1,682 research outputs found

    Far-infrared/millimeter Wave Source And Component Development For Imaging And Spectroscopy

    Get PDF
    The far-infrared and millimeter wave (FIR/mmW) (wavelength 75 micrometer to 10 mm) portion of the electromagnetic spectrum is fairly underdeveloped technologically, owing to the large amount of atmospheric attenuation in that range. At present, the FIR/mmW region is lacking in compact, high-brightness radiation sources and practical imaging systems. This dissertation focuses on development of two complementary technologies in this area - an active mmW imaging system and high-reflectivity Bragg mirrors for the FIR p-Ge laser. The imaging system uses a vector network analyzer in the frequency range of 90-140 GHz as the radiation source and receiver. Raster scanning is used to map a two-dimensional field of view, demonstrating the detection and imaging of buried plastic landmines. Principal components analysis is used for hyperspectral signal processing, where a series of images is taken at discrete frequencies. Results are obtained as a function of depth and disturbance of the soil surface. In support of this study, various types of soils were characterized for scattering loss across the mmW/FIR region, with measured results compared to theory. This mmW imaging system was also used to demonstrate imaging through walls and other obscuring materials, as well as for imaging of rocks beneath volcanic sand, simulating the conditions encountered by an imaging system on a Mars rover vehicle. Furthermore, a high-reflectivity Si-etalon FIR mirror design was developed and demonstrated as a cavity mirror for the p-Ge laser. These components stand to have a number of systems-level impacts on FIR imagers. In the context of an active illuminator, they may allow narrowband selection from the broad emission spectrum of the p-Ge laser source. These mirrors can also be used in a Fabry-Perot FIR scanning spectrometer, where the resulting high finesse would give discrimination advantages in chemical sensing and astrophysical spectroscopy applications

    A Computational Tool for Evaluating THz Imaging Performance in Brownout Conditions at Land Sites throughout the World

    Get PDF
    This study quantifies terahertz (THz) or sub-millimeter imaging performance during simulated rotary-wing brownout or whiteout environments based on geographic location and recent/current atmospheric weather conditions. The atmospheric conditions are defined through the Air Force Institute of Technology Center for Directed Energy (AFIT/CDE) Laser Environmental Effects Definition and Reference or LEEDR model. This model enables the creation of vertical profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Optical properties and realistic particle size distributions for the brownout and whiteout particulates have been developed for and incorporated into LEEDR for this study. The expected imaging performance is assessed primarily at a wavelength of 454 μm (0.66 THz) in brownout conditions at selected geographically diverse land sites throughout the world. Seasonal and boundary layer variations (summer and winter) and time of day variations for a range of relative humidity percentile conditions are considered to determine optimum employment techniques to exploit or defeat the environmental conditions. Each atmospheric particulate/hydrometeor is evaluated based on its wavelength-dependent forward and off-axis scattering characteristics and absorption effects on the imaging environment. In addition to realistic vertical profiles of molecular and aerosol absorption and scattering, correlated optical turbulence profiles in probabilistic (percentile) format are used

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix

    CHANNEL MODELING FOR FIFTH GENERATION CELLULAR NETWORKS AND WIRELESS SENSOR NETWORKS

    Get PDF
    In view of exponential growth in data traffic demand, the wireless communications industry has aimed to increase the capacity of existing networks by 1000 times over the next 20 years. A combination of extreme cell densification, more bandwidth, and higher spectral efficiency is needed to support the data traffic requirements for fifth generation (5G) cellular communications. In this research, the potential improvements achieved by using three major 5G enabling technologies (i.e., small cells, millimeter-wave spectrum, and massive MIMO) in rural and urban environments are investigated. This work develops SPM and KA-based ray models to investigate the impact of geometrical parameters on terrain-based multiuser MIMO channel characteristic. Moreover, a new directional 3D channel model is developed for urban millimeter-wave (mmW) small cells. Path-loss, spatial correlation, coverage distance, and coherence length are studied in urban areas. Exploiting physical optics (PO) and geometric optics (GO) solutions, closed form expressions are derived for spatial correlation. Achievable spatial diversity is evaluated using horizontal and vertical linear arrays as well as planar 2D arrays. In another study, a versatile near-ground field prediction model is proposed to facilitate accurate wireless sensor network (WSN) simulations. Monte Carlo simulations are used to investigate the effects of antenna height, frequency of operation, polarization, and terrain dielectric and roughness properties on WSNs performance

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design

    Millimeter-wave sensing of the environment: A bibliographic survey

    Get PDF
    This literature survey was conducted to examine the field of millimeter wave remote sensing of the environment and collect all relevant observations made in the atmospheric windows near 90, 140, and 230 GHz of ocean, terrain, man-made features, and the atmosphere. Over 170 articles and reports were examined; bibliographic references are provided for all and abstracts are quoted when available. Selected highlights were extracted from the pertinent articles

    Cure-State Monitoring and Water-to-Cement Ratio Determination of Fresh Portland Cement-Based Materials using Near-Field Microwave Techniques

    Get PDF
    Quick and nondestructive determination of curestate and water-to-cement (w/c) ratio in fresh Portland cementbased materials is an important issue in the construction industry since the compressive strength of these materials is significantly influenced by w/c ratio. This is especially true since current techniques are not reliable and require a priori testing of test specimens as calibration for subsequent on-site monitoring of a cast in-place structure. Recently, the sensing of Portland cementbased materials using microwave techniques has received much attention. Microwave nondestructive techniques have already shown the potential for determining w/c ratio, sand-to-cement (s/c) ratio and coarse aggregate-to-cement (ca/c) ratio in cured cement paste, mortar, and concrete. In this paper, the results of a study demonstrating the potential for early determination of cure-state and w/c ratio of Portland cement-based materials, using a near-field microwave inspection technique, are presented. This technique utilizes the reflection properties of an open-ended rectangular waveguide probe radiating into Portland cementbased materials at 5 GHz (G-band) and 10 GHz (X-band). The results demonstrate the ability of near-field microwave sensing techniques to determine the state of hydration of cement paste and concrete with 0.50 and 0.60 w/c ratios and varying aggregate contents. In fact, it is shown that cement-based materials that have been moist-cured for three days and then left to cure at ambient temperature and humidity for the remainder of the prescribed 28-day curing period, are fully cured after only 12 days. An empirical formula relating the magnitude of reflection coefficient to the curing time is presented. Using this empirical relationship, the w/c ratio of cement paste and concrete can be unambiguously determined when daily monitoring of the reflection properties of the specimens is performed. The potential for utilizing this technique for on-site monitoring of cure-state and w/c ratio (and compressive strength) determination is also discussed
    corecore