28 research outputs found

    Recent advances in diffusion neuroimaging: applications in the developing preterm brain

    Get PDF
    Measures obtained from diffusion-weighted imaging provide objective indices of white matter development and injury in the developing preterm brain. To date, diffusion tensor imaging (DTI) has been used widely, highlighting differences in fractional anisotropy (FA) and mean diffusivity (MD) between preterm infants at term and healthy term controls; altered white matter development associated with a number of perinatal risk factors; and correlations between FA values in the white matter in the neonatal period and subsequent neurodevelopmental outcome. Recent developments, including neurite orientation dispersion and density imaging (NODDI) and fixel-based analysis (FBA), enable white matter microstructure to be assessed in detail. Constrained spherical deconvolution (CSD) enables multiple fibre populations in an imaging voxel to be resolved and allows delineation of fibres that traverse regions of fibre-crossings, such as the arcuate fasciculus and cerebellar-cortical pathways. This review summarises DTI findings in the preterm brain and discusses initial findings in this population using CSD, NODDI, and FBA

    Neurobehaviour between birth and 40 weeks’ gestation in infants born <30 weeks’ gestation and parental psychological wellbeing: predictors of brain development and child outcomes

    Get PDF
    BACKGROUND: Infants born <30 weeks’ gestation are at increased risk of long term neurodevelopmental problems compared with term born peers. The predictive value of neurobehavioural examinations at term equivalent age in very preterm infants has been reported for subsequent impairment. Yet there is little knowledge surrounding earlier neurobehavioural development in preterm infants prior to term equivalent age, and how it relates to perinatal factors, cerebral structure, and later developmental outcomes. In addition, maternal psychological wellbeing has been associated with child development. Given the high rate of psychological distress reported by parents of preterm children, it is vital we understand maternal and paternal wellbeing in the early weeks and months after preterm birth and how this influences the parent–child relationship and children’s outcomes. Therefore this study aims to examine how 1) early neurobehaviour and 2) parental mental health relate to developmental outcomes for infants born preterm compared with infants born at term. METHODS/DESIGN: This prospective cohort study will describe the neurobehaviour of 150 infants born at <30 weeks’ gestational age from birth to term equivalent age, and explore how early neurobehavioural deficits relate to brain growth or injury determined by magnetic resonance imaging, perinatal factors, parental mental health and later developmental outcomes measured using standardised assessment tools at term, one and two years’ corrected age. A control group of 150 healthy term-born infants will also be recruited for comparison of outcomes. To examine the effects of parental mental health on developmental outcomes, both parents of preterm and term-born infants will complete standardised questionnaires related to symptoms of anxiety, depression and post-traumatic stress at regular intervals from the first week of their child’s birth until their child’s second birthday. The parent–child relationship will be assessed at one and two years’ corrected age. DISCUSSION: Detailing the trajectory of infant neurobehaviour and parental psychological distress following very preterm birth is important not only to identify infants most at risk, further understand the parental experience and highlight potential times for intervention for the infant and/or parent, but also to gain insight into the effect this has on parent–child interaction and child development

    Data quality in diffusion tensor imaging studies of the preterm brain: a systematic review

    Get PDF
    Background: To study early neurodevelopment in preterm infants, evaluation of brain maturation and injury is increasingly performed using diffusion tensor imaging, for which the reliability of underlying data is paramount. Objective: To review the literature to eva

    Caffeine for apnea of prematurity and brain development at 11 years of age

    Get PDF
    Objective Caffeine therapy for apnea of prematurity has been reported to improve brain white matter microstructure at term-equivalent age, but its long-term effects are unknown. This study aimed to investigate whether caffeine affects (1) brain structure at 11 years of age, and (2) brain development from term-equivalent age to 11 years of age, compared with placebo. Methods Preterm infants born ≤1250 g were randomly allocated to caffeine or placebo. Magnetic resonance imaging (MRI) was performed on 70 participants (33 caffeine, 37 placebo) at term-equivalent age and 117 participants (63 caffeine, 54 placebo) at 11 years of age. Global and regional brain volumes and white matter microstructure were measured at both time points. Results In general, there was little evidence for differences between treatment groups in brain volumes or white matter microstructure at age 11 years. There was, however, evidence that the caffeine group had a smaller corpus callosum than the placebo group. Volumetric brain development from term-equivalent to 11 years of age was generally similar between treatment groups. However, there was evidence that caffeine was associated with slower growth of the corpus callosum, and slower decreases in axial, radial, and mean diffusivities in the white matter, particularly at the level of the centrum semiovale, over time than placebo. Interpretation This study suggests any benefits of neonatal caffeine therapy on brain structure in preterm infants weaken over time and are not clearly detectable by MRI at age 11 years, although caffeine may have long-term effects on corpus callosum development.Claire E. Kelly, Wenn Lynn Ooi, Joseph Yuan-Mou Yang, Jian Chen, Chris Adamson, Katherine J. Lee ... et al

    Enneaegsena sündinud laste motoorne areng viie aastaselt

    Get PDF
    http://tartu.ester.ee/record=b2610000~S1*es

    Diffusion Tensor Imaging as a Diagnostic and Research Tool: A Study on Preterm Infants

