15 research outputs found

    Extremality and stationarity of collections of sets : metric, slope and normal cone characterisations

    Get PDF
    Variational analysis, a relatively new area of research in mathematics, has become one of the most powerful tools in nonsmooth optimisation and neighbouring areas. The extremal principle, a tool to substitute the conventional separation theorem in the general nonconvex environment, is a fundamental result in variational analysis. There have seen many attempts to generalise the conventional extremal principle in order to tackle certain optimisation models. Models involving collections of sets, initiated by the extremal principle, have proved their usefulness in analysis and optimisation, with non-intersection properties (or their absence) being at the core of many applications: recall the ubiquitous convex separation theorem, extremal principle, Dubovitskii Milyutin formalism and various transversality/regularity properties. We study elementary nonintersection properties of collections of sets, making the core of the conventional definitions of extremality and stationarity. In the setting of general Banach/Asplund spaces, we establish nonlinear primal (slope) and linear/nonlinear dual (generalised separation) characterisations of these non-intersection properties. We establish a series of consequences of our main results covering all known formulations of extremality/ stationarity and generalised separability properties. This research develops a universal theory, unifying all the current extensions of the extremal principle, providing new results and better understanding for the exquisite theory of variational analysis. This new study also results in direct solutions for many open questions and new future research directions in the fields of variational analysis and optimisation. Some new nonlinear characterisations of the conventional extremality/stationarity properties are obtained. For the first time, the intrinsic transversality property is characterised in primal space without involving normal cones. This characterisation brings a new perspective on intrinsic transversality. In the process, we thoroughly expose and classify all quantitative geometric and metric characterisations of transversality properties of collections of sets and regularity properties of set-valued mappings.Doctor of Philosoph

    Star-shaped Risk Measures

    Full text link
    In this paper monetary risk measures that are positively superhomogeneous, called star-shaped risk measures, are characterized and their properties studied. The measures in this class, which arise when the controversial subadditivity property of coherent risk measures is dispensed with and positive homogeneity is weakened, include all practically used risk measures, in particular, both convex risk measures and Value-at-Risk. From a financial viewpoint, our relaxation of convexity is necessary to quantify the capital requirements for risk exposure in the presence of liquidity risk, competitive delegation, or robust aggregation mechanisms. From a decision theoretical perspective, star-shaped risk measures emerge from variational preferences when risk mitigation strategies can be adopted by a rational decision maker

    Robust control of uncertain systems: H2/H∞ control and computation of invariant sets

    Get PDF
    This thesis is mainly concerned with robust analysis and control synthesis of linear time-invariant systems with polytopic uncertainties. This topic has received considerable attention during the past decades since it offers the possibility to analyze and design controllers to cope with uncertainties. The most common and simplest approach to establish convex optimization procedures for robust analysis and synthesis problems is based on quadratic stability results, which use a single (parameter-independent) Lyapunov function for the entire uncertainty polytope. In recent years, many researchers have used parameter-dependent Lyapunov functions to provide less conservative results than the quadratic stability condition by working with parameterized Linear Matrix Inequalities (LMIs), where auxiliary scalar parameters are introduced. However, treating the scalar parameters as optimization variables leads to large computational complexity since the scalar parameters belong to an unbounded domain in general. To address this problem, we propose three distinct iterative procedures for H2 and H∞state feedback control, which are all based on true LMIs (without any scalar parameter). The first and second procedures are proposed for continuous-time and discrete-time uncertain systems, respectively. In particular, quadratic stability results can be used as a starting point for these two iterative procedures. This property ensures that the solutions obtained by our iterative procedures with one step update are no more conservative than the quadratic stability results. It is important to emphasize that, to date, for continuous-time systems, all existing methods have to introduce extra scalar parameters into their conditions in order to include the quadratic stability conditions as a special case, while our proposed iterative procedure solves a convex/LMI problem at each update. The third approach deals with the design of robust controllers for both continuous-time and discrete-time cases. It is proved that the proposed conditions contain the many existing conditions as special cases. Therefore, the third iterative procedure can compute a solution, in one step, which is at least as good as the optimal solution obtained using existing methods. All three iterative procedures can compute a sequence of non-increasing upper bounds for H2-norm and H∞-norm. In addition, if no feasible initial solution for the iterative procedures is found for some uncertain systems, we also propose two algorithms based on iterative procedures that offer the possibility of obtaining a feasible initial solution for continuous-time and discrete-time systems, respectively. Furthermore, to address the problem of analysis of H∞-norm guaranteed cost computation, a generalized problem is firstly proposed that includes both the continuous-time and discrete-time problems as special cases. A novel description of polytopic uncertainties is then derived and used to develop a relaxation approach based on the S-procedure to lift the uncertainties, which yields an LMI approach to compute H∞-norm guaranteed cost by incorporating slack variables. In this thesis, one of the main contributions is to develop convex iterative procedures for the original non-convex H2 and H∞ synthesis problems based on the novel separation result. Nonlinear and non-convex problems are general in nature and occur in other control problems; for example, the computation of tightened invariant tubes for output feedback Model Predictive Control (MPC). We consider discrete-time linear time-invariant systems with bounded state and input constraints and subject to bounded disturbances. In contrast to existing approaches which either use pre-defined control and observer gains or optimize the volume of the invariant sets for the estimation and control errors separately, we consider the problem of optimizing the volume of these two sets simultaneously to give a less conservative design.Open Acces

    Characterizations of Nonsmooth Robustly Quasiconvex Functions

    Get PDF
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Two criteria for the robust quasiconvexity of lower semicontinuous functions are established in terms of Fréchet subdifferentials in Asplund spaces. The first criterion extends to such spaces a result established by Barron et al. (Discrete Contin Dyn Syst Ser B 17:1693–1706, 2012). The second criterion is totally new even if it is applied to lower semicontinuous functions on finite-dimensional spaces

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore