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Abstract—Minimising the impact of distributed transactions
(DTs) in a shared-nothing distributed database is extremely
challenging for transactional workloads. With dynamic work-
load nature and rapid growth in data volume the underlying
database requires incremental repartitioning to maintain ac-
ceptable level of DTs and data load balance with minimum
physical data migrations. In a workload-aware repartitioning
scheme transactional workload is modelled as graph or hy-
pergraph, and subsequently perform k-way min-cut clustering
guaranteeing minimum edge cuts can reduce the impact of
DTs significantly by mapping the workload clusters into logical
database partitions. However, without exploring the inherent
workload characteristics, the overall processing and computing
times for large-scale workload networks increase in polynomial
orders. In this paper, a workload-aware incremental database
repartitioning technique is proposed, which effectively exploits
proactive transaction classification and workload stream mining
techniques.Workload batches are modelled in graph, hypergraph,
and compressed hypergraph then repartitioned to produce a
fresh tuple-to-partition data migration plan for every incremental
cycle. Experimental studies in a simulated TPC-C environment
demonstrate that the proposed model can be effectively adopted
in managing rapid data growth and dynamic workloads, thus
progressively reduce the overall processing time required to
operate over the workload networks.

Keywords-Cloud databases; workload; distributed transac-
tions; data stream mining; classification; incremental reparti-
tioning; load-balance; data migration;

I. INTRODUCTION

Rapid growth in ‘Big Data’ dimensioning at dynamic

velocity, volume, and variability challenges real-time pro-

cessing and computation in the Cloud. Modern user-facing

scalable Cloud applications driving Online Transaction Pro-

cessing (OLTP) workloads require best-effort throughput and

latency guarantees from the backend shared-nothing database

services. However, the underlying system fails to guarantee

such scalability requirements at the front end Web tiers with-

out scaling-out at the back end databases [1]. At the same

time, maintaining ACID (Atomicity, Consistency, Isolation

and Durability) properties within a relational database cluster

while ensuring high-scalability requirements is a difficult trial

for the system owners. Due to skewed data popularity and

OLTP dynamics, DTs frequently appear in the databases

and usually require distributed consensus protocols like ‘2-

Phase Commit (2PC)’ [2] to execute across the shared-nothing

cluster. However, the consequence of using 2PC in a scalable

OLTP Cloud database serving billions of online users can be

severe [3]. More adversely, this leads to I/O overhead, resource

contentions, increase latency, distributed joins, and deadlocks

in geo-distributed Cloud databases [4].

For many years, logically partition a shared-nothing

database based on the initial assumptions of workload charac-

teristics plays an important role in setting up a robust backend

OLTP database service. However, this static solution fails to

adopt with continuous workload changes, and requires exten-

sive administrative interventions. In recent years, workload-

aware static [5] and incremental repartitioning [6] methods

are proposed where transactional workloads are represented

as graph or hypergraph. In these workload representations,

an edge links two tuples (i.e., vertices) involved in the same

transaction on a graph, while a hyperedge connects all of its

tuples on a hypergraph respectively. To reduce the severity

of DTs, these graphs are then clustered using k-way min-

cut [7] ensuring minimum transactional edge cuts, thus group

the tuples from the same transactions into the same cluster.

Later, these workload clusters are mapped into logical

database partitions initially created. The tuple-to-partition

mappings are typically stored centrally in a router to serve

the transactional queries. Incremental repartitioning involves

intra- and inter-server physical data tuple migrations at lean

operational periods to maintain the initial min-cut gains based

on a predefined threshold – percentage of DTs within a work-

load batch. However, this reactive approach can be ineffective

at handling situations like sudden Web traffic spike or, serving

a large number of database requests after a major software

update. At the same time, finding potential candidate tuple

sets for data migrations which can certainly reduce the impact

of DTs under a fixed threshold is often an inconvenient task

to manage. Finally, there is hardly any check and balance

between server-level load-balance and the amount of inter-

server data migrations to be carried out.

In this paper, we propose a proactive incremental database

repartitioning technique which effectively exploit progressive
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data stream mining in identifying frequently accessed tuple

sets from the workload and classify the transactions accord-

ingly. We freshly create workload representative networks at

fixed interval periods i.e., hourly or daily, and use the graph

min-cut algorithm to produce fresh clusters to be randomly

one-to-one mapped into the logical database partitions. To

reduce the processing time of incremental min-cut process

(which is a known NP-hard problem) and reduce the size

of the workload networks we continuously mine transactional

log streams and classify the transactions to identify the most

frequently occurred DTs and non-DTs whose tuples can be

selected as potential data migration candidates.

