27 }
28

29 void regular_packets(pkt_t* pkt) {
30 flow_id = get_five_tuple(pkt);
31 translated_flow_id = get_flow(flow_id);
32

33 // no translation found for this flow id
34 if (!translated_flow_id) {
35 drop_packet(pkt);
36 return;
37 }
38

39 update_header(pkt, translated_flow_id);
40 }

Figure 3.5: Sample implementation of a NAT. Sprayer’s API functions and packet
handlers are underlined.

20

Flow Director [65], a feature of Intel NICs designed to associate specific sets of flows
to queues. We use Flow Director in an unconventional manner: instead of matching
flows, we configure it such that packets are directed to queues using the checksum
field of the TCP header. Since the checksum field looks random, TCP packets are
uniformly distributed across queues regardless of their flows. In contrast, non-TCP
packets fail to match any rules and fall back to traditional RSS, in which the NIC
directs packets to cores using a hash of the five-tuple. All non-TCP packets are
processed in the core they arrive, with no need for redirection.

A major problem with Flow Director—and in fact the reason many choose not to
use it [15, 60]—is that it has a somewhat limited space for flow rules (8k). We avoid
this problem using only a certain number of least significant bits of the checksum
field, depending on the number of cores in the system. This allow us to define rules
that exhaust all possible matches.

3.4 Evaluation
This section presents an evaluation of Sprayer. We run experiments on a testbed
with two servers connected back-to-back. One server functions as a traffic generator
and the other as a middlebox. The middlebox server is equipped with two Intel
Xeon E5-2650 CPUs, each of which has 8 cores with 2.0 GHz clock, and 256 GB of
RAM (equally divided among all memory channels). The traffic-generator server
is equipped with a single Intel Core i7-7700 CPU and 32 GB of RAM. Moreover,
both servers have an Intel 82599ES 10 GbE NIC [65] and run Linux 4.9.0-5. We
configure the RSS hash function to direct upstream and downstream flows from the
same connection to the same core [67].

To systematically emulate NFs with different complexities, we implement a sim-
ple NF on top of Sprayer. This NF creates a new entry in the flow table at every
new connection. Moreover, for every packet it receives, it retrieves the flow state,
modifies the header, and busy loops for a given number of cycles. We vary the
number of cycles from 0 up to 10,000 (the maximum number of cycles per packet
among the NFs surveyed by [20]). The NF uses 8 cores in all experiments.

When measuring processing rate, we use MoonGen [68] to generate 64 B TCP
packets with variable payload content, and therefore variable checksum. When
measuring TCP throughput, we use Iperf3 [69] to create real TCP connections. Our
results use the standard Linux TCP implementation (CUBIC), without any kind of
tuning. Unless otherwise noted, error bars represent one standard deviation.

How much can Sprayer improve performance? The maximum improvement
caused by Sprayer happens when there is a single flow. Figure 3.6a shows the

21

0 2000 4000 6000 8000 10000

Processing cycles per packet

0.0

2.5

5.0

7.5

10.0
Pr

oc
es

sin
g

ra
te

(M
pp

s)
RSS
Sprayer

(a) Processing rate.

0 2000 4000 6000 8000 10000

Processing cycles per packet

2

4

6

8

10

T
hr

ou
gh

pu
t

(G
bp

s)

RSS
Sprayer

(b) TCP throughput.

Figure 3.6: Effect of increasing the number of processing cycles per packet on pro-
cessing rate (with 64 B packets) and TCP throughput, while using a single flow.

100 101 102

Number of flows

0.5

1.0

1.5

Pr
oc

es
sin

g
ra

te
(M

pp
s)

RSS
Sprayer

(a) Processing rate.

100 101 102

Number of flows

2

4

6

8

10

T
hr

ou
gh

pu
t

(G
bp

s)

RSS
Sprayer

(b) TCP throughput.

Figure 3.7: Effect of increasing the number of flows on processing rate (with 64 B
packets) and TCP throughput. Processing cycles per packet remain fixed at 10,000.

processing rate as a function of per-packet processing cycles for a single flow. As
expected, when we increase the number of cycles spent on each packet, the processing
rate decreases. Somewhat unexpectedly though, Sprayer’s processing rate is limited
to about 10 Mpps. This, however, is not fundamental and is a limitation of the
82599 NIC when using Flow Director. For less trivial NFs, the fact that Sprayer
uses all cores allows it to process significantly more packets than RSS. Since Sprayer
may reorder packets, improving processing rate does not necessarily improve TCP
throughput. Figure 3.6b alleviates this concern by measuring the throughput of a
real TCP connection.

How does the number of flows impact Sprayer? The performance of Sprayer
is consistent regardless of the number of concurrent flows. We repeat the same
experiments fixing the number of processing cycles per packet in 10,000 while in-
creasing the number of flows. Sources and destinations change randomly at every
execution. When generating packets from different flows using MoonGen, we use
round-robin, so that packets from different flows are perfectly interleaved—this is
the best-case scenario for RSS. Figure 3.7 compares the processing rate and TCP

22

0 2000 4000 6000 8000 10000

Processing cycles per packet

10

15

20

La
te

nc
y

(µ
s)

RSS
Sprayer

Figure 3.8: 99th percentile RTT for 64 B packets at 70% load for a single flow.

100 101 102

Number of flows

0.7

0.8

0.9

1.0

Ja
in

’s
fa

irn
es

s
in

de
x

RSS
Sprayer

Figure 3.9: Jain’s fairness index for an increasing number of flows.

throughput of RSS and Sprayer, for increasing numbers of concurrent flows. We
find that RSS shows considerably worse throughput for a small number of flows
and a slightly better throughput for a sufficiently large number of flows. Since the
processing rate between the two is similar for a large number of flows, we attribute
the difference in TCP throughput to packet reordering. Furthermore, if we consider
the small number of concurrent flows in a typical workload (Figure 3.2), Sprayer
is faster most of the time. Also note, that the measurements for RSS have larger
error bars. That is because hash collisions change from one experiment to another,
causing better or worse throughput.

Does Sprayer impact latency? Since Sprayer spreads packets from the same
flow across all cores, packets from the same flow are processed in parallel. This ends
up reducing latency. Figure 3.8 compares the 99th percentile round trip time when
using RSS and Sprayer to process 64 B packets from a single flow at 70% of the
minimal processing rate between RSS and Sprayer.

Does Sprayer impact fairness? Sprayer eliminates the fairness problem caused
by hash collisions. Since all flows get to share all cores equally, they all receive the
same share. Figure 3.9 reports the average Jain’s fairness index [7] across all runs.
Error bars represent the minimum and maximum observations. While Sprayer con-
sistently achieves fair throughput (Jain’s index close to 1.0), RSS’s fairness depends
on the number of flows each core has to process.

23

Summary. Our experiments indicate that spraying packets across cores is a valid
approach for software middleboxes. It improves fairness and provides consistent
performance, regardless of the number of flows. What remains to be answered is
how well other TCP implementations interact with the levels of packet reordering
imposed by Sprayer. Moreover, although the NF used in our experiments operates
similarly to a real NF,4 we plan to extend our evaluation to real NFs implemented
on top of Sprayer.

3.5 Discussion
We now point to Sprayer’s limitations and outline questions that should be further
investigated.

NF deployability: Sprayer’s programming model can be used to implement NFs
that do not need to update flow state in the middle of a flow (e.g., NAT, firewall,
load balancer, traffic monitor). However, not every NF fits this model. Some DPIs,
for example, need to support cross-packet pattern matching. Although they can be
made to work with out-of-order packets [70], implementing them on top of Sprayer
would require that cores share their state machines. Another example of NFs in-
compatible with Sprayer are transparent web proxies and caches. The reason being
that an HTTP request may be split among different TCP packets and end up going
to different cores. Since transparent proxies are incompatible with HTTPS—which
now accounts for more than 70% of loaded web pages [71, 72]—we do not see this
as a major drawback.

Programmable NICs: We constrained our design to work on commodity hard-
ware. However, the rise of programmable NICs [73–75] creates further opportunities.
First, we could program NICs to direct connection packets to designated cores, re-
ducing some of Sprayer’s overhead. Also, inspired by previous work on datacenter
networks [76–78], we may configure NICs to direct packets to cores using flowlets.
Flowlets are a middle ground between packets and flows. They are based on the
observation that packets from the same flow often arrive in bursts. Datacenters
that use flowlets direct these bursts of packets to the same path. This can bring
advantages, such as reduced packet reordering.

Scalability with more cores: Although an increase in the number of CPU cores
should increase Sprayer’s advantage over RSS, it also has the potential to increase
packet reordering. Therefore, it may be wise to only spray packets from a particular

4Our NF does a flow-state lookup, updates the header, and busy-loops for a certain number of
cycles. A firewall, for example, would lookup the flow state and go through an access control list
(ACL).

24

flow to a limited subset of cores [79]. We intend to test this hypothesis in future
work using programmable NICs.

Elastic scaling to multiple hosts: In this work we focused on improving utiliza-
tion of a single host. In some situations, however, NFs need to scale to multiple
hosts [17, 23–25]. We can also scale Sprayer to multiple hosts, as long as packets
from the same flow are not sprayed across different hosts. Moreover, proposals like
S6 [25], that advocates using a Distributed Shared Object (DSO) to share state
among hosts, could also be used to scale Sprayer.

Different transport protocols: At our current implementation, Sprayer only
sprays TCP packets; other packets continue to be directed to cores using RSS. This
avoids the potential problems packet reordering causes to some UDP applications
(e.g., VoIP [78]). More elaborated classification could be made to spray only some
UDP flows. QUIC [46], for example, runs on top of UDP and by design is more
resilient to packet reordering than TCP.

3.6 Related Work
As already mentioned, there are multiple works that use packet spraying to improve
both efficiency and fairness in datacenter networks [10, 29–32]. Yet, Sprayer is
the first to bring this concept to software middleboxes. Although the basic idea is
similar, the implications are different. One of the challenges of using packet spraying
in datacenters is to ensure that it keeps working in the presence of asymmetries
caused by link failures. In middleboxes, this problem does not exist. Instead, flow
state sharing is the main concern.

Many previous works have also investigated NF state so as to scale NFs to
multiple hosts [17, 22–25]. Despite these solutions being orthogonal to our work, they
have identified similar flow-state-access patterns as we did. Moreover, one of these
solutions, StatelessNF [23], moves all NF state (per-flow and global) to a remote
server, which is an elegant approach to simplifying scalability and failure recovery.
Although StatelessNF could potentially replace Sprayer’s flow state abstractions, it
requires non-commodity technology (InfiniBand). Moreover, accessing remote states
increases latency and requires extra CPU cycles [25].

Some attempts have also been made to improve middlebox efficiency when pack-
ets need to go through multiple NFs (NF chaining). Solutions such as NFP [19]
and ParaBox [80] explore parallelism by processing the same packet in NFs located
in different cores at the same time. These solutions, however, are specific to NF
chaining and can only work for some configurations. Moreover, they require at least
two inter-core transfers for every packet. Also related to NF chaining, NFVnice [16]

25

tries to improve fairness among NFs running on the same core, but makes no effort
to improve fairness among flows.

Finally, mOS [62] has focused on creating abstractions for stateful flow process-
ing. It keeps track of TCP state machines and let NFs implement handlers, which
are triggered in the presence of events (e.g., new TCP connection). This is comple-
mentary to Sprayer’s flow state abstractions, that facilitate flow state access in the
presence of packet spraying.

3.7 Conclusion
In this chapter, we introduced Sprayer. Sprayer allows NFs to load balance packets
to multiple CPU cores using packet spraying, instead of flow-based hashing. It also
provides abstractions for handling flow state without the need for synchronization
primitives. We observed that, when compared to the per-flow alternative, Sprayer
significantly improves fairness and consistently uses the entire capacity, even when
there is a single flow.

26

Chapter 4

Stateful Dominant Resource
Fairness

In this chapter we introduce Stateful Dominant Resource Fairness (SDRF), an ex-
tension of DRF that accounts for the past behavior of users and improves fairness in
the long run. The key idea is to make users with lower average usage have priority
over users with higher average usage. When scheduling tasks, SDRF ensures that
users that only sporadically use the system have their tasks scheduled faster than
users with continuous high usage. The intuition for SDRF is that when users use
more resources than their rightful share of the system, they commit to use less in
the future if another user needs. SDRF tracks users commitments and ensures that
whenever system resources are insufficient, commitments are honored.

We conduct a thorough evaluation of SDRF and show that it satisfies the fun-
damental properties of DRF. SDRF is strategyproof as users cannot improve their
allocation by lying to the mechanism. SDRF provides sharing incentives as no user
is better off if resources are equally partitioned. Moreover, SDRF is Pareto effi-
cient as no user can have her allocation improved without decreasing another user’s
allocation. DRF can be efficiently implemented using a priority queue that deter-
mines which user has the highest allocation priority. When we consider the past,
allocation priorities may change at any instant and the implementation cannot ben-
efit from a priority queue. We mitigate this problem—being able to implement
SDRF efficiently—introducing live tree, a data structure that keeps elements with
predictable time-varying priorities sorted.

Besides the theoretical evaluation, we analyze SDRF using large-scale simula-
tions based on Google cluster traces containing 30 million tasks over a one-month
period, and compare it to regular DRF. Results show that SDRF reduces the av-
erage time users wait for their tasks to be scheduled. Moreover, it increases the
number of completed tasks for users with lower demands, with negligible impact on
high-demand users. We also use Google cluster traces to evaluate the performance

27

of live tree, concluding that SDRF works well in practice.
This chapter is organized as follows. We introduce the system model in §4.1 and

use it to define DRF and its allocation properties in §4.2. We then introduce SDRF
and show its properties in §4.3. In §4.4 we focus on the implementation of SDRF
using a live tree. We then test SDRF and our implementation under trace-driven
simulations in §4.5. Finally, we review related work in §4.6 and conclude the chapter
in §4.7.

4.1 System Model
In this section, we model the multi-resource allocation problem in a multi-user sys-
tem. We first formalize users and resource demands, and then define the general
structure of an allocation mechanism. From this structure we formalize users’ se-
quential interactions as a repeated game.

4.1.1 Multi-Resource Setting and Allocation Mechanism

The system consists of a set of users N = {1, . . . , n} that share a pool of different
hardware resources R = {1, . . . ,m}. Without loss of generality, we normalize the
total amount of every resource in the system to 1, i.e., if a system has a total of 100
CPU cores and 10 TB of memory, 0.1 CPU equals 10 cores while 0.1 memory equals
1 TB. For simplicity, we assume that the set of users and the amount of resources
remain fixed. Every user i has a demands vector θ

(t)
i = ⟨θ(t)i1 , . . . , θ

(t)
im⟩ representing

the user demand for every resource at instant t. We consider positive demands for
every resource type,1 therefore at every instant t, θ(t)ir > 0,∀i ∈ N , r ∈ R.

The allocation mechanism should produce as output a resource allocation based
on users’ declared demands. We represent the declared demands vector for a user i

at instant t analogously to the demands vector, θ̂(t)
i = ⟨θ̂(t)i1 , . . . , θ̂

(t)
im⟩. When users

declare demands truthfully, θ̂
(t)
i = θ

(t)
i . We also define the allocation vector for

user i at instant t for every resource type as o(t)
i = ⟨o(t)i1 , . . . , o

(t)
im⟩. The allocation re-

turned by the mechanism at instant t is represented by a matrix of all the individual
allocation vectors: O(t) = ⟨o(t)

1 , . . . ,o
(t)
n ⟩. We impose a feasibility restriction to the

allocations so that they may never be greater than the total amount of resources in
the system, i.e., at every instant t,

∑
i∈N o

(t)
ir ≤ 1, ∀r ∈ R.

We represent user’s preferences using a utility function. Given an arbitrary
1The requirement of non-zero demands is to avoid problems in the model. In practice, users

may not need every resource type at every instant. We can still use the same model and say that
these users need ϵ resources, where ϵ is an arbitrarily small positive quantity.

28

allocation o
(t)
i , for every user i and time t, the utility function is

u
(t)
i (o

(t)
i) = min

{
min
r∈R
{o(t)ir /θ

(t)
ir }, 1

}
. (4.1)

Intuitively, users prefer allocations that maximize their number of tasks, being in-
different between different allocations that result in the same number of tasks (when
the utility is 1, the user is able to allocate all the tasks she desires). This assumes
tasks are arbitrarily divisible [2, 9, 81]. This assumption does not hold in practice
and we evaluate its impact in §4.4.2. Note that we do not rely on the utility function
for interpersonal comparison, we only use it to induce ordinal preferences [81, 82].
This means that, even though the utility function can be used to determine which
allocation is better for a user, it cannot be used to determine if one user is doing
better than another.

4.1.2 Repeated Game

In the previous sub-section we referred to an instant t when defining most notations,
however we omitted the influence time has in the allocation and in the user’s prefer-
ences. In game theory, we typically say that at every instant t there is a stage game
where users declare their demands (θ̂(t)

i ,∀i ∈ N) and the allocation mechanism de-
cides an allocation (o(t)

i ,∀i ∈ N). The sequence of stage games defines the repeated
game. To evaluate user’s expected long-term utility, we consider that they discount
future utilities using a discount factor δi ∈ [0, 1), i.e., user i’s expected long-term
utility in the repeated game for the instant t is

u
[t,∞)
i = Eui

[
(1− δi)

∞∑
k=t

δk−t
i u

(k)
i (o

(k)
i)

]
. (4.2)

The normalization factor (1 − δi) adjusts the units so that we can compare the
stage-game and repeated-game utilities.2 The discount factor δi is often called the
“user patience”; the closer it is to 1, the more users care about future outcomes.
Conversely, the closer it is to 0, the more users care about recent future and the
stage-game outcomes. Table 4.1 has a summary of all the notations used in this
chapter.

4.2 DRF and Allocation Properties
In this section, we quickly review the DRF mechanism and the static allocation
properties DRF and DRF-based schedulers usually satisfy. We show that these

2This is easy to verify by calculating
∑∞

t=0 δ
t
i =

1
1−δi

.

29

Table 4.1: Summary of notations.

Notation Description
N Set of users.
R Set of resource types.
n Number of users in the system.
m Number of different resource types.
θ
(t)
i User i’s demands vector at instant t, θ(t)

i = ⟨θ(t)i1 , . . . , θ
(t)
im⟩.

θ
(t)
ir User i’s demand for resource r at instant t.

θ̂
(t)
i User i’s declared demands vector at instant t, θ̂(t)

i = ⟨θ̂(t)i1 , . . . , θ̂
(t)
im⟩.

θ̂
(t)
ir User i’s declared demand for resource r at instant t.

o
(t)
i User i’s allocation vector at instant t, o(t)

i = ⟨o(t)i1 , . . . , o
(t)
im⟩.

o
(t)
ir User i’s allocation for resource r at instant t.

O(t) Matrix of all allocation vectors at instant t, O(t) = ⟨o(t)
1 , . . . ,o

(t)
n ⟩.

u
(t)
i (o

(t)
i) User i’s utility function at instant t given an allocation o

(t)
i .

u
[t,∞)
i User i’s expected long-term utility at instant t.
δi User i’s discount factor.
δ Parameter used in the calculation of commitments.
r̃
(t)
i User i’s dominant resource at instant t.

θ̃
(t)
i User i’s normalized demand vector at instant t, θ̃(t)

i = ⟨θ̃(t)i1 , . . . , θ̃
(t)
im⟩.

θ̃
(t)
ir User i’s normalized demand for resource r at instant t.
c
(t)
ir User i’s commitment for resource r at instant t.

properties alone are not enough to enforce fairness in the long run, requiring an
alternative for the dynamic setting.

4.2.1 DRF Mechanism

Dominant Resource Fairness (DRF) [2] extends Max-Min Fairness (MMF) to the
multi-resource setting. DRF calculates an allocation based on users’ dominant re-
sources (the most demanded resource for each user, relative to the total amount in
the system). As we have normalized all the different kinds of resources to 1, we say
r̃
(t)
i is a dominant resource for user i at instant t, if

r̃
(t)
i ∈ arg max

r∈R
θ
(t)
ir . (4.3)

Given the dominant resource, we define the normalized demand vector for each
user, in which the dominant resources become 1. The normalized demand vector for
user i at instant t is denoted by θ̃

(t)
i = ⟨θ̃(t)i1 , . . . , θ̃

(t)
im⟩, where

θ̃
(t)
ir =

θ̂
(t)
ir

θ̂
(t)

ir̃
(t)
i

, ∀i ∈ N , r ∈ R . (4.4)

30

When users request an infinite number of tasks, DRF computes an allocation
where each user receives an equal share of their dominant resource. For this partic-
ular case, DRF can be described using a simple linear program whose solution (x)
is the share of dominant resource each user receives [81]:

max
x

x

s.t.
∑
i∈N

o
(t)
ir ≤ 1, ∀r ∈ R ,

o
(t)
ir = x · θ̃(t)ir .

(4.5)

Intuitively, we increase x—and consequently the share of dominant resource for
every user—until we achieve a bottleneck and no task can be allocated. Given x,
the allocation for every user and resource can be calculated as o

(t)
ir = x · θ̃(t)ir .

4.2.2 Static Allocation Properties

In Chapter 2 we have introduced some desirable allocation properties. These prop-
erties have also been used in a variety of works [9, 81, 82] to ensure both fairness
and efficiency in a static resource allocation. We now define these properties more
formally using the model from §4.1. For the following definitions, consider a stage
game happening at time t.

1. Sharing Incentives (SI). Users should be better off participating in the system
than having a proportional and exclusive share of all the resources. For-
mally, we say that an allocation mechanism satisfies sharing incentives if
for every user i ∈ N , it outputs an allocation o

(t)
i such that, u

(t)
i (o

(t)
i) ≥

u
(t)
i (⟨1/n, . . . , 1/n⟩). This assumes users have the right to an equal share of all

the resources. It is also possible to give users different weights, so that they
have the right to a lower or higher share depending on their weights.

2. Strategyproofness (SP). Users should not benefit by misreporting their de-
mands to the mechanism. Formally, if we denote the allocation returned by
the mechanism when the user i reports her demands truthfully (θ̂(t)

i = θ
(t)
i) as

o
(t)
i and when the user lies (θ̂(t)

i ̸= θ
(t)
i) as o

′(t)
i , then u

(t)
i (o

(t)
i) ≥ u

(t)
i (o

′(t)
i).

3. Pareto Optimality (PO). The allocation should be optimal in the sense that if
it can be changed to make a user’s utility higher, it must make at least another
user’s utility lower (in other words the allocation cannot be Pareto dominated
by another). Formally, an allocation mechanism is Pareto optimal if it returns
an allocation O(t) such that for any other feasible allocation O′(t), if there is
a user i ∈ N such that u

(t)
i (o

′(t)
i) > u

(t)
i (o

(t)
i) then there must be a user j ∈ N

such that u
(t)
j (o

′(t)
j) < u

(t)
j (o

(t)
j).

31

0 100 200 300 400 500

Time (h)

0.0

0.5

1.0

C
PU

sh
ar

e

User A
User B

0 100 200 300 400 500

Time (h)

0.0

0.5

1.0

M
em

or
y

sh
ar

e User A
User B

Figure 4.1: Unfairness in the long run. User B hardly uses the system but receives
the same shares as user A.

In addition to the above properties, DRF also satisfies envy-freeness, which en-
sures that users never prefer another user’s allocation to their own. Unfortunately
satisfying both Pareto optimality and envy-freeness is impractical under indivisibil-
ities [81]. Moreover, as we will see in the next subsection, while envy-freeness is
usually desirable for static allocations, it does not ensure fairness in the dynamic
setting.

4.2.3 Fairness in the Dynamic Setting

We now give motivation for an allocation policy that is fair in the long run. Previous
works [2, 9] modeled users as having an infinite number of tasks with the same
demand for each resource type. When this happens, only the share of resources each
task needs is considered—time becomes irrelevant and the allocation is equivalent
to a static one. In practice, however, while some users have workloads with repeated
jobs, most users have quite dynamic workloads [35, 39].

To illustrate the importance of considering the past in an allocation, we present
an example with users A, B and C sharing a system with a DRF scheduler (see
Figure 4.1). There are two resources in the system, CPU and memory. User A’s
dominant resource is CPU and her normalized demand is ⟨1, 0.5⟩. User A is eager
for resources and submits a huge amount of tasks. Nevertheless, the other users
only use the system sporadically, with usage spikes. After user A is using the entire
system for a while, user B has a spike with normalized demand ⟨1, 0.5⟩ as well. Even
though user B never used her rightful share, the share she receives is the same as
user A, i.e., equal to 1/2. This demonstrates that the properties of fairness defined
for a static allocation are not enough to enforce fairness in the long run. Satisfying
sharing incentives guarantees that users will receive their rightful share but does not
reward users for their lower usage. Envy-freeness assumes users are only aware of
the present allocation and do not envy other users based on their past allocations.

32

4.2.4 Users’ Commitments

To distinguish between users who constantly require more resources than their pro-
portional share from users who only use the system sporadically, we introduce the
concept of commitment. Commitment is a measure of users propensity to overuse
their shares. The key intuition is that users who use more resources than their share,
commit to use less if other users need. Users who overuse their shares for a short
period of time should have lower commitment than users who constantly overuse.
Also, users who overuse less resources should get lower commitment than users who
overuse more resources (tuned by a parameter δ). Every user i ∈ N has a separate
commitment for each resource r ∈ R. We define commitment using an exponential
moving average of overused resources. The user i’s commitment for resource r at
time t is given by:

c
(t)
ir = (1− δ)

t∑
k=−∞

δt−kō
(k)
ir , (4.6)

where
ō
(k)
ir = max

{(
o
(k)
ir −

1

n(k)

)
, 0

}
. (4.7)

The term n(k) is the number of active and inactive users in the system at instant k.
Therefore, the term ō

(k)
ir represents how much user i overused her share for resource r

on instant k. When this term is zero, the user did not overused her share. The more
in the past users overused their share the less it influences their commitments.

