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Abstract
Background To study early neurodevelopment in preterm in-
fants, evaluation of brain maturation and injury is increasingly
performed using diffusion tensor imaging, for which the reli-
ability of underlying data is paramount.
Objective To review the literature to evaluate acquisition and
processing methodology in diffusion tensor imaging studies
of preterm infants.
Materials and methods We searched the Embase, Medline,
Web of Science and Cochrane databases for relevant papers
published between 2003 and 2013. The following keywords
were included in our search: prematurity, neuroimaging, brain,
and diffusion tensor imaging.
Results We found 74 diffusion tensor imaging studies in pre-
term infants meeting our inclusion criteria. There was wide var-
iation in acquisition and processing methodology, and we found
incomplete reporting of these settings. Nineteen studies (26%)
reported the use of neonatal hardware. Data quality assessment
was not reported in 13 (18%) studies. Artefacts-correction and

data-exclusion was not reported in 33 (45%) and 18 (24%)
studies, respectively. Tensor estimation algorithms were report-
ed in 56 (76%) studies but were often suboptimal.
Conclusion Diffusion tensor imaging acquisition and process-
ing settings are incompletely described in current literature, vary
considerably, and frequently do not meet the highest standards.

Keywords Diffusion tensor imaging . Image acquisition .

Neonate . Prematurity .Magnetic resonance imaging .

Systematic review

Introduction

The rate of premature birth is rising globally [1]. Although im-
provements in obstetric and neonatal care have resulted in in-
creased survival rates, neurodevelopmental outcome remains a
source of concern because many preterm infants have
neuromotor, cognitive and behavioral disabilities that persist in
later life [2, 3]. White matter injury is suggested to account for
many neurological sequelae among preterm infants, and al-
though cystic periventricular leukomalacia is becoming less com-
mon, diffuse non-cystic white matter changes such as alterations
in signal intensity and punctate white matter lesions are frequent-
ly observed [4–7]. Major changes of fetal white matter take place
during the final stages of a normal pregnancy [8]. Infants born
preterm undergo these changes in a high-risk extra-uterine envi-
ronment, which poses risks for normal brain ontogenesis. Diffu-
sion tensor imaging allows us to objectively assess these
(microstructural) changes by mapping restricted random motion
of water molecules within white matter tissue in vivo [9, 10].

Objective quantification of white matter microstructure and
integrity using diffusion tensor imaging (DTI) may elucidate
the impact of preterm birth and related sequelae on
neurodevelopment, and DTI has the potential to provide early
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biomarkers of subsequent neurodevelopmental outcome [5, 7,
11–13]. Sophisticated applications of diffusion tensor imaging
such as voxel-based analyses and fiber tractography enable visu-
alization and quantification of specific whitematter tracts in vivo.
Several studies using these techniques have provided important
insights into brain development and the impact of injury on func-
tional outcome [14–18]. Recent projects to explore whole-brain
connectivity are very promising because mapping neural circuits
may help in the understanding of injury mechanisms responsible
for neurocognitive impairment [19–21].

However, brain imaging in this specific vulnerable popula-
tion is quite challenging. Obtaining good-quality data is com-
plicated by the fact that diffusion tensor imaging is intrinsical-
ly highly sensitive to artefacts [22–24] and these infants tend
to move more and have smaller head sizes and higher heart-
and breathing rates than adults [25, 26]. The preterm infant
population should be regarded as one of the most challenging
patient groups to image using diffusion tensor imaging, and
therefore requires maximal awareness of the acquisition and
processing steps that determine data quality. Obtaining reli-
able diffusion tensor imaging data in this specific population
can only be achieved when acquisition, quality assessment
and data processing steps meet the highest standards possible.

Recently we demonstrated that good-quality diffusion tensor
imaging (DTI) data and a well-informed choice of processing
methodology have a serious influence on tract characteristics
derived from neonatal DTI datasets [27]. Among others, different
tensor estimation methods handle outliers and errors differently,
and because datasets obtained from preterm infants generally
contain a large number of artefacts, this kind of methodological
considerations could have a major influence on study results.

The purpose of this study is to evaluate information obtain-
ed from diffusion tensor imaging studies of preterm infants,
with a focus on acquisition settings, processing methodology
and data quality assessment. Therefore, we conducted a sys-
tematic review of the literature.

Materials and methods

The Embase, Medline, Web of Science and Cochrane database
were systematically searched for relevant papers published be-
tween 2003 and September 2013 by two reviewers (K.P., A.P.),
each with more than 3 years of experience in neonatal diffusion
tensor imaging. The search was performed Oct. 5, 2013, and
included synonyms and combinations of the following keywords:
prematurity, neuroimaging, brain and diffusion tensor imaging.
We included English-written studies in healthy and non-healthy
infants. Non-human research, case reports, reviews and editorials
were excluded. Studies were considered relevant when they met
the following criteria: (1) they included preterm infants born at
<32 weeks’ gestation, (2) MRI was performed within the first

28 days after term-equivalent age, and (3) diffusion tensor imag-
ing was incorporated in study design and discussed in the results.

We extracted information regarding:

(1) The use of a neonatal-specific head coil or an MRI-
compatible neonatal incubator with a dedicated neonatal
head coil, and the use of sedative drugs prior to diffusion
tensor imaging acquisition.

(2) Acquisition parameters with regard to diffusion tensor imag-
ing analysis (magnetic field strength, number of gradient di-
rections, b-value, number of non-diffusion-weighted images).

(3) Processing methods (assessment of diffusion tensor imag-
ing data quality, correction for motion and distortions,
methods of diffusion tensor estimation and data analysis).

Results

The initial search resulted in 763 articles. All titles and ab-
stracts were screened for relevance, after which the full text
versions of 170 seemingly relevant articles were read.
Seventy-four articles met our inclusion criteria (Fig. 1). A
summary of these is given in Table 1.

Dedicated neonatal MR imaging

Nineteen studies (26%) reported the use of dedicated neonatal
scanning equipment; 19 (26%) papers reported the use of a
neonatal head coil, which was installed in an MRI-compatible
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Fig. 1 Flowchart of the literature search
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incubator in 18 (24%) of the cases. Sedative drugs were ad-
ministered prior to scanning in 28 (38%) studies.

Diffusion tensor imaging data acquisition parameters

Seventy-two studies (97%) reported the number of gradient di-
rections at which diffusion tensor imaging (DTI)was performed;
this number ranged from 6 to 44, with an average of 18 direc-
tions per scan. B values were reported in 71 studies (96%), and
most were 600–1,000 s/mm2 (range 350–3,000, average 734 s/
mm2, median 700 s/mm2). Number of non-diffusion-weighted
images (b=0) was reported in 57 (77%) studies, mostly limited
to one or two b=0 images per scan (range 1–16, average 1.47).

The static field strength of the MRI scanners was reported
in 69 (93%) studies. The most frequently used MRI scanners
were 1.5 tesla (n=44, 60%), followed by 3 tesla (n=25, 34%).

Processing methods

Sixty-one studies (82%) reported quality assessment of the
diffusion-weighted images. Forty-eight studies (65%) report-
ed visual inspection of diffusion data, and three studies (4.1%)
reported standardized software-driven quality assessment.
Eleven studies (15%) reported quality assessment without fur-
ther elaboration on how this was performed.

Fifty-six (76%) studies reported exclusion of datasets with
insufficient quality. Specific correction methods were applied
in 41 studies (55%); this was mostly restricted to correction
for motion artefacts (n=27, 37%) and eddy currents (n=33,
45%). One study (1.4%) reported the use of automatic detec-
tion of outliers (corrupted slices as a result of artefacts or
signal-loss) before tensor estimation [74].

Description of the diffusion tensor methodology was avail-
able in 56 papers (76%). Among studies that did describe
tensor estimationmethodology, linear least square and weight-
ed linear least square were most frequently used (n=29, 39%
and n=23, 31%, respectively).