Furthermore, we explored the possibility of producing fixed

and dynamic number of clusters from the min-cut process. The

number of clusters can be the same as the number of logical

partitions–fixed, or varied in accordance with the selection

of partitions which are only involved in the current work-

load network–dynamic. Rather than using a central lookup

router we effectively use the concept of roaming for tuple

lookup to ensure high-scalability in transaction processing.

We evaluated our proposed technique using different workload

representations–fine, exact, and coarse granularity as graph

(GR), hypergraph (HGR), and compressed hypergraph (CHG)

to understand the suitability in creating workload networks.

We measure the dimensionality of challenges–the impact of

DTs, load-balance, and data migrations–involved in incremen-

tal repartitioning.

Three distinct repartitioning performance metrics are used

to observe the fulfillment of the intended goals in a simulated

environment using TPC-C workload-sensitive batches for 100

incremental periods. In preference of observing the effect of

progressive data stream mining and transaction classification

for intelligent data analysis, we compare the experimental

results using three distinct classification settings namely–BC,

FD, and FDFND against the baseline situation where no clas-

sification NC is used. Our findings show that proactive stream

mining and classification in workload analysis is effective in

reducing the processing time of database repartitioning and

suitable for adopting in very large-scale Big Data computing.

The remainder of this paper is organised as follows: related

works are discussed in Section II; Section III details the pro-

posed incremental repartitioning technique with notations and

a high-level system overview with related steps; Section IV

discusses the experimental results and analysis; and finally

Section V concludes the paper with future work directions.

II. RELATED WORKS

Distributed query processing has been a well discussed topic

in computing research, and significant efforts have been spent

to establish its background, theories, challenges, and practical

aspects for real-life implementations [8]. With increase diversi-

fication of Big Data applications, workload-aware incremental

database repartitioning has gained significant momentum over

the past few years. [5] is one of the first to propose Schism
which represents transactional workload as graph and then

performs k-way replicated clustering to minimise the effect

of distributed transactions. However, large-scale graphs are

required to generate in Schism as it explodes each tuple as

a star-shaped way with its transactional frequency. Similar

approaches are also proposed at [6], [9], and [10] where

hypergraphs and compressed hypergraphs are used to represent

transactions in a workload network for both transactional and

analytical workloads. Both of the techniques consider dynamic

workload changes and propose to move fixed amount of data

in a regular interval with a predefined threshold parameter

while finding the dense subgraphs of a specified size. [11]

propose CloudTPS which considers short-lived transactions,

identifications of data items that are frequently accessed by

the transactions, and inconsistent data retrieval of read-only

transactions. However, CloudTPS neither consider incremen-

tal repartitioning nor real-time analysis of transactional log

streams. More recently, [12] has proposed a temporal activity

hyper-graph for social networks to minimise the number of

distributed transactions using k-way balanced clustering with

minimum I/O overheads and server imbalance. None of the

works mentioned above explore intelligent data analysis tech-

niques on database logs generated by periodical workloads.

[13] propose LuTe which maintains a router-based lookup

table for partitioned data sets which produces faster lookups

for scalable transaction processing but it did not consider

frequently accessed transactional patterns and the necessity of

incremental repartitioning.

We argue that existing models for mining transactional

logs can be effectively used to identify the hot and most

frequently accessed tuples in the workload. In [14] the authors

proposed a techniques to mine time-sensitive transactional

patterns with approximate support over frequent and semi-

frequent. [15] proposed the notion of hierarchical heavy hitters

and showed effective way to keep track of the hottest tuples in

a less computational way. Later, [16] proposed semi Frequent

Closed Itemsets (semi-FCIs) in their IncMine algorithm to

incrementally track the tuples that might become frequent

and hot over the period of time. [17] focuses on mining

frequent items from distributed data stream sources and can

be effectively used in workload data analysis for distributed

shared-nothing databases. An active learning approach is pro-

posed in [18] which uses a pre-clustering process to select

most informative instances from transaction sensitive workload

batches for training the learner. Interested readers can find a

detail review of techniques for finding frequent items over data

streams at [19].

III. INCREMENTAL WORKLOAD-AWARE REPARTITIONING

A. System Overview

We consider the architecture of a typical 3-tier Web ap-

plication which is commonly used from financial to social

network processing for discussing the proposed incremental

repartitioning technique as shown in Figure 1. Based on

common deployment practice, a 3-tier application framework

in the Cloud is composed of a series frontend Web servers

following by a group of Application servers balancing the

workloads, and finally the backend Database servers serve
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Fig. 1. An overview of the workload-aware incremental repartitioning framework representing the overall work flows. Steps inside the shaded rounded
rectangle represent the flows of workload analysis, representation, clustering, and repartitioning decision generation.

the transactional queries while setup within geo-distributed

data centers. Focusing on the particular components of an

Application server reveals the implementation of business

logics, maintenance of static and dynamic routing information

for logical database partitions, and coordinating of DTs using

XA [20] transaction manager. We propose the incorporation

of an Analyser node working in parallel with the Application

servers which continuously process the transactional workload

streams to identify the most frequent DTs containing the

most frequently accessed tuples from the underlying database.

As shown in the figure, a Transaction Classification process

is followed by the Log Stream Mining which identifies the

moveable DTs and non-DTs (later discussed in Section 4).

Finally, balanced min-cut clustering is carried out to produce

k fixed and dynamic number of clusters with a tuple-level

data migration plan to be carried out. The analyser node is

also responsible to carry of the tasks of intra- and inter-server

physical data migrations without interrupting the processing

of ongoing transactions in the Application servers by utilising

the roaming capability of our proposed system. A logical data

partitions is also highlighted to show the data tuples residing in

their home and foreign partitions having a roaming catalogue.

The details of each of the steps shown inside the shaded

rounded rectangular box are discussed in following.

B. The Cost of k-way Min-Cut Clustering

In a workload-aware database repartitioning approach, the

size of the workload network represented as graph, hyper-

graph, or even in their compressed forms plays a significant

role in clustering performance and consequently in the overall

repartitioning performance. From our three-dimensional em-

pirical analysis we found that clustering times increase in

polynomial order with the size of workload networks and

transactional dimensions. We present the observation of the

growth of computing time for performing k-way balanced

clustering of workload networks represented by transactional

hypergraphs in this particular case. Three observational di-

mensions are chosen to understand the consequences. At one

extreme, we extend the transactional dimensions (i.e., the

number of tuples within a transaction) to produce simple to

more complex transactional signatures. At another extreme,

we simultaneously increase the number of transactions as

well as the number of target clusters defined by k. Figure 2

shows the growth of computing time for simultaneous k-

way clustering of transactional hypergraphs with increasing

number of clusters (in top) and with increasing number of

transactions (in below). We able to fit fourth order polynomial
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Fig. 2. Clustering time for workload networks represented as hypergraph with fourth order polynomial fitting.

curves in these plots which clearly show the adverse impact

on clustering time having large workload networks or targeted

number of clusters with varying transactional dimensions.

These observations justify our envision in mining transac-

tional log streams and classify incoming user queries. This

intuition lead us in searching the most frequently occurred

transactions and those which are intertwined with them. Later,

only these selective set of transactions are used to represent

the workload networks which are smaller in size comparing

to use every transactions present in a particular workload

batch. In contrast, reducing the size of workload network

and targeted clusters may influence the impact of distributed

transactions and may also lead to data distribution imbal-

ance. Yet, the achieved benefits of minimising physical data

movements along with faster workload network processing

certainly overpower the drawbacks, thus, increase the overall

repartitioning performance as will be shown in later sections.

C. Mining Distributed Transactions Containing Semi-
Frequent Closed Tuple Sets

Let S = {S1, S2, ..., SN} be the physical servers supporting

a OLTP database and consisted of P = {P1, P2, ..., PM}
logical table partitions evenly distributed among them. Fur-

thermore, DSi
=
∑
∀j DPij

be the amount of data volume

in Si consisting of a set of logical partitions ∀jPij . Let,

W = {W1,W2, ...,Wn} represents a transaction-sensitive
set of workload batches containing τ transactions each and

Wi be the workload at ith round. A typical Wi contains

queries submitted by the end users from the predefined set

of transactions T = {T1, T2, ..., Tz} where any transaction Ti

can appear multiple times within Wi having a frequency of

freq(Ti). Furthermore, temporal weights temp(T ) are used

to prefer the preceding transactions over the succeeding ones.