4.3 Stateful Dominant Resource Fairness
In this section, we introduce Stateful Dominant Resource Fairness (SDRF), a gen-
eralization of DRF that improves fairness in the long run by enforcing users’ com-
mitments. First we develop a simpler version of SDRF for a single resource type.
Then, we extend this version and obtain an optimization problem that yields an
SDRF allocation. From this problem we proceed to prove that it satisfies the de-
sired properties introduced in §4.2.

4.3.1 Stateful Max-Min Fairness

The intuition for SDRF is better understood if we first look at the single resource
setting. Suppose we have a finite amount of a particular resource, e.g., CPU cores,
and we want to equally divide it among the users. The fairest way to divide it is
to give an equal share of the resource for every user, e.g., same number of CPU
cores. Nonetheless, some users may not need their entire share, in that case it can
be redistributed among the other users. This is the main principle behind Max-Min

33

x

1 2 3 4

(a) MMF.

x

c

1 2 3 4

(b) SMMF.

Figure 4.2: Water-filling diagram for (a) MMF and (b) SMMF.

Fairness (MMF). One way to achieve MMF is to use a water-filling algorithm [36].
Water-filling progressively gives resources for every user until their demands are
met. When a user demand is met, she stops receiving resources and the algorithm
continues to give resources for the other users. Figure 4.2a shows the water-filling
diagram for the MMF allocation. Each column (or tank) represents the total amount
of resource each user demands. The resource is finite and progressively fills the tanks,
until there is no more resource left. In the example, users 2 and 3 have their demands
fulfilled while users 1 and 4 only have it partially fulfilled.

Even though MMF is fair for a static allocation, directly applying MMF to the
dynamic setting causes the same problem as DRF—it does not consider the past
and therefore cannot enforce fairness in the long run. To modify MMF to account
for commitments, we introduce Stateful Max-Min Fairness (SMMF). The intuition
behind SMMF is better illustrated by an example. “If the equal share for the resource
is 3 CPUs and the user has a commitment of 1 CPU, then the user should have the
right to receive at least 2 CPUs.” This notion can be directly implemented using
the water-filling algorithm just by adding commitments as a “base for the tanks.”
Figure 4.2b shows the water-filling diagram for the SMMF allocation. Demands are
the same as in Figure 4.2a, but now there is a base layer of arbitrary commitments
c (black layer). Note how user 2 has a lower allocation than she would have without
commitments, on the other hand, the demand for user 4 is now met.

Formally, the SMMF allocation can be defined using an optimization problem.
Since SMMF allocates a single resource, the resources set becomes a singleton R =

{1} and each user i ∈ N has a single allocation o
(t)
i1 at time t. The optimization

problem maximizes x, the water level in Figure 4.2b, as long as there are resources

34

left in the system:

max
x

x

s.t.
∑
i∈N

o
(t)
i1 ≤ 1,

o
(t)
i1 = max

{
0,min

{
θ̂
(t)
i1 , (x− c

(t)
i1)
}}

.

(4.8)

Given x, each user receives an allocation o
(t)
i1 = max{0,min{θ̂(t)i1 , (x − c

(t)
i1)}} which

ensures that allocations are never above demands and remain nonnegative. When
commitments are zero, SMMF is equivalent to MMF.

Having defined SMMF, we now generalize it to the multiple resources setting to
finally obtain the SDRF mechanism.

4.3.2 SDRF Mechanism

SDRF generalizes SMMF similarly to the way DRF generalizes MMF to multiple
resources. We use the same concept of dominant resource as DRF, defined in Eq. 4.3.
Differently from DRF, though, we must deal with different commitments for different
resources. We define the dominant commitment for a user i at time t as the user’s
largest commitment relative to the system total. As we have normalized all the
resources to 1, the dominant commitment is simply the largest commitment for the
user, i.e.,

c̃
(t)
i = max

r∈R
{c(t)ir } . (4.9)

Having defined the dominant commitment, we define SDRF using ideas from
both DRF (Eq. 4.5) and SMMF (Eq. 4.8). Like DRF, SDRF increases the share of
dominant resource for every user until a bottleneck is achieved. Like SMMF, users
only start receiving resources when x is above their (dominant) commitment. SDRF
is formally defined as:

max
x

x

s.t.
∑
i∈N

o
(t)
ir ≤ 1, ∀r ∈ R ,

o
(t)
ir = max

{
0,min

{
θ̂
(t)
ir , (x− c̃

(t)
i) · θ̃(t)ir

}}
.

(4.10)

Recall θ̃(t)ir is the normalized demand for user i and resource r, defined in Eq. 4.4.
From x, we may calculate the allocation for every user and resource by o

(t)
ir =

max{0,min{θ̂(t)ir , (x− c̃
(t)
i) · θ̃(t)ir }}. In the next subsection we analyze the properties

of SDRF that prove it behaves well in both the stage game and in the long run.

35

4.3.3 Analysis of SDRF Allocation Properties

We start our analysis of SDRF proving that it satisfies the desirable properties
introduced in §4.2.2, namely: strategyproofness, Pareto optimality and sharing in-
centives. We defer the proofs of all propositions to §4.8.

First, we show that SDRF increases the share of dominant resource for every
user until a resource runs out (the bottleneck resource). This is indicated in the
following proposition.

Proposition 1 (Bottleneck). The SDRF allocation obtained by solving Eq. 4.10
is such that all users have their demands fulfilled or there is a bottleneck resource.
Formally, o(t)

i = θ̂
(t)
i ,∀i ∈ N or ∃r ∈ R such that

∑
i∈N o

(t)
ir = 1.

Although simple, Proposition 1 is useful to demonstrate the following properties.
One of the fundamental properties of DRF is strategyproofness. Without it, users
may try to manipulate the system by, e.g., faking their usage, which results in
inefficiencies [2, 83]. Propositions 2 and 3 show SDRF is also strategyproof.

Proposition 2 (Strategyproofness in the Stage Game). When users consider
only the stage game utility (Eq. 4.1), the SDRF allocation obtained by solving Eq. 4.10
is strategyproof.

Proposition 2 shows that when users consider only stage game utilities, SDRF
is strategyproof. However, the fact that we consider past allocations may create
new incentives for users to manipulate their declared demands. It may be possible
that some users would not use the system when they actually need, hoping that this
would improve their future allocations—this would also bring inefficiencies to the
system. Fortunately, Proposition 3 shows that this is not possible.

Proposition 3 (Strategyproofness in the Repeated Game). When users eval-
uate their utilities using the expected-long-term utility (Eq. 4.2), the SDRF allocation
obtained by solving Eq. 4.10 is strategyproof, regardless of users’ discount factors.

The following two propositions demonstrate that SDRF is efficient. Proposition 4
shows that SDRF does not waste resources while Proposition 5 shows that the
allocation is Pareto optimal, ensuring that it is not possible to increase a user’s
allocation without decreasing another.

Proposition 4 (Non-wastefulness). The SDRF allocation O(t) is such that, if
there is a different allocation O′(t) where o′

(t)
ir ≤ o

(t)
ir ,∀i ∈ N , r ∈ R and for a

user i∗ ∈ N and resource r∗ ∈ R, o′
(t)
i∗r∗ < o

(t)
i∗r∗, then it must be that u

(t)
i∗ (o

(t)
i∗) >

u
(t)
i∗ (o

′(t)
i∗). In other words, SDRF is non-wasteful.

36

Proposition 5 (Pareto optimality). The SDRF allocation obtained by solving
Eq. 4.10 is Pareto optimal.

The last property indicates that users are better off if they participate in the
system. More specifically, it shows that users receive a utility at least as good as if
they had access to 1/n of resources in the system.

Proposition 6 (Sharing incentives). The SDRF allocation obtained by solving
Eq. 4.10 satisfies sharing incentives.

4.4 Implementation Using a Live Tree
In this section, we study how SDRF can be implemented in practice. We first
consider the effect continuous time and indivisible tasks have in the model defined in
§4.1. We then develop a water-filling algorithm to schedule tasks. Nevertheless, the
algorithm requires users’ priorities to be recalculated and sorted at every execution.
To mitigate this problem we introduce live tree—a data structure that keeps elements
sorted even with time-varying priorities—and show how it can be used to improve
the SDRF scheduling algorithm.

4.4.1 Continuous Time

In the model defined in §4.1 we assume time progresses as a sequence of repeated
games, suggesting a discrete time. The definition for commitment in Eq. 4.6 is com-
patible with this notion. In an actual system, however, tasks may arrive and finish
at any instant, therefore we need an expression that allows us to compute commit-
ment at continuous time. First we redefine Eq. 4.6 recursively using a difference
equation [84],

c
(t)
ir = (1− δ)ō

(t)
ir + δc

(t−∆t)
ir (4.11)

where the commitment at time t can be calculated from commitment at time t−∆t.
This assumes ō

(t)
ir remains constant within the interval (t−∆t, t]. It turns out that

Eq. 4.11 can be seen as an exponential smoothing and can be closely approximated
in the continuous time [84], leading to the expression

c
(t)
ir = (1− δ̊)ō

(t)
ir + δ̊c

(t0)
ir

δ̊ = e−(t−t0)/τ , τ = − ∆t

ln(δ)
(4.12)

where we may calculate c
(t)
ir from any previous c

(t0)
ir as long as o

(t)
ir remains constant

from t0 to t. Fortunately, oir only changes when a task for user i requiring resource r

starts or finishes. In any other instant, oir remains constant, making Eq. 4.12 useful

37

in practice. This expression is analogous to the discrete version, using δ̊ instead of
δ. When t− t0 = ∆t, Eq. 4.12 becomes Eq. 4.11.

4.4.2 Indivisible Tasks

So far, we have assumed that tasks are arbitrarily divisible. This allowed us to
give arbitrarily small amounts of resources to users. In practice, however, tasks are
often not divisible [6, 34]. To schedule indivisible tasks we use the same approach
as previous works [2, 9]—applying water-filling to tasks.

Algorithm 1 summarizes the task scheduling procedure. We define a set A of
active users (users with at least one task waiting to be scheduled), and keep track
of the total amount of resources allocated for every user. If the system is not full
and if there is at least one user with a pending task, i.e., A ̸= ∅, we schedule the
next task for the user with the lowest share of dominant resource compensated for
commitments.

Algorithm 1 SDRF task scheduling
A = {1, . . . , k} ▷ set of active users
oi = ⟨oi1, . . . , oim⟩,∀i ∈ A ▷ resources given to user i
ci = ⟨ci1, . . . , cim⟩,∀i ∈ A ▷ commitments for user i
while A ̸= ∅ do

i← arg min
i∈A

{
max
r∈R
{oir + cir}

}
▷ pick user

∀r, θir ← demand for r in user i’s next task
if ∀r,

(
θir +

∑
j∈N ojr

)
≤ 1 then

∀r, oir ← oir + θir
if no more pending tasks for user i then

remove i from A
else

return ▷ the system is full

Whenever a task arrives or finishes, we rerun Algorithm 1 with updated set A,
and vectors oi, ci, ∀i ∈ A. The smaller tasks are, the closer Algorithm 1 approxi-
mates Eq. 4.10.

Performance is a major concern in the design of a task scheduler. In peak hours,
a scheduler may need to make hundreds of task placement decisions per second [35].
The most expensive part of Algorithm 1 is picking a user. While plain DRF can
be implemented using a priority queue that stores the dominant resource share for
every user3, this is not possible for SDRF. In DRF, users’ priorities only change
when oi changes, in SDRF users’ commitments change at any instant and so do

3The DRF implementation on Mesos [6] uses a binary tree, an std::set from the C++ Standard
Template Library.

38

1
2
3
4
5

Vector

Elements Tree Events Tree

Figure 4.3: Illustration of a live tree with its data structures. Positions in the array
link to elements in the tree. Some elements link to events in the events tree.

users’ priorities. Recomputing priorities for every user and resource at every task
scheduling decision would be too costly. The next subsection shows how to solve
this problem.

4.4.3 Live Tree

When scheduling tasks, we are not really interested in the specific value of commit-
ments, but in which user has the highest priority. Live tree is a data structure that
keeps elements with predictable time-varying priorities sorted. The key idea is to
focus on position-change events, instead of element priorities. When priorities follow
a continuous function, elements change position whenever their priorities intersect.
A live tree always has a current time associated with it—for this current time, it
guarantees that elements are sorted. When the current time is updated, instead of
updating every element priority, we see if any position-change event happened from
the last update to the current time.

Live tree can be seen as a combination of two red-black trees [85, 86] and an
array (see Figure 4.3). We call one red-black tree elements tree, as it keeps elements
sorted by priority, while the other is the events tree, as it tracks position-change
events sorted by their time. The array is used for element lookups. For simplicity,
we assume that each of the input elements has a distinct integer id that can be an
index for the array4. Each position in the array has a pointer to an element in the
elements tree (or NIL if there is no element for the given index). This allows us
to retrieve elements by id in the tree in O(1) time. If two neighboring elements in
the elements tree are to change position in the future, the left element will have a
pointer to a position-change event in the events tree.