Region-of-interest analysis was the most frequently used
method of analysis (n=37, 50%). Fiber tractography was applied
in 25 studies (34%), of which 13 studies (18%) performed prob-
abilistic tractography, 10 (14%) deterministic tractography and
three (4.1%) did not describe which tractography approach was
used. Voxel-wise analysis of diffusion data using tracts-based
spatial statistics (TBSS) was performed in 15 studies (20.3%).

Discussion

This systematic review demonstrates wide variation among
preterm neonatal diffusion tensor imaging studies in hardware
setup, acquisition parameters and post-processing settings.
Many papers had an incomplete description of these matters.

Acquisition settings

In most studies field strength, b-values and number of direc-
tions were reported, and both gradient strength and number of
diffusion directions tended to increase over the years. However,
reported acquisition parameters differed considerably among
the studies. Even when evaluating settings for each year of
publication separately, large differences among studies existed
in the number of gradient directions and height of b values.

Usage of dedicated neonatal equipment such as specialized
neonatal head coils and MRI-compatible incubators was only
reported in a minority of studies. MRI-compatible incubators
provide a safe and comfortable environment andmight therefore
reduce subject motion during acquisition. Because our results
show that the majority of studies scan without using sedation, a
comfortable environment is indispensable to keep the child com-
fortable and asleep during diffusion tensor imaging acquisition.
Furthermore, using smaller head coils, adapted to the character-
istics of the preterm brain, might result in higher signal-to-noise
ratio [95, 96]. However, because signal-to-noise ratio depends
on other features as well, it remains debatable whether dedicated
neonatal head coils always provide the best signal-to-noise ratio.
For further evaluation of benefits and limitations provided by
specific neonatal equipment, it is important that research groups
describe which scanning equipment was used and how this im-
pacted scanning convenience and data quality.

Quality assessment of diffusion tensor imaging data

For diffusion tensor imaging, it is known that even optimal
equipment and acquisition parameters cannot guarantee appro-
priate data quality because diffusion tensor imaging is highly
sensitive to artefacts. Frequent occurrence of motion during ac-
quisition among preterm infants can result in signal dropout,
misalignment of slices, and signal intensity inhomogeneity. In
addition, the echo-planar imaging sequence frequently used in
neonatal neuroimaging is susceptible to inhomogeneity at air–
tissue boundaries [96]. Therefore well-informed processing
steps to detect and correct image distortions properly are essen-
tial in neonatal diffusion tensor imaging. In a considerable num-
ber of studies, information regarding any kind of quality assess-
ment wasmissing.When quality assessment was stated, detailed
description of methodology was frequently not provided. Com-
prehensive information about precise visual inspection method-
ology is valuable because different visual inspection strategies
might yield different results. Color maps, for example, can be
very useful to identify corrupted data but often fail to display
signal loss if it is limited to a small number of directions. Careful
visual inspection of raw diffusion data in three orthogonal planes
by an experienced observer seems to be more effective for this
purpose [97]. Further software-based assessment of diffusion
tensor imaging quality can reveal additional unobserved image
distortions by pointing out more-dispersed signal loss and less-

Pediatr Radiol (2015) 45:1372–1381 1377



visible artefacts. Our results show that software-driven quality
assessment is performed in a limited number of studies. Because
there seems to be no consensus regarding assessment of diffu-
sion tensor imaging data quality, a combined approach using
multiple methods seems preferable. Such strategies are hardly
reported in current neonatal diffusion tensor imaging literature.

When structured quality assessment is extensively per-
formed, it is important to report this. For instance, because
of the high likelihood of movement artefacts and signal loss
of preterm brain diffusion tensor imaging data, it is often nec-
essary to exclude diffusion data or even complete diffusion
tensor imaging scans entirely from analysis to ensure reliabil-
ity of results. Exclusion of datasets was not reported in 24.3%
of the studies included in our review.