For any given Wi and σ the minimum support threshold
(i.e., MST), our aim is to identify the set of all frequent closed

tuple sets over the stream where the tuple sets are distributed
i.e., not originated from the same physical server. Let D =
{d1, ..., dt} be the set of all tuples within the database thus

any transactional tuple set (tts) will be a proper subset of

D. Again let the support of any tts over Wi be sup(ttsi ,Wi)
representing the number of transactions inWi that support ttsi .
Following the notion of semi-frequent closed tuple sets(semi-
FCTS) [16], let ε be the maximum support error or, relaxed
MST and r be the relaxation rate to find the semi-FCTS over

each workload batch Wi. Let, minsup(i) be the incremental

MST function for Wi which is defined in (1) in below.

minsup(i) = �(miri)�; (1)

where min support, mi = στ and ri = ( 1−r
τ )(i − 1) + r

which gradually increases the value of r for each succeeding

workload batches. Any ttsi is kept if and only if its approxi-

mate support over most recent workload batches
∼
sup(ttsi ,Wi)

is no less than minsup(i). Any Ti will contain a semi-FCTS
within Wi if and only if both (2) and (3) hold true.

∃i | ∼sup(tts,Wi) ≥ minsup(i) (2)

� ∃ttsj ⊃ ttsi |
∼
sup(ttsj ,Wi) =

∼
sup(ttsi ,Wi) (3)

D. Proactive Transaction Classification

Typical transaction level workload sampling process iden-

tifies most frequently submitted database transactions by the

end users and separates the distributed ones. In course of our

experimentations we found that there exist a group of tuple

sets which are frequent and appear in both distributed and

non-distributed transactions. We argue that due to the presence

of these tuples in distributed transactions while performing

k min-cut clustering followed by physical data migrations

the previously non-distributed transactions became distributed,
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Fig. 3. Proactive transaction classification tree.

and thus increase the computing and processing time of any

workload-aware incremental repartitioning scheme.

Based on the above heuristic, a proactive classification tree

has been proposed as shown in Figure 3. Transactions are

classified as Distributed containing at least two tuples residing

in different physical servers. Otherwise, Non-Distributed trans-

actions are further classified as Moveable and Non-Movable.

While the former type should contain at least a single tuple

which also present in any of the Distributed transaction,

the later type only represents transactions containing tuple

sets that are purely non-distributed and hereby out of the

interest. By utilising progressive data streaming mining de-

scribed above both of the Distributed and Movable Non-
Distributed transactions are further classified in the basis

of containing Semi-FCTS otherwise the they are tagged as

Infrequent. Furthermore, the selective transactions are classi-

fied into groups based on whether the contained semi-FCTS
are themselves distributed or not. Effectively this proactive

classification reduces the sampled workload size hence the

size of representing graphs or hypergraphs, and thereby their

processing and computing time as well.

From the above classification we set three different clas-

sification techniques–1) Base Classification (BC) (contain-

ing moveable frequent and infrequent distributed or non-

distributed transactions having both distributed and non-

distributed tuples); 2) Frequent Distributed (FD) (contain-

ing moveable frequent distributed transactions having only

distributed tuples); and 3) Frequent Distributed and Fre-

quent Non-Distributed (FDFND) (containing moveable fre-

quent distributed transactions having both distributed and non-

distributed tuples).

E. Workload Representation

Any Wi can be represented by a graph G = (V, E) where

an edge e = {υ, u} with a co-access frequency weighted

by we connects a pair of vertices from V and each vertex

having a weight wυ depicting its frequency. A vertex within

the graph represents a data tuple while an each edge connects

the tuples from the set of adjacent vertices for a given υ ∈ V
and emerged from the same transaction.

A hypergraph, H = (V, E) on the other hand represents

the workload network where a hyperedge e ∈ E having

its frequency weighted as we represents a transaction and

Ve ⊆ V represents the corresponding tuples. H can be further

compressed to Hc = (V ′, E′) representing a compressed

hypergraph where each e′ ∈ E′ is the set of virtual vertices

v′e′ ⊆ V ′ and the original vertices of e can be mapped into

|v′e′ | ≥ 2. Cr denotes the level of compression adopted (i.e.,

compression ratio) and equals to |V | for full compression and

to 1 for none.

F. k-way Balanced Clustering and Repartitioning

Incremental database repartitioning is accomplished by per-

forming k-way clustering of the classified workload represen-

tation in such a way that minimum transactional edges are

cut. By keeping the clustered tuple sets together in a same

physical server most of the distributed transactions will convert

to non-distributed ones. For the non-distributed transactions

included in the k-way clustering from the classification step,

with a high probability they will remain non-distributed to

ensure minimum edge cut within the clustering process. The

balance criteria of the k-way clustering process ensures that

imbalance ratio of kmax(wυx)/W (V) equals or close to 1

where W (V) =∑∀x wυ .