We assume that priorities for all elements can be calculated using the same
continuous function p(t, κ) based on time t and in the element attribute κ. Every
element has a different attribute that dictates how its priority changes over time.
It may be a number, a vector or even a tuple. Our description does not depend
on the definition of κ, in the next subsection we better define κ for our setting. It

4When elements do not have integer ids, or they are too sparse, the array may be replaced by
a hash table and still present amortized O(1) lookups.

39

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

We will insert element 4. Element 4 is between ele-
ments 1 and 3. Position 4
now points to Element 4.

Element 1 will not intersect
with element 4. Element 4
will intersect with element 3.

Figure 4.4: Example of insertion: Insert(4, κ4).

We will update the event for
element 3.

1
2
3
4
5

1
2
3
4
5

We remove element 3’s event
from the events tree.

1
2
3
4
5

Elements 3 and 5 intersect
before elements 4 and 3.

Figure 4.5: Example of event update: UpdateEvent(3).

also helps to introduce an order notation, we say that element i precedes element j

for an instant t, i ≺t j, if p(t, κi) < p(t, κj). The elements tree compares elements
using [≺t]. This is useful since, whenever we insert a new element, it is compared to
the others consistently with the time t. Live tree also needs a function to calculate
priority intersections. We denote by tint(t, κi, κj) the function that calculates the
priority intersection time based on two element attributes (κi, κj) and the time t.

We now briefly describe the basic operations of a live tree:5

Insert(i, κi). Figure 4.4 shows an example of insertion. To insert an element i
in the live tree, we first insert i in the elements tree. Since the elements tree compares
elements using [≺t], i will be placed in the correct position relative to time t. Once
inserted, we set a pointer from position i in the array to the element in the tree.
Then, we call UpdateEvent for i and for its predecessor in the tree. When i is the
minimum element, we only call UpdateEvent for i. Insert can be accomplished
in O(logn) time.

UpdateEvent(i). If an element i will change position with its successor in the
future, it must have a position-change event associated with it. Figure 4.5 shows
an example of event update. To update an event we first check if the element i

has an event in the events tree and remove it if so. Then, we check if i and its
successor j will switch places in the future by calculating their priorities intersection
tint(t, κi, κj). If tint exists and is positive, we add an event for element i and time
tint + t in the events tree. Then we add a pointer from element i in the elements tree

5Our implementation of SDRF and Live Tree is open source and is available at https://
github.com/hugombarreto/sdrf

40

https://github.com/hugombarreto/sdrf
https://github.com/hugombarreto/sdrf

We will update the tree to
time t. The first event hap-
pens before time t.

1
2
3
4
5

We remove elements 3 and 4
calling Delete. Elements 1
and 5 intersect after time t.

We reinsert elements 3 and
4 calling Insert.

t

1
2
3
4
5

3 4

1
2
3
4
5

t t

Figure 4.6: Example of time update: Update(t).

We will delete element 3.

1
2
3
4
5

We remove element 3 and its
event. Element 4’s event is
now outdated.

Elements 4 and 5 intersect
after 1 and 4. Update-
Event(4) fixes the order.

1
2
3
4
5

1
2
3
4
5

Figure 4.7: Example of deletion: Delete(3).

to the event in the events tree. When i is the maximum element, it has no successor
and thus cannot have a position-change event (note this does not imply it cannot
change position, as its predecessor can have an event). UpdateEvent can be done
in O(logn) time.

Update(t). Whenever the current time changes, we must update the tree. We
assume that time progresses forward and live tree can only be updated to the future.
Figure 4.6 shows an example of time update. To update the tree to a new time t, we
look at all events that happen before t. If there is no event, i.e., the first event in the
events tree has time greater than t, then no element should change position and the
tree is already updated, otherwise we must consider the events. We remove events
from the events tree in order until the next event has time greater than t or the
events tree becomes empty. For every removed event, we remove its correspondent
element as well as its successor from the elements tree calling Delete. Once we
finish removing events, we reinsert each removed element calling Insert. Since
elements are compared using [≺t], the reinsertion places elements in their correct
position relative to time t. Update can be accomplished in O(n logn) time. The
worst case happens when every element must change position and therefore must
be reinserted in the tree. In §4.5 we show that, for SDRF, the actual time is much
smaller than the worst case.

Delete(i). Figure 4.7 shows an example of deletion. To delete an element i, we
first check position i in the array. From position i we get a pointer to the elements
tree. If the element has an event, we get a pointer to its event as well. We then

41

remove the event from the events tree, the element from the elements tree and set
NIL at position i in the array. If i was the minimum element, we are done, otherwise
we must call UpdateEvent to the predecessor of i in the elements tree. Delete
can be accomplished in O(logn) time.

Minimum/Maximum. The minimum (maximum) in the live tree is the mini-
mum (maximum) in the elements tree. Minimum/Maximum can be accomplished
in O(1) time.

We omitted from our description corner cases, such as if an element being deleted
does not exist, or if the element being inserted is already in the tree.

Live tree performance depends heavily on the priority function used and the
frequency of Update calls. When elements change position often, Update has to
process more events. Nevertheless, the higher the frequency of Update calls, the
less events each call has to process. In §4.5 we evaluate how live tree performs when
used to implement SDRF.

4.4.4 Live Tree Applied to SDRF

We now apply live tree to Algorithm 1. In Algorithm 1, we pick the user with the
minimum value of maxr∈R{oir + cir}, therefore we use a live tree to sort users by
this value. Using Eq. 4.12, we define the priority function p as

p(t, κi) = max
r∈R

{
oir + (1− δ̊)ōir + δ̊c

(ti)
ir

}
δ̊ = e−(t−ti)/τ

(4.13)

κi = (ti, τ, oi1, . . . , oim, ōi1, . . . , ōim, c
(ti)
i1 , . . . , c

(ti)
im), τ is defined as in Eq. 4.12 and is

the same for all users. ti is the time user i is inserted in the live tree.
To obtain the intersection function we calculate the time when any two arbi-

trary priorities intersect, i.e., p(t, κ1) = p(t, κ2). Since priorities are calculated from
the maximum value of oir + cir, it is useful to define a set of all resource priority
intersections, Iij. Whenever two resource priorities from users i and j intersect,
the intersection will appear in this set. We derive the expression for the set Iij
calculating the time t that satisfies the equality:

oir1 + c
(t0)
ir1

= ojr2 + c
(t0)
jr2

, where t0 = max{ti, tj} .

Using Eq. 4.12,

oir1 + (1− δ̊)ōir1 + δ̊c
(t0)
ir1

= ojr2 + (1− δ̊)ōjr2 + δ̊c
(t0)
jr2

.

42

Isolating δ̊,
δ̊ =

ōir1 − ōjr2 + oir1 − ojr2

ōir1 − ōjr2 + c
(t0)
jr2
− c

(t0)
ir1

.

Replacing δ̊ by e−(t−t0)/τ ,

e−(t−t0)/τ =
ōir1 − ōjr2 + oir1 − ojr2

ōir1 − ōjr2 + c
(t0)
jr2
− c

(t0)
ir1

.

Finally, isolating t,

t = t0 + τ ln
(
ōir1 − ōjr2 + c

(t0)
jr2
− c

(t0)
ir1

ōir1 − ōjr2 + oir1 − ojr2

)
. (4.14)

Using Eq. 4.14 we formally define Iij as

Iij =

{
τ ln

(
ōir1 − ōjr2 + c

(t0)
jr2
− c

(t0)
ir1

ōir1 − ōjr2 + oir1 − ojr2

)∣∣∣∣∣(r1, r2) ∈ R2

}
,

where t0 = max{ti, tj}.
We define the intersection function getting the minimum intersection after the

current time t,

tint(t, κi, κj) = min {k + t0 − t|k ∈ Iij ∧ k + t0 > t} (4.15)

When there is no intersection after the time t, tint does not exist and live tree will
add no event. Note this intersection function may indicate intersections between
resources that do not cause an intersection in priorities, i.e., commitments may
intersect without changing the dominant commitment. Although non-optimal, it
performs correctly, as false events do not change the order in the tree. In the next
section, we show how SDRF and live tree perform when scheduling tasks.

4.5 Simulation Results
In this section, we evaluate SDRF and live tree using trace-driven simulations based
on Google cluster traces [35]. The traces contain information from workloads (from
either Google services or engineers) running in a cluster over a month-long period.
Workloads are submitted in the form of jobs, and each job may have multiple tasks.
The traces contain events for every time a task is submitted, is scheduled or fin-
ishes. From these events we extract the CPU and memory demands as well as task
submission and running times using them as input for our simulation. We remove
tasks with 0 demand, as well as tasks that were evicted by the Google system, but

43

0 100 200 300 400 500

Time (h)

0.0

0.5

1.0

C
PU

sh
ar

e

User A
User B

0 100 200 300 400 500

Time (h)

0.0

0.5

1.0

M
em

or
y

sh
ar

e User A
User B

Figure 4.8: Same example as Figure 4.1 but using SDRF (δ = 1− 10−6). Note how
user B receives more resources and is able to complete her workload faster.

0

10

20

W
ai

tin
g

tim
e

re
du

ct
io

n Resources: 50% of R

0% 1% 3% 4%
11%

21%

6%

Resources: 60% of R

0% 0% 2% 3%

12%
18%

6%

Resources: 70% of R

0% 0% 1% 3%

13%
17%

5%

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

Discount factor (1− δ)

0

10

20

W
ai

tin
g

tim
e

re
du

ct
io

n Resources: 80% of R

0% 0% 0% 3%
9%

17%

3%

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

Discount factor (1− δ)

Resources: 90% of R

0% 1% 1%
4%

13%16%

6%

10
−1

10
−2

10
−3

10
−4

10
−5

10
−6

10
−7

Discount factor (1− δ)

Resources: 100% of R

0% 1% 1% 4%

12%14%

4%

Figure 4.9: Mean wait time reduction for every user relative to DRF.

leave tasks that failed due to user errors. After that, we are left with around 32
million tasks from 627 users.

We run simulations for different values of δ and system overload. The values of δ
are relative to a ∆t of 1 second (see Eq. 4.12). We vary δ by making it exponentially
closer to 1, i.e., δ = 1 − 10−1, . . . , 1 − 10−7. This is equivalent to exponentially
increasing τ from Eq. 4.12. To verify how SDRF performs under different levels of
system load we also perform simulations for multiple values of total resources (i.e.,
CPU and memory). We use the average system usage in the original trace, called
hereinafter as R, as a baseline for our results. We then run simulations with the
total amount of resources in the system varying from 50% to 100% of R, in steps of
10%.

Before running SDRF against the trace, we run it for the same example presented
in §4.2 (Figure 4.1). Figure 4.8 shows how user B receives more resources (both CPU
and memory) than user A and is able to complete her workload faster than using
DRF. Since user A is constantly using the system, receiving less resources for a short
period will have a low impact in her overall workload.

We now evaluate the simulation results. Figure 4.9 presents the mean waiting
time reduction for every user under different values of δ and system load when
compared to DRF. When δ is small enough, SDRF performs close to DRF. Also, for

44

0.00 0.25 0.50 0.75 1.00

Task completion ratio using DRF

0.00

0.25

0.50

0.75

1.00

Ta
sk

co
m

pl
et

io
n

ra
tio

us
in

g
SD

R
F

Figure 4.10: Task completion ratio using DRF and SDRF. Each bubble is a different
user. The bubble’s size is logarithmic to the number of tasks submitted by the user.
Users above the y = x are better with SDRF.

δ sufficiently close to 1, SDRF approaches DRF. This is justified inspecting Eq. 4.12:
when δ is sufficiently close to 1, commitments never accumulate, alternatively, when
δ is sufficiently close to 0, commitments are simply the last allocation, and therefore
tasks are scheduled just like in DRF. The best waiting time reduction was observed
for the discount factor δ = 1 − 10−6 for all levels of system load evaluated. Even
though the advantage of SDRF is more evident when the system is overloaded, for
δ = 1− 10−6, SDRF consistently outperforms DRF by more than 10%.

We also investigate how the waiting time reduction affects the number of tasks
each user is able to complete. We use the Google traces to compute the task comple-
tion ratio for every user (i.e., the number of tasks completed divided by the number
submitted) and compare it when running DRF and SDRF. Figure 4.10 shows the
results for the simulation with δ = 1 − 10−6 and total resources 50% of R. Each
bubble represents a different user: when above the black y = x line, the user is able
to complete more tasks under SDRF than under DRF. Most users perform better
under SDRF, in fact, only 9 out of 627 users completed less tasks under SDRF.
Also note that, even though these users completed less tasks, their task completion
ratio had low impact. This happens because users that use the system in small
bursts complete their workloads earlier and, consequently, have the opportunity to
complete more tasks. On the other hand, users that use the system continually
experience a low impact.

Next we evaluate how live tree performs under the same simulations. The theo-
retical worst case complexity for the update operation is O(n logn). This is driven
by the maximum number of events an update may trigger, when there is no event,
updates are performed in O(1). In practice, however, the average number of events
is much shorter. Figure 4.11 shows the number of live tree events that happened
during the entire simulation period for every simulation. Each curve represents a
different value of system load, 50% of R to 100% of R, from top to bottom. The
number of events increases when the amount of resources in the system decreases.

45

10−1 10−2 10−3 10−4 10−5 10−6 10−7

Discount factor (1− δ)

103

105

107

N
um

be
r

of
ev

en
ts 50% of R

100% of R

Figure 4.11: Live tree events for different values of discount factor and system
resources (50% to 100% of R from top to bottom).

Also, the closer δ is to 1, the less events we observe. This makes sense, since com-
mitments vary slower the closer δ is to 1. When δ = 1−10−6 and the total resources
50% of R, there is a total of 22,718 events, which is about 7 events for every 1,000

scheduled tasks. Since every task scheduling triggers one update, this indicates that
updates happen fast for this scenario. Even for the worst scenario (δ = 1−10−1, 50%
of R), the total number of events is 5,094,167, which is approximately 2 events for
every 10 tasks. If live tree performed close to its theoretical worst case complexity,
it would offer low advantage compared to sorting elements on every update. But
with the number of updates observed, live tree operations will perform close to the
ones of a red-black tree where weights are static.

4.6 Related Work
Fair resource allocation is a prevalent research topic, both in the computer science
and economics fields. Nonetheless, focus is often given to the single resource setting.
Ghodsi et al. [2] are the first to investigate the multi-resource setting under a shared
computing perspective, proposing DRF. Dolev et al. [37] propose an alternative
based on “bottleneck fairness.” Nevertheless, the alternative is not strategyproof
and is computationally expensive [83]. Gutman et al. [87] develop polynomial-time
algorithms to compute both DRF and “bottleneck fairness” for non-discrete allo-
cations. Joe-Wang et al. [8] extend the notion of fairness introduced by DRF to
develop a framework that captures the fairness-efficiency tradeoff. However, they
assume a cooperative environment and as such do not evaluate strategyproofness.
Wang et al. [9] generalize DRF for a scenario with multiple heterogeneous servers,
relaxing the sharing incentives restriction. Friedman et al. [88] also look at the allo-
cation on multiple servers but provide a randomized solution that achieves sharing
incentives. Another extension of DRF is proposed by Parkes et al. [81] to account
for users with different weights and zero demands. Zarchy et al. [89] also investigate
multi-resource allocation, but investigate what happens when the same application

46

may be developed differently to use different proportions of resource types. They
propose a framework that allows users to submit multiple demands for the same
application. Even though the aforementioned works consider the multi-resource
setting, they ignore the dynamic nature of users’ demands.

Bonald and Roberts [38] suggest Bottleneck Max Fairness (BMF), which also
does not enforce strategyproofness, but improves resource utilization as compared
to DRF. They consider dynamic demands in their analysis, arguing that for highly
dynamic environments, such as networks, it is hard for users to manipulate the
system. BMF convergence is proved in a later work [90]. Even though the analysis
of BMF considers dynamic demands, the allocation itself considers only short term
usage, ignoring fairness in the long run. Kash et al. [82] investigate a dynamic setting
where users arrive and never leave, however, they also assume that demands remain
constant. Friedman et al. [91] evaluate the scenario where multiple users arrive and
leave the system. The focus, however, is on the fair division of resources as soon as
the user arrives, limiting the number of task disruptions. There are also works that
adapt DRF to packet processing [83, 92] and consider a recent past. Nevertheless,
this is done to prevent limitations that arise when scheduling packets—in which
resources must be shared in time—and not to ensure fairness and efficiency in the
long run. Finally, other authors have focused on improving efficiency in the long
run but not fairness [4, 93]. While some of these works consider users’ dynamicity,
they do not address fairness in the long run, which was our focus in this chapter.

Live Tree can be seen as an alternative implementation of a Kinetic Priority
Queue [94]. Different from the classical implementations, however, Live Tree en-
sures strict upper bounds for priorities that follow an arbitrary continuous function.
This happens because, in the classical implementations, elements are swapped—or
rotated—in the presence of events [95]. Live Tree does not swap elements, instead,
it removes pair of elements and reinsert them according to the update time t. By
doing this, it ensures that every update has a cost of O(logn) for every changing
pair of elements, regardless of the number of intersections that happen from the last
update to the current. This is particularly useful for SDRF, since the function that
calculates weights is not trivial (Eq. 4.15).

4.7 Conclusion
In this chapter, we introduced SDRF, an extension of DRF that enforces fairness in
the long run. SDRF looks at past allocations and benefits users with lower average
usage. We showed that SDRF satisfies the fundamental properties of DRF while
enforcing fairness in the long run. To efficiently implement SDRF, we introduced
live tree, a general-purpose data structure that keeps elements with predictable

47

time-varying priorities sorted. We simulated SDRF using Google cluster traces for a
month-long period. Results have shown that under SDRF, users with low utilization
can complete their workloads faster. Meanwhile, users with high utilization suffer a
low impact in their overall workload. We also used the simulations to evaluate live
tree performance, concluding that SDRF can be implemented efficiently.

There are different future investigation directions. First, we believe live tree may
benefit other applications, e.g., Dijkstra’s algorithm applied to graphs with time-
variable weights. Second, SDRF can be extended to cover other applications, e.g.,
collaborative clouds [96]. Moreover, although we mentioned the possibility of using
weights for users, we did not evaluate it formally. Another possibility is the use of
a different function to measure commitments.

4.8 Deferred Proofs
In this section, we prove the propositions stated in §4.3.3. Before continuing, we
introduce a simple lemma. This lemma states that the allocation a user gets for a
certain resource will always be the normalized demand for this resource multiplied
by the allocation for the dominant resource. For example, if the normalized demand
vector for a user is ⟨0.5, 1⟩ and the allocation for the dominant resource is 0.2, then,
the allocation would be ⟨0.1, 0.2⟩.

Lemma 1. Given an SDRF allocation O(t), obtained by solving Eq. 4.10, the al-
location user i receives for resource r is such that o

(t)
ir = θ̃

(t)
ir o

(t)

ir̃
(t)
i

,∀i ∈ N , r ∈ R.

Proof. The proof is straightforward. From Eq. 4.10 we know that o
(t)
ir ∈ [0, θ̂

(t)
ir].

• When o
(t)
ir ∈ (0, θ̂

(t)
ir):

o
(t)
ir = (x− c̃

(t)
i) · θ̃(t)ir . (4.16)

By replacing x− c̃
(t)
i = o

(t)
ir /θ̃

(t)
ir in Eq. 4.10, and as long as o

ir̃
(t)
i
∈ (0, θ̂

(t)

ir̃
(t)
i

), we
get to

o
(t)

ir̃
(t)
i

= o
(t)
ir /θ̃

(t)
ir ,

therefore,
o
(t)
ir = θ̃

(t)
ir o

(t)

ir̃
(t)
i

. (4.17)

Thus we just need to prove that o
(t)

ir̃
(t)
i

∈ (0, θ̂
(t)

ir̃
(t)
i

). In fact, o(t)
ir̃

(t)
i

> 0, since we

are considering o
(t)
ir > 0 and by definition θ̂

(t)

ir̃
(t)
i

> 0. Verifying the upper bound

is also straightforward. We depart from o
(t)
ir < θ̂

(t)
ir and use the definition in

Eq. 4.4,
θ̃
(t)
ir θ̂

(t)

ir̃
(t)
i

> o
(t)
ir

48

θ̂
(t)

ir̃
(t)
i

> o
(t)
ir /θ̃

(t)
ir = o

(t)

ir̃
(t)
i

.

• When o
(t)
ir = 0:

(x− c̃
(t)
i) · θ̃(t)ir ≤ 0

but θ̃
(t)
ir > 0, therefore

x− c̃
(t)
i ≤ 0 .

Making x− c̃
(t)
i ≤ 0 in Eq. 4.10 we get to

o
(t)

ir̃
(t)
i

= 0,

therefore Eq. 4.17 still holds.

• When o
(t)
ir = θ̂

(t)
ir :

(x− c̃
(t)
i) · θ̃(t)ir ≥ θ̂

(t)
ir .

Using the definition in Eq. 4.4,

x− c̃
(t)
i ≥ θ̂

(t)

ir̃
(t)
i

Making x− c̃
(t)
i ≥ θ̂

(t)

ir̃
(t)
i

in Eq. 4.10 we get to

o
(t)

ir̃
(t)
i

= θ̂
(t)

ir̃
(t)
i

= θ̂
(t)
ir /θ̃

(t)
ir ,

which is equivalent to Eq. 4.17 when o
(t)
ir = θ̂

(t)
ir , concluding the proof.

Corollary 1 (of Lemma 1). For a given user i ∈ N , the allocation-demand ratio
remains constant for every resource r ∈ R, i.e., minr∈R{o(t)ir /θ̂

(t)
ir } = o

(t)
ir /θ̂

(t)
ir ,∀i ∈

N , r ∈ R.

Proof. From Lemma 1 and from Eq. 4.4,

o
(t)
ir /θ̂

(t)
ir = o

(t)

ir̃
(t)
i

/θ̂
(t)

ir̃
(t)
i

,∀i ∈ N , r ∈ R.

Therefore,
min
r∈R
{o(t)ir /θ̂

(t)
ir } = o

(t)
ir /θ̂

(t)
ir ,∀i ∈ N , r ∈ R.

Corollary 1 implies that for a user to improve her utility, she must increase the

49

allocation for every resource, otherwise the minimum allocation-demand ratio would
not change.

We now turn to the proof of Proposition 1. It shows that if a user did not have
her demand fulfilled, there must be at least one resource that is fully utilized—a
bottleneck resource.

Proposition 1 (Bottleneck). The SDRF allocation obtained by solving Eq. 4.10
is such that all users have their demands fulfilled or there is a bottleneck resource.
Formally, o(t)

i = θ̂
(t)
i ,∀i ∈ N or ∃r ∈ R such that

∑
i∈N o

(t)
ir = 1.

Proof. Assume, by way of contradiction, that we can obtain an allocation O(t) from
Eq. 4.10 where ∃i ∈ N such that o

(t)
i ̸= θ̂

(t)
i and

∑
i∈N o

(t)
ir ̸= 1,∀r ∈ R.

First, from the problem restrictions in Eq. 4.10, we know that o
(t)
ir ≤ θ̂

(t)
ir ,∀i ∈

N , r ∈ R and
∑

i∈N o
(t)
ir ≤ 1,∀r ∈ R. Thus,∑

i∈N

o
(t)
ir < 1, ∀r ∈ R and (4.18)

∃i ∈ N , r ∈ R such that o
(t)
ir < θ̂

(t)
ir . (4.19)

We now verify if we can propose a different solution to the problem:

x′ = x+ ϵ, ϵ ∈ R+.

If we can find a positive ϵ in which x′ satisfies the problem constraints this is a
contradiction (since x′ > x it could have been a solution to Eq. 4.10 instead of x).
We denote by O′(t) the allocation found using x′. If we can obtain a positive ϵ that
satisfies the constraints, the following expression should hold,∑

i∈N

o′
(t)
ir ≤

∑
i∈N

(
o
(t)
ir + ϵ θ̃

(t)
ir

)
≤ 1,∀r ∈ R .

Therefore,

ϵ ≤ min
r∈R

{
1−

∑
i∈N o

(t)
ir∑

i∈N θ̃
(t)
ir

}
.

Since we want ϵ > 0, we need to prove that

min
r∈R

{
1−

∑
i∈N o

(t)
ir∑

i∈N θ̃
(t)
ir

}
> 0.

From Eq. 4.18, we know that

1−
∑
i∈N

o
(t)
ir > 0,∀r ∈ R.

50

Therefore we need to verify if ∑
i∈N

θ̃
(t)
ir > 0,∀r ∈ R,

which is also true since θ
(t)
ir > 0,∀i ∈ N , r ∈ R. Thus we can find an ϵ > 0, making

x′ > x, which is a contradiction.

Proposition 2 (Strategyproofness in the Stage Game). When users consider
only the stage game utility (Eq. 4.1), the SDRF allocation obtained by solving Eq. 4.10
is strategyproof.

Proof. Take an arbitrary user j ∈ N , we denote the allocation returned by the
mechanism for the user j when θ̂j = θj by oj, and when θ̂j ̸= θj by o′

j. We must
prove that

uj(oj) ≥ uj(o
′
j) . (4.20)

We check the following three cases.

• When uj(oj) = 1: the utility cannot be improved and Eq. 4.20 trivially holds.

• When uj(oj) = 0: from Corollary 1, ojr = 0,∀r ∈ R. Therefore x−c̃j ≤ 0, and
the allocation is zero for any resource, independently from θ̂j, which makes
Eq. 4.20 true.

• When 0 < uj(oj) < 1: for this case, allocations are not limited by θ̂j. We may
simplify the expression for the allocation in Eq. 4.10

ojr = (x− c̃j) · θ̃jr .

From Proposition 1 there is a bottleneck resource, and we denote it as r∗.
From Corollary 1 users must increase the allocation for all resources in order
to improve their utilities. Therefore, if we can prove that it is impossible
to have an alternative demand vector that increases the share of both the
bottleneck resource and the dominant resource, we are done.

We denote by θ̃j the truthful normalized demand vector for user j, and by θ̃′
j,

the misreported normalized demand for user j.

Increasing the share of dominant resource: The share of dominant re-
source user j receives when declaring the truth is given by:

ojr̃j = (x− c̃j) · θ̃jr̃j = x− c̃j.

51

Therefore, to increase the share of dominant resource for user j (i.e., make
o′jr̃j > ojr̃j), we must make x′ > x, where x′ is the solution to Eq. 4.10 when
user j declares θ̃′

j instead of θ̃j.

Increasing the share of bottleneck resource: Since r∗ is a bottleneck
resource, the following holds:

ojr∗ +
∑

i∈N\{j}

oir∗ = 1

Therefore, to make o′jr∗ > ojr∗ , we must decrease the sum of allocations of all
users but j: ∑

i∈N\{j}

o′ir∗ <
∑

i∈N\{j}

oir∗

and, consequently, since r∗ is a bottleneck resource,∑
i∈N\{j}

(x′ − c̃i)θ̃ir∗ <
∑

i∈N\{j}

(x− c̃i)θ̃ir∗

∑
i∈N\{j}

(x′ − c̃i) <
∑

i∈N\{j}

(x− c̃i)

x′ < x

Since increasing the share of dominant resource requires x′ > x, while in-
creasing the share of bottleneck resource requires x′ < x, it is not possible to
increase both shares, which concludes the proof.

Proposition 3 (Strategyproofness in the Repeated Game). When users eval-
uate their utilities using the expected-long-term utility (Eq. 4.2), the SDRF allocation
obtained by solving Eq. 4.10 is strategyproof, regardless of users’ discount factors.

Proof. Take an arbitrary user i ∈ N , assuming user i discounts her utility using
δi and the allocation mechanism calculates commitments using δ. Without loss of
generality, we represent the expected-long-term utility for time t = 0 by

u
[0,∞)
i = Eui

[
(1− δi)

∞∑
k=0

δki u
(k)
i (o

(k)
i)

]
. (4.21)

Since manipulating the stage game is not possible, the only hope users may have
of improving their expected-long-term utility is by reducing their commitments. To
reduce their commitments, users may declare a lower demand. We will show that
any marginal gain the user may get, does not compensate her loss in the stage game.

52

If a user i declares a demand θ̂
(0)
ir = θ

(0)
ir − ϵ, with 0 < ϵ < θ

(0)
ir , for a resource r,

in the best scenario, this will make user i’s commitment

c
′(k)
ir = c

(k)
ir − (1− δ)δkϵ, (4.22)

where c
′(k)
ir is the new commitment user i gets by declaring θ̂

(0)
ir . From this commit-

ment, the maximum possible improvement in the long-term utility is

ū
[0,∞)
i = −(1− δi)ϵ+ (1− δi)

∞∑
k=1

δki (1− δ)δkϵ

= −ϵ(1− δi) + ϵ(1− δi)(1− δ)
∞∑
k=1

(δi · δ)k.

Then, replacing the infinite series,

ū
[0,∞)
i = −ϵ(1− δi) + ϵ(1− δi)(1− δ)

(
1

1− δi · δ
− 1

)
= ϵ(1− δi)

(
(1− δ)

1− δi · δ
− (1− δ)− 1

)
.

Inspecting the expression we verify that, for 0 ≤ δ < 1 and 0 ≤ δi < 1,

(1− δ)

1− δi · δ
< (1− δ) + 1

and therefore,
ū
[0,∞)
i < 0 .

Thus, any positive decrement ϵ in the declared demands cannot possibly improve
the expected-long-term utility, independently from users discount factors.

Proposition 4 (Non-wastefulness). The SDRF allocation O(t) is such that, if
there is a different allocation O′(t) where o′

(t)
ir ≤ o

(t)
ir ,∀i ∈ N , r ∈ R and for a

user i∗ ∈ N and resource r∗ ∈ R, o′
(t)
i∗r∗ < o

(t)
i∗r∗, then it must be that u

(t)
i∗ (o

(t)
i∗) >

u
(t)
i∗ (o

′(t)
i∗). In other words, SDRF is non-wasteful.

Proof. Assuming truthful demands, using Corollary 1 and the definition in Eq. 4.1,
we have

u
(t)
i (o

(t)
i) = o

(t)
ir /θ

(t)
ir ,∀i ∈ N , r ∈ R .

Using the definition of O′(t),

o′
(t)
i∗r∗/θ

(t)
i∗r∗ < o

(t)
i∗r∗/θ

(t)
i∗r∗ = u

(t)
i∗ (o

(t)
i∗).

53

However,

u
(t)
i∗ (o

′(t)
i∗) = min

{
min
r∈R
{o′(t)i∗r/θ

(t)
i∗r}, 1

}
≤ o′

(t)
i∗r∗/θ

(t)
i∗r∗ .

Therefore,
u
(t)
i∗ (o

′(t)
i∗) < u

(t)
i∗ (o

(t)
i∗),

concluding the proof.

Proposition 5 (Pareto optimality). The SDRF allocation obtained by solving
Eq. 4.10 is Pareto optimal.

Proof. The proof is a direct consequence of Propositions 1 and 4. For the sake of
contradiction, assume SDRF is not Pareto optimal, then, from the allocation O(t)

obtained by solving Eq. 4.10 we can get another allocation O′(t) that makes a user
i∗ ∈ N strictly better while making everybody’s utility at least as good, i.e.,

u
(t)
i∗ (o

′(t)
i∗) > u

(t)
i∗ (o

(t)
i∗) and (4.23)

∀i ∈ N , u
(t)
i (o

′(t)
i) ≥ u

(t)
i (o

(t)
i). (4.24)

From Proposition 4, if ∃i ∈ N , r ∈ R such that o
′(t)
ir < o

(t)
ir , then u

(t)
i (o

′(t)
i) <

u
(t)
i (o

(t)
i). Therefore we may rewrite Eq. 4.24 as

o
′(t)
ir ≥ o

(t)
ir , ∀i ∈ N , r ∈ R. (4.25)

Also, from Corollary 1, we know that we must increase the allocation for all resources
in order to increase the utility of a user, i.e., for the user i∗,

o
′(t)
i∗r > o

(t)
i∗r,∀r ∈ R.

From Proposition 1, either

o
(t)
i = θ̂

(t)
i or (4.26)

∃r∗ ∈ R such that
∑
i∈N

o
(t)
ir∗ = 1 . (4.27)

If Eq. 4.26 is true, then u
(t)
i (o

(t)
i) = 1,∀i ∈ N and Eq. 4.23 cannot be true. Therefore

Eq. 4.27 must be true. But since Eq. 4.27 is true, when we make o
′(t)
i∗r∗ > o

(t)
i∗r∗ , we

must decrease the allocation of another user, contradicting Eq. 4.25.

Proposition 6 (Sharing incentives). The SDRF allocation obtained by solving
Eq. 4.10 satisfies sharing incentives.

54

Proof. To prove sharing incentives, it is sufficient to show that there is a strategy,
user i may follow, which makes her utility at least as good as u

(t)
i (⟨1/n, . . . , 1/n⟩),

regardless of other users actions. We show that the strategy “always declare θ̂
(t)
i =

⟨1/n, . . . , 1/n⟩” guarantees that o
(t)
i = ⟨1/n, . . . , 1/n⟩ for every instant t.

From Eq. 4.10, o(t)ir ≤ θ̂
(t)
ir for every r ∈ R, therefore, o(t)ir ≤ 1/n. From Eq. 4.6,

this makes c
(t)
ir = 0 for every resource r and instant t, also making c̃

(t)
i = 0 (from

Eq. 4.9). Since c̃
(t)
i = 0, the allocation received by i will be o

(t)
ir = min{x, 1/n} for

every resource r and instant t. Nevertheless, x ≥ 1/n, which makes o
(t)
ir = 1/n,

concluding the proof.

55

Chapter 5

Conclusions and the Future of
Networks and Datacenters

In this thesis, we have looked at ways of improving efficiency and fairness on two
distinct shared systems: software middleboxes and datacenters. In this final chapter
we summarize our contributions and propose directions for future work.

In Chapter 3 we took inspiration from modern datacenter networks and hypoth-
esized that multi-core software middleboxes could also benefit from load-balancing
packets at a finer granularity than flows. To validate this hypothesis we designed
and implemented Sprayer. Sprayer not only configures the NIC to send packets
from the same flow to multiple cores, but also provides abstractions for handling
flow state in such context. We verified that, for the number of concurrent flows typ-
ical of real workloads, Sprayer improves fairness and TCP throughput even though
it reorders packets.

In Chapter 4 we departed from the observation that current task schedulers do
not ensure fairness in the long run. This ends up benefiting users with long-running
jobs more than users that use the system sporadically. With SDRF, we showed
that it is possible to allocate tasks more efficiently and improve long-term fairness
by considering past allocations. To efficiently implement SDRF we also proposed
live tree, a new data structure that keeps elements with predictable time-varying
priorities sorted. We proved SDRF keeps the same fundamental properties of DRF
and used trace-driven simulations to show that it reduces the waiting time for low-
demand users, while having a low impact on high-demand users.

Before finishing, we highlight trends in hardware and applications that are likely
to affect both networks and schedulers. Moreover, we point to problems and oppor-
tunities that are consequence of these trends.

56

5.1 Domain-Specific Architectures
In the last decades, CPUs obtained orders-of-magnitude performance improvements
from architecture innovations, such as out-of-order execution and caches, as well as
from Moore’s Law.1 Moore’s Law, however, is coming to an end, and in the last few
years hardware architects have been struggling to achieve even small performance
improvements [97]. In response to this limitation, chip designers now widely believe
that to continue to increase performance, while still providing programmability,
there must be a move towards Domain-Specific Architectures (DSAs) [97]. DSAs
are specialized chips that are less flexible than general-purpose CPUs but more
efficient in their domains. Note that DSAs are different from strict ASICs, since
DSAs serve not one, but a domain of applications. A recent example of DSA is
Google’s Tensor Processing Unit (TPU) that runs deep neural networks 15 to 30
times faster than contemporary CPUs [98].

If the DSA trend continues, datacenters are likely to have multiple types of
specialized chips to accommodate different application domains. In such a setting,
schedulers must be able to decide which tasks will use specialized chips and which
will run on general-purpose CPUs. As is the case today with GPUs, some tasks
will benefit more from running on DSAs than others. Designing a scheduler that
takes this into account while ensuring the properties listed in §2.2.1 is an interesting
research direction.

DSAs are also starting to appear in networks, with a movement towards pro-
grammable NICs [73, 74] and switches [99–102]. Programmable NICs and switches
not only speedup the deployment of new protocols but also open new avenues for
improving congestion control and packet scheduling. In §3.5 we have discussed a
few ways in which programmable NICs could be used to improve Sprayer, but we
expect to see many other applications.

5.2 Decentralized Control and Computation
Recently, there has been a surge of applications with decentralized control and com-
putation. For instance, fog computing—a move of the cloud computing paradigm to
the edge of the network—is gaining traction as a way of fulfilling the latency, mo-
bility and scalability requirements of the Internet of Things [103, 104]. A scheduler
for the fog must also take these requirements into consideration.

Another increasingly popular set of applications with decentralized control and
computation are cryptocurrencies. Cryptocurrencies make use of a distributed ledger
to record transactions and avoid double spending. One of the side effects of the

1Moore’s law states that the number of transistors per chip doubles every one or two years.

57

increase popularity of cryptocurrencies is the potential to change incentives in shared
computing systems. With cryptocurrencies, any spare computation can be used for
mining. This has already become a problem, with some websites and apps mining
cryptocurrency on users’ computers and phones [105]. In shared datacenters within
a company or lab, users may suffer retaliation for doing this, but in a less restrictive
collaborative environment, users have incentives to turn spare capacity into profit.
In this scenario, the idea of considering long-term fairness introduced in Chapter 4
may also be explored to help solving this problem.

58

Bibliography

[1] JAFFE, J., “Bottleneck Flow Control,” IEEE Transactions on Communications,
v. 29, n. 7, pp. 954–962, Jul. 1981.

[2] GHODSI, A., ZAHARIA, M., HINDMAN, B., et al., “Dominant Resource Fair-
ness: Fair Allocation of Multiple Resource Types.” In: Proceedings of the
8th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI ’11, pp. 323–336, Mar. 2011.

[3] CHOWDHURY, M., ZHONG, Y., STOICA, I., “Efficient Coflow Scheduling
with Varys.” In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’14, pp. 443–454, Aug. 2014.

[4] GRANDL, R., CHOWDHURY, M., AKELLA, A., et al., “Altruistic Scheduling
in Multi-Resource Clusters.” In: Proceedings of the 12th USENIX Sym-
posium on Operating Systems Design and Implementation, OSDI ’16, pp.
65–80, Nov. 2016.

[5] PROCACCIA, A. D., “Cake Cutting: Not Just Child’s Play,” Communications
of the ACM, v. 56, n. 7, pp. 78–87, Jul. 2013.

[6] HINDMAN, B., KONWINSKI, A., ZAHARIA, M., et al., “Mesos: A Platform
for Fine-Grained Resource Sharing in the Data Center.” In: Proceedings
of the 8th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’11, pp. 295–308, Mar. 2011.

[7] JAIN, R. K., CHIU, D.-M. W., HAWE, W. R., “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared Computer
Systems.” Technical Report DEC-TR-301, Eastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, Sep. 1984.

[8] JOE-WONG, C., SEN, S., LAN, T., et al., “Multiresource Allocation: Fairnes-
Efficiency Tradeoffs in a Unifying Framework,” IEEE/ACM Transactions
on Networking, v. 21, n. 6, pp. 1785–1798, Dec. 2013.

59

[9] WANG, W., LI, B., LIANG, B., “Dominant Resource Fairness in Cloud Com-
puting Systems with Heterogeneous Servers.” In: Proceedings of the IEEE
Conference on Computer Communications, INFOCOM 2014, pp. 583–
591, Apr. 2014.

[10] DIXIT, A., PRAKASH, P., HU, Y. C., et al., “On the Impact of Packet Spray-
ing in Data Center Networks.” In: Proceedings of the IEEE Conference on
Computer Communications, INFOCOM 2013, pp. 2130–2138, Apr. 2013.

[11] SEKAR, V., EGI, N., RATNASAMY, S., et al., “Design and Implementation
of a Consolidated Middlebox Architecture.” In: Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’12, pp. 323–336, Apr. 2012.

[12] SHERRY, J., HASAN, S., SCOTT, C., et al., “Making Middleboxes Someone
Else’s Problem: Network Processing as a Cloud Service.” In: Proceedings
of the Conference of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM ’12, pp. 13–24, Aug. 2012.

[13] CHIOSI, M., CLARKE, D., PETER WILLIS, A. R., et al., “Network Functions
Virtualisation: An Introduction, Benefits, Enablers, Challenges & Call
for Action.” Technical report, European Telecommunications Standards
Institute, Oct. 2012. Available at: <https://portal.etsi.org/NFV/
NFV_White_Paper.pdf>.

[14] HWANG, J., RAMAKRISHNAN, K. K., WOOD, T., “NetVM: High Perfor-
mance and Flexible Networking Using Virtualization on Commodity Plat-
forms.” In: Proceedings of the 11th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’14, pp. 445–458, Apr. 2014.

[15] KATSIKAS, G. P., BARBETTE, T., KOSTIĆ, D., et al., “Metron: NFV Ser-
vice Chains at the True Speed of the Underlying Hardware.” In: Proceed-
ings of the 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’18, pp. 171–186, Apr. 2018.

[16] KULKARNI, S. G., ZHANG, W., HWANG, J., et al., “NFVnice: Dynamic
Backpressure and Scheduling for NFV Service Chains.” In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion, SIGCOMM ’17, pp. 71–84, Aug. 2017.

[17] PALKAR, S., LAN, C., HAN, S., et al., “E2: A Framework for NFV Appli-
cations.” In: Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pp. 121–136, Oct. 2015.

60

https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://portal.etsi.org/NFV/NFV_White_Paper.pdf

[18] SHERRY, J., GAO, P. X., BASU, S., et al., “Rollback-Recovery for Middle-
boxes.” In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’15, pp. 227–240, Aug. 2015.

[19] SUN, C., BI, J., ZHENG, Z., et al., “NFP: Enabling Network Function Par-
allelism in NFV.” In: Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, SIGCOMM ’17, pp. 43–56, Aug.
2017.

[20] TOOTOONCHIAN, A., PANDA, A., LAN, C., et al., “ResQ: Enabling SLOs
in Network Function Virtualization.” In: Proceedings of the 15th USENIX
Symposium on Networked Systems Design and Implementation, NSDI ’18,
pp. 283–297, Apr. 2018.

[21] BARI, F., CHOWDHURY, S. R., AHMED, R., et al., “Orchestrating Virtu-
alized Network Functions,” IEEE Transactions on Network and Service
Management, v. 13, n. 4, pp. 725–739, Dec. 2016.

[22] GEMBER-JACOBSON, A., VISWANATHAN, R., PRAKASH, C., et al.,
“OpenNF: Enabling Innovation in Network Function Control.” In: Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’14, pp. 163–174, Aug. 2014.

[23] KABLAN, M., ALSUDAIS, A., KELLER, E., et al., “Stateless Network Func-
tions: Breaking the Tight Coupling of State and Processing.” In: Proceed-
ings of the 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI ’17, pp. 97–112, Mar. 2017.

[24] RAJAGOPALAN, S., WILLIAMS, D., JAMJOOM, H., et al., “Split/Merge:
System Support for Elastic Execution in Virtual Middleboxes.” In: Pro-
ceedings of the 10th USENIX Symposium on Networked Systems Design
and Implementation, NSDI ’13, pp. 227–240, Apr. 2013.

[25] WOO, S., SHERRY, J., HAN, S., et al., “Elastic Scaling of Stateful Network
Functions.” In: Proceedings of the 15th USENIX Symposium on Networked
Systems Design and Implementation, NSDI ’18, pp. 299–312, Apr. 2018.

[26] ABRAMSON, M., MOSER, W. O. J., “More Birthday Surprises,” The Amer-
ican Mathematical Monthly, v. 77, n. 8, pp. 856–858, Oct. 1970.

[27] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., et al., “Hedera:
Dynamic Flow Scheduling for Data Center Networks.” In: Proceedings of
the 7th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI ’10, pp. 19–19, Apr. 2010.

61

[28] FERRAZ, L. H. G., LAUFER, R., MATTOS, D. M., et al., “A High-
Performance Two-Phase Multipath scheme for Data-Center Networks,”
Computer Networks, v. 112, pp. 36–51, Jan. 2017.

[29] ALIZADEH, M., YANG, S., SHARIF, M., et al., “pFabric: Minimal Near-
Optimal Datacenter Transport.” In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, SIGCOMM ’13,
pp. 435–446, Aug. 2013.

[30] CAO, J., XIA, R., YANG, P., et al., “Per-Packet Load-Balanced, Low-Latency
Routing for Clos-Based Data Center Networks.” In: Proceedings of the 9th
ACM Conference on Emerging Networking Experiments and Technologies,
CoNEXT ’13, pp. 49–60, Dec. 2013.

[31] HANDLEY, M., RAICIU, C., AGACHE, A., et al., “Re-architecting Data-
center Networks and Stacks for Low Latency and High Performance.” In:
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’17, pp. 29–42, Aug. 2017.

[32] ZHANG, H., ZHANG, J., BAI, W., et al., “Resilient Datacenter Load Balancing
in the Wild.” In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM ’17, pp. 253–266, Aug. 2017.

[33] COUTO, R. S., CAMPISTA, M. E. M., COSTA, L. H. M. K., “A Reliability
Analysis of Datacenter Topologies.” In: Proceedings of the IEEE Global
Communications Conference, GLOBECOM 2012, pp. 1890–1895, Dec.
2012.

[34] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., et al., “Apache
Hadoop YARN: Yet Another Resource Negotiator.” In: Proceedings of
the 4th ACM Symposium on Cloud Computing, SoCC ’13, pp. 5:1–5:16,
Oct. 2013.

[35] REISS, C., TUMANOV, A., GANGER, G. R., et al., “Heterogeneity and Dy-
namicity of Clouds at Scale: Google Trace Analysis.” In: Proceedings of
the 3rd ACM Symposium on Cloud Computing, SoCC ’12, pp. 7:1–7:13,
Oct. 2012.

[36] RADUNOVIC, B., LE BOUDEC, J.-Y., “A Unified Framework for Max-Min
and Min-Max Fairness With Applications,” IEEE/ACM Transactions on
Networking, v. 15, n. 5, pp. 1073–1083, Oct. 2007.

62

[37] DOLEV, D., FEITELSON, D. G., HALPERN, J. Y., et al., “No Justified Com-
plaints: On Fair Sharing of Multiple Resources.” In: Proceedings of the
3rd Innovations in Theoretical Computer Science Conference, ITCS ’12,
pp. 68–75, Jan. 2012.

[38] BONALD, T., ROBERTS, J., “Multi-Resource Fairness: Objectives, Algo-
rithms and Performance.” In: Proceedings of the ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’15, pp. 31–42, Jun. 2015.

[39] BODIK, P., FOX, A., FRANKLIN, M. J., et al., “Characterizing, Modeling,
and Generating Workload Spikes for Stateful Services.” In: Proceedings of
the 1st ACM Symposium on Cloud Computing, SoCC ’10, pp. 241–252,
Jun. 2010.

[40] SADOK, H., CAMPISTA, M. E. M., COSTA, L. H. M. K., “Per-Packet Load
Balancing for Multi-Core Middleboxes,” (poster) 15th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI ’18,
Apr. 2018. Available at: <https://www.gta.ufrj.br/ftp/gta/
TechReports/SCC18a.pdf>.

[41] SADOK, H., CAMPISTA, M. E. M., COSTA, L. H. M. K., “A Case for Spray-
ing Packets in Software Middleboxes.” In: Proceedings of the 17th ACM
Workshop on Hot Topics in Networks, HotNets-XVII, Nov. 2018. (To
appear).

[42] SADOK, H., CAMPISTA, M. E. M., COSTA, L. H. M. K., “Stateful Dominant
Resource Fairness: Considering the Past in a Multi-Resource Allocation.”
In: Proceedings of the 17th International IFIP TC6 Networking Confer-
ence, IFIP Networking 2018, pp. 415–423, May 2018.

[43] CLARK, D. D., “The Design Philosophy of the DARPA Internet Protocols.”
In: Proceedings of the Conference of the ACM Special Interest Group on
Data Communication, SIGCOMM ’88, pp. 106–114, Aug. 1988.

[44] CARPENTER, B., BRIM, S., “Middleboxes: Taxonomy and Issues.” RFC 3234,
Internet Engineering Task Force, Feb. 2002. Available at: <https://www.
rfc-editor.org/rfc/rfc3234.txt>.

[45] SALTZER, J. H., REED, D. P., CLARK, D. D., “End-to-End Arguments in
System Design,” ACM Transactions on Computer Systems, v. 2, n. 4,
pp. 277–288, Nov. 1984.

63

https://www.gta.ufrj.br/ftp/gta/TechReports/SCC18a.pdf
https://www.gta.ufrj.br/ftp/gta/TechReports/SCC18a.pdf
https://www.rfc-editor.org/rfc/rfc3234.txt
https://www.rfc-editor.org/rfc/rfc3234.txt

[46] LANGLEY, A., RIDDOCH, A., WILK, A., et al., “The QUIC Transport Pro-
tocol: Design and Internet-Scale Deployment.” In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, pp. 183–196, Aug. 2017.

[47] PANDA, A., HAN, S., JANG, K., et al., “NetBricks: Taking the V out of NFV.”
In: Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’16, pp. 203–216, Nov. 2016.

[48] DPDK. “Data Plane Development Kit.” 2018. Available at: <https://dpdk.
org>.

[49] RIZZO, L., “netmap: A Novel Framework for Fast Packet I/O.” In: Proceedings
of the 2012 USENIX Annual Technical Conference, ATC ’12, pp. 101–112,
Jun. 2012.

[50] NTOP. “PF_RING ZC (Zero Copy).” 2018. Available at: <https://www.
ntop.org/guides/pf_ring/zc.html>.

[51] GALLENMÜLLER, S., EMMERICH, P., WOHLFART, F., et al., “Compari-
son of Frameworks for High-Performance Packet IO.” In: Proceedings of
the 11th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS ’15, pp. 29–38, May 2015.

[52] LINUX. “packet - packet interface on device level.” 2018. Available at: <http:
//man7.org/linux/man-pages/man7/packet.7.html>.

[53] RUPP, K. “42 Years of Microprocessor Trend Data.” Feb. 2018.
Available at: <https://www.karlrupp.net/2018/02/42-years-of-
microprocessor-trend-data/>. retrieved 08/09/2018.

[54] DREPPER, U., “What Every Programmer Should Know About Memory.”
Technical report, Ulrich Drepper Home Page, Nov. 2007. Available at:
<https://www.akkadia.org/drepper/cpumemory.pdf>.

[55] SCHWARZKOPF, M., BAILIS, P., “Research for Practice: Cluster Scheduling
for Datacenters,” Communications of the ACM, v. 61, n. 5, pp. 50–53,
Apr. 2018.

[56] CHOUDHURY, D. G., PERRETT, T., “Designing Cluster Schedulers for
Internet-Scale Services,” Communications of the ACM, v. 61, n. 6, pp. 34–
40, May 2018.

64

https://dpdk.org
https://dpdk.org
https://www.ntop.org/guides/pf_ring/zc.html
https://www.ntop.org/guides/pf_ring/zc.html
http://man7.org/linux/man-pages/man7/packet.7.html
http://man7.org/linux/man-pages/man7/packet.7.html
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.akkadia.org/drepper/cpumemory.pdf

[57] VERMA, A., PEDROSA, L., KORUPOLU, M., et al., “Large-Scale Cluster
Management at Google with Borg.” In: Proceedings of the 10th European
Conference on Computer Systems, EuroSys ’15, pp. 18:1–18:17, Apr. 2015.

