640 research outputs found

    Sex differences of human corpus callosum revealed by polar coordinate system: magnetic resonance imaging study

    Get PDF
    Background: Evaluation of morphological and size changes related to various pathological conditions of the corpus callosum (CC) requires the data about sex dimorphism of the CC. The purpose of our study is to define potential morphological sex differences of the CC by the use of polar coordinate system as a system of measurements. Materials and methods: After division of the CC into three equal segments by the use of polar coordinate system, we investigated the length of the hemisphere (A-A’), the CC size as its midsagittal section area (CCA), the size of its segments (C1, C2, C3), thickness of the thinnest part of the CC (TCC) and the angular coordinate (a angle) of dorsal point of the TCC in a sample of 30 human brains magnetic resonance images (15 males and 15 females, age 20–50 years). Results: We found significantly larger CCA, C3 segment and the TCC in males. Statistically significant correlation in both, males and females, was found between parameters of the CCA and of all of its segments (C1, C2, C3), the C1 and C2, the C2 and C3 segments, as well as like as between the C2 and TCC. Sex differences were also in findings of significant correlation between the C1 and C3 segments, between CCA and TCC, and of significant negative correlation between the a angle and A-A’ only in females. Conclusions: We concluded that the use of polar coordinate system appropriately reflects the anatomical and encephalometric characteristics of human CC

    Sex differences associated with corpus callosum development in human infants: A longitudinal multimodal imaging study

    Get PDF
    The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6–24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females

    Comprehensive Assessment of Nanoparticle Delivery after Experimental Traumatic Brain Injury

    Get PDF
    abstract: Traumatic brain injury (TBI) is a leading cause of disability worldwide with 1.7 million TBIs reported annually in the United States. Broadly, TBI can be classified into focal injury, associated with cerebral contusion, and diffuse injury, a widespread injury pathology. TBI results in a host of pathological alterations and may lead to a transient blood-brain-barrier (BBB) breakdown. Although the BBB dysfunction after TBI may provide a window for therapeutic delivery, the current drug delivery approaches remains largely inefficient due to rapid clearance, inactivation and degradation. One potential strategy to address the current therapeutic limitations is to employ nanoparticle (NP)-based technology to archive greater efficacy and reduced clearance compared to standard drug administration. However, NP application for TBI is challenging not only due to the transient temporal resolution of the BBB breakdown, but also due to the heterogeneous (focal/diffuse) aspect of the disease itself. Furthermore, recent literature suggests sex of the animal influences neuroinflammation/outcome after TBI; yet, the influence of sex on BBB integrity following TBI and subsequent NP delivery has not been previously investigated. The overarching hypothesis for this thesis is that TBI-induced compromised BBB and leaky vasculature will enable delivery of systemically injected NPs to the injury penumbra. This study specifically explored the feasibility and the temporal accumulation of NPs in preclinical mouse models of focal and diffuse TBI. Key findings from these studies include the following. (1) After focal TBI, NPs ranging from 20-500nm exhibited peak accumulation within the injury penumbra acutely (1h) post-injury. (2) A smaller delayed peak of NP accumulation (40nm) was observed sub-acutely (3d) after focal brain injury. (3) Mild diffuse TBI simulated with a mild closed head injury model did not display any measurable NP accumulation after 1h post-injury. (4) In contrast, a moderate diffuse model (fluid percussion injury) demonstrated peak accumulation at 3h post-injury with up to 500 nm size NPs accumulating in cortical tissue. (5) Robust NP accumulation (40nm) was found in female mice compared to the males at 24h and 3d following focal brain injury. Taken together, these results demonstrate the potential for NP delivery at acute and sub-acute time points after TBI by exploiting the compromised BBB. Results also reveal a potential sex dependent component of BBB disruption leading to altered NP accumulation. The applications of this research are far-reaching ranging from theranostic delivery to personalized NP delivery for effective therapeutic outcome.Dissertation/ThesisDoctoral Dissertation Biomedical Engineering 201

    Sex-related differences of cAMP-specific PDE4B3 mRNA in oligodendrocytes following systemic inflammation

    Get PDF
    Sex-related differences have been observed in the incidence and severity of several neurological diseases and in sepsis in humans. Cyclic adenosine monophosphate (cAMP) has been shown to play an important role in modulating the inflammatory environment during neuroinflammation and importantly in protecting myelin from excitotoxic cell death. Considering the sexual dimorphism in the functional properties of oligodendrocytes and the importance of a systemic inflammation in the progression of multiple sclerosis, we focused on identifying possible sex-related differences in the alterations previously reported for the two phosphodiesterase4B (PDE4B) splice-variants (PDE4B2 and PDE4B3) mRNA expression during innate neuroinflammation. PDE4A, PDE4B, and PDE4D are present in oligodendrocytes and we have previously reported that PDE4B3 mRNA is readily expressed in both oligodendrocytes and neurons. In this study, we analyzed the influence of an intraperitoneal lipopolysaccharide injection on the distribution pattern and expression levels of the PDE4B mRNA splicing variants in both male and female mice brains. Clear differences were observed in PDE4B2 and PDE4B3 mRNA expression levels in males compared with females in a time-dependent manner. Furthermore, we observed that the clear downregulation of PDE4B3 mRNA was reflected in a lower percentage of oligodendrocytes positive for this transcript which correlated with a decrease in inducible cAMP early repressor expression in female corpus callosum. © 2012 Wiley Periodicals, Inc.Grant sponsor: Spanish Ministerio de Educación y Ciencia; Grant number: SAF2006-10243; Grant sponsor: Ministerio de Ciencia e Innovación; Grant numbers: SAF 2009-11052, PI-10/01874; Grant sponsor: Generalitat de Catalunya; Grant number: SGR2009/220; Grant sponsor: FEDER Funds (European Union).Peer Reviewe

    Sex differences in brain homotopic co-activations: a meta-analytic study

    Get PDF
    An element of great interest in functional connectivity is ‘homotopic connectivity’ (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC. We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00429-022-02572-0

    Effects of sex chromosome dosage on corpus callosum morphology in supernumerary sex chromosome aneuploidies.

    Get PDF
    BackgroundSupernumerary sex chromosome aneuploidies (sSCA) are characterized by the presence of one or more additional sex chromosomes in an individual's karyotype; they affect around 1 in 400 individuals. Although there is high variability, each sSCA subtype has a characteristic set of cognitive and physical phenotypes. Here, we investigated the differences in the morphometry of the human corpus callosum (CC) between sex-matched controls 46,XY (N =99), 46,XX (N =93), and six unique sSCA karyotypes: 47,XYY (N =29), 47,XXY (N =58), 48,XXYY (N =20), 47,XXX (N =30), 48,XXXY (N =5), and 49,XXXXY (N =6).MethodsWe investigated CC morphometry using local and global area, local curvature of the CC boundary, and between-landmark distance analysis (BLDA). We hypothesized that CC morphometry would vary differentially along a proposed spectrum of Y:X chromosome ratio with supernumerary Y karyotypes having the largest CC areas and supernumerary X karyotypes having significantly smaller CC areas. To investigate this, we defined an sSCA spectrum based on a descending Y:X karyotype ratio: 47,XYY, 46,XY, 48,XXYY, 47,XXY, 48,XXXY, 49,XXXXY, 46,XX, 47,XXX. We similarly explored the effects of both X and Y chromosome numbers within sex. Results of shape-based metrics were analyzed using permutation tests consisting of 5,000 iterations.ResultsSeveral subregional areas, local curvature, and BLDs differed between groups. Moderate associations were found between area and curvature in relation to the spectrum and X and Y chromosome counts. BLD was strongly associated with X chromosome count in both male and female groups.ConclusionsOur results suggest that X- and Y-linked genes have differential effects on CC morphometry. To our knowledge, this is the first study to compare CC morphometry across these extremely rare groups

    Sparse Decomposition and Modeling of Anatomical Shape Variation

    Get PDF
    Recent advances in statistics have spawned powerful methods for regression and data decomposition that promote sparsity, a property that facilitates interpretation of the results. Sparse models use a small subset of the available variables and may perform as well or better than their full counterparts if constructed carefully. In most medical applications, models are required to have both good statistical performance and a relevant clinical interpretation to be of value. Morphometry of the corpus callosum is one illustrative example. This paper presents a method for relating spatial features to clinical outcome data. A set of parsimonious variables is extracted using sparse principal component analysis, producing simple yet characteristic features. The relation of these variables with clinical data is then established using a regression model. The result may be visualized as patterns of anatomical variation related to clinical outcome. In the present application, landmark-based shape data of the corpus callosum is analyzed in relation to age, gender, and clinical tests of walking speed and verbal fluency. To put the data-driven sparse principal component method into perspective, we consider two alternative techniques, one where features are derived using a model-based wavelet approach, and one where the original variables are regressed directly on the outcome

    Proteome dynamics during postnatal mouse corpus callosum development.

    Get PDF
    Formation of cortical connections requires the precise coordination of numerous discrete phases. This is particularly significant with regard to the corpus callosum, whose development undergoes several dynamic stages including the crossing of axon projections, elimination of exuberant projections, and myelination of established tracts. To comprehensively characterize the molecular events in this dynamic process, we set to determine the distinct temporal expression of proteins regulating the formation of the corpus callosum and their respective developmental functions. Mass spectrometry-based proteomic profiling was performed on early postnatal mouse corpus callosi, for which limited evidence has been obtained previously, using stable isotope of labeled amino acids in mammals (SILAM). The analyzed corpus callosi had distinct proteomic profiles depending on age, indicating rapid progression of specific molecular events during this period. The proteomic profiles were then segregated into five separate clusters, each with distinct trajectories relevant to their intended developmental functions. Our analysis both confirms many previously-identified proteins in aspects of corpus callosum development, and identifies new candidates in understudied areas of development including callosal axon refinement. We present a valuable resource for identifying new proteins integral to corpus callosum development that will provide new insights into the development and diseases afflicting this structure
    • …
    corecore