12,029 research outputs found

    Timing Experiments with Global Navigation Satellite System Clocks

    Get PDF
    The science of timekeeping is crucial in many dierent applications around the world. One of the most signicative applications in which time and frequency metrology has an essential role are Global Navigation Satellite Systems (GNSS). Any satellite navigation system indeed, is based on the transmission of signals from a constellation of satellites: processing these signals it is possible to estimate the position of a user, provided that the time of transmission is indicated with extremely high accuracy. In fact, being the distance measured from a time, any error in the measure of time will be directly mapped into an error in the user position, which has to be kept below its specied limits. The positioning accuracy is widely determined by the clocks quality. It is why all the satellites need to y very accurate atomic clocks: fundamental for their excellent stability. An agreement between the European Community and the European Space Agency (ESA) gave rise to a new European satellite system: Galileo. The Istituto Nazionale di Ricerca Metrologica (INRiM) is deeply involved in the Galileo project, mainly concerning the activities related to the experimental phases, such as the generation of an experimental reference time scale for the system and the metrological characterization of atomic clocks employed onboard satellites. This thesis will describe the timing experiments carried out in these years of doctorate with GNSS clocks, both with space and ground clocks, within the experimental phases of the Galileo project

    Characterization of a 450-km Baseline GPS Carrier-Phase Link using an Optical Fiber Link

    Get PDF
    A GPS carrier-phase frequency transfer link along a baseline of 450 km has been established and is characterized by comparing it to a phase-stabilized optical fiber link of 920 km length, established between the two endpoints, the Max-Planck-Institut f\"ur Quantenoptik in Garching and the Physikalisch-Technische Bundesanstalt in Braunschweig. The characterization is accomplished by comparing two active hydrogen masers operated at both institutes. The masers serve as local oscillators and cancel out when the double differences are calculated, such that they do not constitute a limitation for the GPS link characterization. We achieve a frequency instability of 3 x 10^(-13) in 30 s and 5 x 10^(-16) for long averaging times. Frequency comparison results obtained via both links show no deviation larger than the statistical uncertainty of 6 x 10^(-16). These results can be interpreted as a successful cross-check of the measurement uncertainty of a truly remote end fiber link.Comment: 14 pages, 6 figure

    Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri

    Get PDF
    The development of systemic approaches in biology has put emphasis on identifying genetic modules whose behavior can be modeled accurately so as to gain insight into their structure and function. However most gene circuits in a cell are under control of external signals and thus quantitative agreement between experimental data and a mathematical model is difficult. Circadian biology has been one notable exception: quantitative models of the internal clock that orchestrates biological processes over the 24-hour diurnal cycle have been constructed for a few organisms, from cyanobacteria to plants and mammals. In most cases, a complex architecture with interlocked feedback loops has been evidenced. Here we present first modeling results for the circadian clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock genes have been shown to play a central role in Ostreococcus clock. We find that their expression time profiles can be accurately reproduced by a minimal model of a two-gene transcriptional feedback loop. Remarkably, best adjustment of data recorded under light/dark alternation is obtained when assuming that the oscillator is not coupled to the diurnal cycle. This suggests that coupling to light is confined to specific time intervals and has no dynamical effect when the oscillator is entrained by the diurnal cycle. This intringuing property may reflect a strategy to minimize the impact of fluctuations in daylight intensity on the core circadian oscillator, a type of perturbation that has been rarely considered when assessing the robustness of circadian clocks
    • …
    corecore