    Get PDF
    Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) technique. DTI is based on free thermal motion (diffusion) of water molecules. The properties of diffusion can be represented using parameters such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, which are calculated from DTI data. These parameters can be used to study the microstructure in fibrous structure such as brain white matter. The aim of this study was to investigate the reproducibility of region-of-interest (ROI) analysis and determine associations between white matter integrity and antenatal and early postnatal growth at term age using DTI. Antenatal growth was studied using both the ROI and tract-based spatial statistics (TBSS) method and postnatal growth using only the TBSS method. The infants included to this study were born below 32 gestational weeks or birth weight less than 1,501 g and imaged with a 1.5 T MRI system at term age. Total number of 132 infants met the inclusion criteria between June 2004 and December 2006. Due to exclusion criteria, a total of 76 preterm infants (ROI) and 36 preterm infants (TBSS) were accepted to this study. The ROI analysis was quite reproducible at term age. Reproducibility varied between white matter structures and diffusion parameters. Normal antenatal growth was positively associated with white matter maturation at term age. The ROI analysis showed associations only in the corpus callosum. Whereas, TBSS revealed associations in several brain white matter areas. Infants with normal antenatal growth showed more mature white matter compared to small for gestational age infants. The gestational age at birth had no significant association with white matter maturation at term age. It was observed that good early postnatal growth associated negatively with white matter maturation at term age. Growth-restricted infants seemed to have delayed brain maturation that was not fully compensated at term, despite catchup growth.Diffuusiotensorikuvaus diagnostisena ja tutkimustyökaluna keskostutkimuksessa Diffuusiotensorikuvaus (DTI) on magneettikuvauksen erikoistekniikka. DTI perustuu veden vapaaseen lämpöliikkeeseen (diffuusioon). Diffuusion ominaisuuksia voidaan esittää DTI-datasta laskettavien parametrien avulla. Tällaisia parametreja ovat esimerkiksi fraktionaalinen anisotropia, keskimääräinen diffusiviteetti, aksiaalinen ja radiaalinen diffusiviteetti. Näitä parametrejä voidaan käyttää säikeisten rakenteiden esimerkiksi aivojen valkoisen aineen tutkimiseen. Tässä tutkimuksessa selvitettiin keskosten aivojen diffuusiotensorikuvista tehtyjen mielenkiintoalueisiin (ROI) perustuvien mittausten toistettavuutta sekä tutkittiin valkoisen aineen kypsyyden ja raskauden aikaisen sekä varhaisen postnataalisen kasvun välistä yhteyttä. Raskauden aikaisen kasvun vaikutusta tutkittiin käyttäen sekä ROI- että TBSS-tekniikoita. Postnataalista kasvua tarkasteltiin ainoastaan TBSS-tekniikalla. Tähän tutkimukseen otettiin mukaan keskoset, jotka syntyivät ennen 32 raskausviikkoa tai joiden syntymäpaino oli alle 1,501 g sekä MRI kuvaus oli tehty lasketunajan kohdalla. Tutkimukseen hyväksyttiin kesäkuun 2004 ja joulukuun 2006 välillä 132 keskosta. Poissulkukriteerien takia 76 keskosta (ROI) ja 36 (TBSS) hyväksyttiin tähän tutkimukseen. ROI-analyysi osoittautui melko toistettavaksi lasketun ajan iässä. Toistettavuus vaihteli sekä valkoisen aineen rakenteiden että diffuusioparametrien välillä. Normaali raskauden aikainen kasvu liittyi hyvään valkoisen aineen kehitykseen lasketunajan kohdalla. ROI-tekniikalla yhteys havaittiin corpus callosumin alueella. TBSS-menetelmä puolestaan näytti yhteyden usealla eri valkoisen aineen alueella. Syntymähetken gestaatioiällä ei havaittu yhteyttä valkoisen aineen kehitysasteeseen lasketun ajan kohdalla. Hyvän varhaisen vaiheen postnataalisen kasvun havaittiin liittyvän heikompaan valkoisen aineen kehitysasteeseen lasketunajan kohdalla. Saavutuskasvu ei ollut korjannut raskauden aikaisen kasvuhäiriön vaikutusta aivojen kypsyyteen laskettuun aikaan mennessä.Siirretty Doriast

    Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm.

    Get PDF
    Although language difficulties are common in children born prematurely, robust neuroanatomical correlates of these impairments remain to be established. This study investigated whether the greater prevalence of language problems in preterm (versus term-born) children might reflect injury to major intra- or interhemispheric white matter pathways connecting frontal and temporal language regions. To investigate this, we performed a comprehensive assessment of language and academic abilities in a group of adolescents born prematurely, some of whom had evidence of brain injury at birth (n = 50, mean age: 16 years, mean gestational age: 27 weeks) and compared them to a term-born control group (n = 30). Detailed structural magnetic resonance imaging and diffusion-tractography analyses of intrahemispheric and interhemispheric white matter bundles were performed. Analysis of intrahemispheric pathways included the arcuate fasciculus (dorsal language pathway) and uncinate fasciculus/extreme capsule (ventral language pathway). Analysis of interhemispheric pathways (in particular, connections between the temporal lobes) included the two major commissural bundles: the corpus callosum and anterior commissure. We found language impairment in 38% of adolescents born preterm. Language impairment was not related to abnormalities of the arcuate fasciculus (or its subsegments), but was associated with bilateral volume reductions in the ventral language pathway. However, the most significant volume reduction was detected in the posterior corpus callosum (splenium), which contains interhemispheric connections between the occipital, parietal and temporal lobes. Diffusion tractography showed that of the three groups of interhemispheric fibres within the splenium, only those connecting the temporal lobes were reduced. Crucially, we found that language impairment was only detectable if the anterior commissure (a second temporal lobe commissural pathway) was also small. Regression analyses showed that a combination of anatomical measures of temporal interhemispheric connectivity (through the splenium of the corpus callosum and anterior commissure) explained 57% of the variance in language abilities. This supports recent theories emphasizing the importance of interhemispheric connections for language, particularly in the developing brain
    corecore