Given the representation of the classified workload, G and

a maximum allowed imbalance ratio ε, the k-way clustering

ΠG = {V1, V2, ..., Vk} will minimise the transactional edge-

cuts having a balance constraint bounded by (1+ε). Similarly,

for the hypergraph representation H the k-way clustering will

be ΠH = {V1,V2, ...,Vk} ensuring the constraint impose by

ε such that the minimum number of hyper-edges are cut. The

k-way clustering of Hc will be ΠHc = {V ′1,V ′2, ...,V ′k} with

the balance constraint aiming at the minimum edge cuts.

Finally, the clustered tuple sets need to be mapped in the

logical database partitions in such a way so that tuples from

the same distributed transactions reside together. We choose

to perform the k-way clustering at the partition level rather

than in physical server level which eventually shuffles the

tuples in a more fine granularity and has been confirmed from

our initial experimentations. It also provides greater degree of

freedom to ensure both server and partition level tuple balance.

A random one-to-one cluster-to-partition mapping strategy is

used to move the tuple sets which inherently ensures tuple

balance within the partitions as well as in the servers.

With the aim of reducing the size of given workload

representation, we argue that if the value of k is chosen

dynamically based on the number of partitions representing

the transactions in the sampled workload the overall genera-

tion, processing and computing time of individual workload

representations will reduce significantly in compare to use

fixed number of partitions. Our experimental findings also

support this argument hence show its effectiveness as shown

in later sections. In preference of discussing the effects of

proactive transactional log stream mining and classification,

we do not discuss the process of distributed tuple lookup using

the concept of roaming [21] in detail.
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Fig. 4. Comparison of different methods with fixed and dynamic number of clusters.

G. Performance Measure Criteria
1) Minimise The Impact of Distributed Transaction: Let

costs(Ti) be the cost of spanning the physical servers by

any Ti and can be calculated as |STi | − 1 where STi is the

number of physical servers spanned by Ti. By multiplying

costs(Ti) with freq(Ti) and temp(Ti) the mean impact of

the distributed transactions T d can be determined for Wi as

show in (4).

dti =

( ∑
∀Ti∈T

costs(Ti)freq(Ti)temp(Ti)

)
/|T d| (4)

2) Minimise Load Imbalance: We measure the coefficient

of variation (CV ) for all the servers under the consideration

which tells the variability of tuple distribution within the

servers with respect to the mean data volume μDS
. (5) in

below determines CV of the load balance measure lb.

lb = σDS
/μDS

(5)

where μDS
= 1

N

N∑
i=1

DSi
and σDS

=

√
1
N

N∑
i=1

(DSi
− μDS

)2

3) Minimise Inter-Server Data Migrations: The effect of

incremental repartitioning is physical data movements between

the logical partitions and physical servers. And we only

prefer the inter-server data movements that potentially restrict

database throughput and increase latency. For a given Wi the

count of inter-server data migration can be normalised by

dividing with the mean data volume μDS
to evaluate the data

migration measure dm as shown in (6).

dm = MV/μDS
(6)

where MV is the total number of the tuples interchanging

physical servers.

4) Minimise Processing and Computing Time: We perform

a five-way measurement of processing time which quantifies

the time required to perform data stream mining, base classifi-

cation (without performing steam mining), generate respective

workload representation, k-way clustering and finally physical

data movements. Furthermore, in case of using dynamic k
values against fixed ones processing and computing times are

also measured to understand their individual effect.

IV. EXPERIMENTAL RESULTS

We develop a workload-driven simulator to analyse the

effectiveness of the proposed scheme with synthetically gen-

erated TPC-C workload with 10 Warehouses. The targeted

OLTP database is distributed over 10 homogeneous physical

servers consisting of 90 logical table partitions in total. The

workload is modelled following [22] and [23] to dynamically

vary based on data popularity following Zipf’s law and with

consistent data volume growth for 100 workload batches.

Workload networks are represented by graphs GR, hypergraphs

HGR and compressed hypergraphs CHG (with Cr = 0.5).

We incorporated the implementation of IncMine [24] in our

simulation model, and extend it to mine the distributed and

non-distributed semi-FCTS to support the proposed proactive

transaction classification process.