Processing methodology

The influence of the chosen tensor estimation methodology on
data quality is important to consider because different algo-
rithms address outliers and errors differently [98, 99]. Appro-
priate algorithms for tensor estimation are crucial in premature
infants because reliability of diffusion tensor imaging data de-
pends on how corrupted slices or directions are dealt with. Our
literature search showed that information regarding tensor al-
gorithms was not provided in a considerable number of studies
and that fast but less accurate tensor algorithms were most
frequently used. Although more sophisticated tensor estimation
algorithms have been developed and described, application of
these methods in neonatal diffusion tensor imaging studies
seems to be low. More robust tensor estimation methods that
exclude motion-corrupted directions prior to computation of
the diffusion tensor generally require more processing time
but can result in significantly improved data quality [27, 99].

A large portion of studies in this review used advanced post-
processing methods such as tractography and tract-based spatial
statistics. Diffusion tensor imaging data quality is of special
importance in these methods. Insufficient diffusion tensor qual-
ity can result in early abortion of tracking streamlines or aberrant
tract propagation and might have serious effects on reliability of
final results. Use of tract-based spatial statistics, accurate spatial
co-registration of different datasets is only achievable when
slices are perfectly aligned in every dataset. Misalignment of
slices caused by head motion during scanning might result in
erroneous co-registration, affecting the reliability of the results.
Sophisticated correction for misalignment and exclusion of in-
corrigible datasets prior to co-registration are therefore essential.

Future perspectives

Ideally, MRI workstations should be equipped with state-
of-the-art quality-checking software, with direct feedback
during image acquisition. Such on-the-flight correction al-
lows immediate re-scanning of slices that contain artefacts.

Further refinement of these techniques might lead to sig-
nificant improvements in data quality. Development of
even more sophisticated diffusion tensor imaging acquisi-
tion schemes, implementation of higher-order processing
algorithms in neonatal neuroimaging and further develop-
ment of user-friendly software to detect and correct poor-
quality datasets can result in significant improvements in
data quality [26]. Furthermore, providing samples of actual
diffusion data as Electronic supplementary material would
be very useful to allow the readers to assess image quality.
Furthermore, because alterations in myelination, water
content and synaptogenesis result in rapidly changing dif-
fusion characteristics within the first year of life, popula-
tion-specific, standardized acquisition settings and pro-
cessing pipelines of neonatal diffusion data are urgently
needed (Fig. 2) [100, 101].

Hardware
• MRI-scanner: strength, manufacturer, software
• Coil: neonatal, number of channels
• MRI compatible incubator
• Pulse-/oxymeter, temperature, earmuffs

Acquisition
• Number of gradient directions
• B-value, number of b=0
• Scanning protocol: duration, cardiac gating
• Sedation, fixation method

Processing
• Tensor estimation method
• Artefacts : correction method, removal of outliers
• Removal of datasets: number, reason,

automatic/manually

Interpretation
• Statistical analysis
• Results in accordance with hypothesis
• Results: consistency/heterogeneity, spread

Analysis
• Analysis : fiber-tracking, TBSS, ROI-analysis, atlas, etc.
• Tractography: deterministic/probabilistic, regions of

interest, FA minimum + maximum, fiber length
minimum + maximum, fiber angle maximum

Fig. 2 Overview of the processing pipeline for diffusion tensor imaging
acquisition and analysis. Because all these steps determine data quality
and analysis, reporting of these settings is valuable. Note: Outliers
indicate motion-corrupted slices. FA fractional anisotropy, ROI regions
of interest, TBSS tracts-based spatial statistics

1378 Pediatr Radiol (2015) 45:1372–1381



Conclusion

Diffusion tensor imaging has great potential for investigation
of the preterm brain provided that acquisition and post-
processing pipelines are adapted to its specific characteristics.
Current clinical studies pay little attention to this methodolog-
ical requirement. In order to make bigger steps forward in
understanding preterm brain structure, development and inju-
ry mechanisms, maximal awareness of these matters is
required.
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