[58] WIDE PROJECT. “MAWI Working Group Traffic Archive: samplepoint-F.”
May 2018. Available at: <http://mawi.wide.ad.jp/mawi/>.

[59] GUO, L., MATTA, I., “The War Between Mice and Elephants.” In: Proceedings
of the 9th International Conference on Network Protocols, ICNP ’01, pp.
180–188, Nov. 2001.

[60] HAN, S., JANG, K., PANDA, A., et al., “SoftNIC: A Software NIC to Augment
Hardware.” Technical Report UCB/EECS-2015-155, EECS Department,
University of California, Berkeley, May 2015.

[61] DIGITAL CORPORA. “Digital Corpora: M57-Patents Scenario.” 2018. Avail-
able at: <https://digitalcorpora.org/corpora/scenarios/m57-
patents-scenario>.

[62] JAMSHED, M., MOON, Y., KIM, D., et al., “mOS: A Reusable Network-
ing Stack for Flow Monitoring Middleboxes.” In: Proceedings of the 14th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’17, pp. 113–129, Mar. 2017.

[63] KOHLER, E., MORRIS, R., CHEN, B., et al., “The Click Modular Router,”
ACM Transactions on Computer Systems, v. 18, n. 3, pp. 263–297, Aug.
2000.

[64] DPDK. “IXGBE Driver.” 2018. Available at: <https://doc.dpdk.org/
guides/nics/ixgbe.html>.

[65] INTEL. “Intel 82599 10 GbE Controller Datasheet.” 2016.

[66] INTEL. “Intel Ethernet Controller X710/XXV710/XL710 Datasheet.” 2018.

[67] WOO, S., JEONG, E., PARK, S., et al., “Comparison of Caching Strategies in
Modern Cellular Backhaul Networks.” In: Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’13, pp. 319–332, Jun. 2013.

[68] EMMERICH, P., GALLENMÜLLER, S., RAUMER, D., et al., “MoonGen:
A Scriptable High-Speed Packet Generator.” In: Proceedings of the 2015
Internet Measurement Conference, IMC ’15, pp. 275–287, Oct. 2015.

[69] IPERF3. “iperf3.” 2018. Available at: <https://software.es.net/iperf/>.

65

http://mawi.wide.ad.jp/mawi/
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
https://doc.dpdk.org/guides/nics/ixgbe.html
https://doc.dpdk.org/guides/nics/ixgbe.html
https://software.es.net/iperf/

[70] YU, X., FENG, W.-C., YAO, D. D., et al., “O3FA: A Scalable Finite Automata-
Based Pattern-Matching Engine for Out-of-Order Deep Packet Inspec-
tion.” In: Proceedings of the 2016 Symposium on Architectures for Net-
working and Communications Systems, ANCS ’16, pp. 1–11, Mar. 2016.

[71] GOOGLE. “HTTPS encryption on the web.” 2018. Available at: <https:
//transparencyreport.google.com/https>. retrieved 07/02/2018.

[72] LET’S ENCRYPT. “Let’s Encrypt Stats.” 2018. Available at: <https://
letsencrypt.org/stats/>. retrieved 07/02/2018.

[73] ARASHLOO, M. T., GHOBADI, M., REXFORD, J., et al., “HotCocoa: Hard-
ware Congestion Control Abstractions.” In: Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, HotNets-XVI, pp. 108–114, Nov.
2017.

[74] FIRESTONE, D., PUTNAM, A., MUNDKUR, S., et al., “Azure Accelerated
Networking: SmartNICs in the Public Cloud.” In: Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI ’18, pp. 51–66, Apr. 2018.

[75] LOCKWOOD, J. W., MCKEOWN, N., WATSON, G., et al., “NetFPGA –
An Open Platform for Gigabit-Rate Network Switching and Routing.”
In: Proceedings of the IEEE International Conference on Microelectronic
Systems Education, MSE ’07, pp. 160–161, Jun. 2007.

[76] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S., et al., “CONGA:
Distributed Congestion-Aware Load Balancing for Datacenters.” In: Pro-
ceedings of the Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM ’14, pp. 503–514, Aug. 2014.

[77] HE, K., ROZNER, E., AGARWAL, K., et al., “Presto: Edge-Based Load Bal-
ancing for Fast Datacenter Networks.” In: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, SIG-
COMM ’15, pp. 465–478, Aug. 2015.

[78] KANDULA, S., KATABI, D., SINHA, S., et al., “Dynamic Load Balancing
Without Packet Reordering,” SIGCOMM Computer Communication Re-
view, v. 37, n. 2, pp. 51–62, Mar. 2007.

[79] MITZENMACHER, M., “The Power of Two Choices in Randomized Load Bal-
ancing,” IEEE Transactions on Parallel and Distributed Systems, v. 12,
n. 10, pp. 1094–1104, Oct. 2001.

66

https://transparencyreport.google.com/https
https://transparencyreport.google.com/https
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/

[80] ZHANG, Y., ANWER, B., GOPALAKRISHNAN, V., et al., “ParaBox: Ex-
ploiting Parallelism for Virtual Network Functions in Service Chaining.”
In: Proceedings of the Symposium on SDN Research, SOSR ’17, pp. 143–
149, Apr. 2017.

[81] PARKES, D. C., PROCACCIA, A. D., SHAH, N., “Beyond Dominant Resource
Fairness,” ACM Transactions on Economics and Computation, v. 3, n. 1,
pp. 3:1–3:22, Mar. 2015.

[82] KASH, I., PROCACCIA, A. D., SHAH, N., “No Agent Left Behind: Dynamic
Fair Division of Multiple Resources,” Journal of Artificial Intelligence
Research, v. 51, n. 1, pp. 579–603, Sep. 2014.

[83] GHODSI, A., SEKAR, V., ZAHARIA, M., et al., “Multi-Resource Fair Queue-
ing for Packet Processing.” In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’12, pp. 1–
12, Aug. 2012.

[84] OPPENHEIM, A. V., SCHAFER, R. W., BUCK, J. R., 1999, Discrete-Time
Signal Processing. 2nd ed. , Prentice-Hall.

[85] BAYER, R., “Symmetric Binary B-Trees: Data Structure and Maintenance
Algorithms,” Acta Informatica, v. 1, n. 4, pp. 290–306, Dec. 1972.

[86] GUIBAS, L. J., SEDGEWICK, R., “A Dichromatic Framework for Balanced
Trees.” In: Proceedings of the 19th Annual Symposium on Foundations of
Computer Science, SFCS 1978, pp. 8–21, Oct. 1978.

[87] GUTMAN, A., NISAN, N., “Fair Allocation Without Trade.” In: Proceedings of
the 11th International Conference on Autonomous Agents and Multiagent
Systems – Volume 2, AAMAS ’12, pp. 719–728, Jun. 2012.

[88] FRIEDMAN, E., GHODSI, A., PSOMAS, C.-A., “Strategyproof Allocation of
Discrete Jobs on Multiple Machines.” In: Proceedings of the 15th ACM
Conference on Economics and Computation, EC ’14, pp. 529–546, Jun.
2014.

[89] ZARCHY, D., HAY, D., SCHAPIRA, M., “Capturing Resource Tradeoffs in
Fair Multi-Resource Allocation.” In: Proceedings of the IEEE Conference
on Computer Communications, INFOCOM 2015, pp. 1062–1070, Apr.
2015.

67

[90] BONALD, T., ROBERTS, J., VITALE, C., “Convergence to Multi-Resource
Fairness Under End-to-End Window Control.” In: Proceedings of the IEEE
Conference on Computer Communications, INFOCOM 2017, May 2017.

[91] FRIEDMAN, E., PSOMAS, C.-A., VARDI, S., “Controlled Dynamic Fair Di-
vision.” In: Proceedings of the 2017 ACM Conference on Economics and
Computation, EC ’17, pp. 461–478, Jun. 2017.

[92] WANG, W., LIANG, B., LI, B., “Low Complexity Multi-Resource Fair Queue-
ing with Bounded Delay.” In: Proceedings of the IEEE Conference on
Computer Communications, INFOCOM 2014, pp. 1914–1922, Apr. 2014.

[93] CHEN, C., WANG, W., ZHANG, S., et al., “Cluster Fair Queueing: Speeding
Up Data-Parallel Jobs with Delay Guarantees.” In: Proceedings of the
IEEE Conference on Computer Communications, INFOCOM 2017, May
2017.

[94] BASCH, J., Kinetic Data Structures. Ph.D. dissertation, Stanford University,
Stanford, CA, USA, Jun. 1999.

[95] DA FONSECA, G. D., DE FIGUEIREDO, C. M. H., CARVALHO, P. C. P.,
“Kinetic Hanger,” Information Processing Letters, v. 89, n. 3, pp. 151–157,
Feb. 2004.

[96] COUTO, R. S., SADOK, H., CRUZ, P., et al., “Building an IaaS cloud with
droplets: a collaborative experience with OpenStack,” Journal of Network
and Computer Applications, v. 117, pp. 59–71, Sep. 2018.

[97] HENNESSY, J. L., PATTERSON, D. A., 2017, Computer Architecture: A
Quantitative Approach. 6th ed. San Francisco, CA, USA, Morgan Kauf-
mann Publishers Inc.

[98] JOUPPI, N. P., YOUNG, C., PATIL, N., et al., “A Domain-specific Architec-
ture for Deep Neural Networks,” Communications of the ACM, v. 61, n. 9,
pp. 50–59, Aug. 2018.

[99] BOSSHART, P., DALY, D., GIBB, G., et al., “P4: Programming Protocol-
independent Packet Processors,” SIGCOMM Computer Communication
Review, v. 44, n. 3, pp. 87–95, Jul. 2014.

[100] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M., et al., “Pro-
grammable Packet Scheduling at Line Rate.” In: Proceedings of the Con-
ference of the ACM Special Interest Group on Data Communication, SIG-
COMM ’16, pp. 44–57, Aug. 2016.

68

[101] BAREFOOT NETWORKS, “The World’s Fastest & Most Programmable
Networks.” Technical report, Barefoot Networks, 2016. Avail-
able at: <https://www.barefootnetworks.com/resources/worlds-
fastest-most-programmable-networks/>.

[102] LIU, J., HALLAHAN, W., SCHLESINGER, C., et al., “p4v: Practical Veri-
fication for Programmable Data Planes.” In: Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication, SIG-
COMM ’18, pp. 490–503, Aug. 2018.

[103] VAQUERO, L. M., RODERO-MERINO, L., “Finding Your Way in the Fog:
Towards a Comprehensive Definition of Fog Computing,” SIGCOMM
Computer Communication Review, v. 44, n. 5, pp. 27–32, Oct. 2014.

[104] CRUZ, P., PACHECO, R. G., COUTO, R. S., et al., “SensingBus: Using
Bus Lines and Fog Computing for Smart Sensing the City,” IEEE Cloud
Computing, 2018.

[105] GOODIN, D. “A surge of sites and apps are exhausting your CPU to mine
cryptocurrency.” Oct. 2017. Available at: <https://arstechnica.com/
information-technology/2017/10/a-surge-of-sites-and-apps-
are-exhausting-your-cpu-to-mine-cryptocurrency/>.

69

https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://www.barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://arstechnica.com/information-technology/2017/10/a-surge-of-sites-and-apps-are-exhausting-your-cpu-to-mine-cryptocurrency/
https://arstechnica.com/information-technology/2017/10/a-surge-of-sites-and-apps-are-exhausting-your-cpu-to-mine-cryptocurrency/
https://arstechnica.com/information-technology/2017/10/a-surge-of-sites-and-apps-are-exhausting-your-cpu-to-mine-cryptocurrency/

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Efficient Use of Multiple Cores in Software Middleboxes
	Improving Datacenter Scheduling by Considering Long-Term Fairness
	Outline

	Background
	Middleboxes and the Move to Software
	The Move to Software
	Packet Processing on x86
	Using Multiple CPU Cores

	Datacenter Task Scheduling
	Resource Allocation
	Multiple Resource Types

	Sprayer
	Motivation
	Design
	How to spray packets?
	How to handle flow state?
	Architecture
	Programming Model

	Implementation
	Evaluation
	Discussion
	Related Work
	Conclusion

	Stateful Dominant Resource Fairness
	System Model
	Multi-Resource Setting and Allocation Mechanism
	Repeated Game

	DRF and Allocation Properties
	DRF Mechanism
	Static Allocation Properties
	Fairness in the Dynamic Setting
	Users' Commitments

	Stateful Dominant Resource Fairness
	Stateful Max-Min Fairness
	SDRF Mechanism
	Analysis of SDRF Allocation Properties

	Implementation Using a Live Tree
	Continuous Time
	Indivisible Tasks
	Live Tree
	Live Tree Applied to SDRF

	Simulation Results
	Related Work
	Conclusion
	Deferred Proofs

	Conclusions and the Future of Networks and Datacenters
	Domain-Specific Architectures
	Decentralized Control and Computation

	Bibliography