We use the incremental performance measures described in

(4), (5), and (6) for evaluating three different setups using

GR, HGR, and CHG workload representations. The evaluated

performance metrics (dti, lb, and dm) are normalised using

0-1 Normalisation and presented for both fixed and dynamic
number of targeted clusters. We compare the proposed transac-

tion classification technique in three different settings with the

baseline of No Classification (NC) for both fixed and dynamic

values of k as shown in Figure 4 with bar plots and mean

points in red dots.
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Among the variations the first method comprises the BC
hierarchy which includes all distributed and movable non-

distributed transactions into consideration. The next method

FD restricts the selection of transactions to only the ones

which are frequent and contain distributed semi-FCTS. Finally,

the FDFND method that selects the transactions that are

distributed or movable and contain both distributed or non-

distributed semi-FCTS. The processing times for these three

distinctive classification setup is shown in Figure 5 for fixed

and dynamic number of clusters.

A. Analysis of dti, lb, and dm

From the top plot in Figure 4, FDFND based methods

with HGR representation perform better than all others in

most of the cases. Similarly FD methods with both GR
and HGR representations performed well. With respect to

performance criteria, HGR-FDFND reduces the impact of

distributed transactions to great extent and with optimum

physical data movements. On the other hand, both GR-FD
and GR-FDFND handles the load balance criteria in a much

better way comparing to others. Now, similar observations can

be also found with dynamic number of clusters but at a lower

intensity (i.e., all of the values are less than 0.5) as shown in

the bottom plot of Figure 4.

This observation clearly supports our claim of dynamically

vary the number of targeted clusters. On the contrary, potential

load imbalance can occur while dynamically varying the tar-

geted k value in the long run within the lifetime of a distributed

database and different heuristic or meta-heuristic based opti-

misation techniques can be used for remedy. However, at this

moment we are primarily focusing on providing the best effort

solutions and vary the underlying workload representation and

classification methods to handle the situations accordingly.

B. Analysis of Processing and Computing Times
As mentioned earlier, processing and computing times are

observed for five different activities as shown in Figure 5. Note

that, for BC based methods there are no timing information

for Stream Mining and similarly for NC methods no bars

represent the timing for both Classification and Stream Mining.

For the other three activities namely workload file generation,

clustering, and physical data migrations, FDFND and FD
methods perform in a prominent way. Following the top

plot in 5, CHG representation performs better than HGR in

performing k-way clustering while takes slightly higher time

to generate the required files.
Notably, in case of GR representation, k-way clustering

times for all the methods are significantly lower comparing

to both HGR and CHG representations although the graph

file generation time is significantly higher than others. Similar

demonstrations are also observed in the bottom plot of Figure 5

while the overall processing and computing time for all the

activities have almost reduced to half. Moreover, FDFND and

FD based methods perform in a much better way. This exhibits

the effect of dynamically vary the targeted k value for desired

number of clusters, thus signifies the efficacy of both FDFND
and FD methods.

Figure 6 shows the aggregated computing times for all

the concerning methods and representations with fixed and

dynamic number of clusters. It clearly shows that the aggre-

gated processing and computing time required for individual

schemes decreases significantly with dynamic number of clus-

ters comparing to using a fixed number of targeted clusters. In

both the cases GR based representation perform well compart-

ing to CHG and HGR ones. Again, FDFND and FD methods

perform almost similarly for all the representations. However,

considering the primary objectives of minimising the measure

of dti, lb and dm, FDFND method performs well ahead of
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clusters.

others, and produce the desired best-effort outcomes for the

underlying OLTP database in incremental repartitioning.

V. CONCLUSION AND FUTURE WORKS

In this paper, a workload-aware incremental database repar-

titioning technique is proposed which effectively harness the

power of progressive data analysis and stream mining to

identify the most frequently accessed distributed transactional

tuple sets with the aid of several proactive transaction classi-

fication techniques. From the experimental results it is clearly

visible that the processing and computing time for large-scale

workload networks can be reduced significantly by adopting

intelligent data analysis methods in Big Data computing.

Finally, from the experimental analysis with different work-

load network representations shows that dynamic adoption is

required for such workload-aware approaches to effectively

handle shared-nothing OLTP databases to guarantee acceptable

level of DTs, load-balance, and physical data migrations. Our

future works include using association rule mining from the

observed transactional patterns to improve the classification

performance in incremental steps.
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