7 research outputs found

    BEAT CLASSIFICATION USING HYBRID WAVELET TRANSFORM BASED FEATURES AND SUPERVISED LEARNING APPROACH

    Get PDF
    This paper describes an automatic heartbeat recognition based on QRS detection, feature extraction and classification. In this paper five different type of ECG beats of MIT BIH arrhythmia database are automatically classified. The proposed method involves QRS complex detection based on the differences and approximation derivation, inversion and threshold method. The computation of combined Discrete Wavelet Transform (DWT) and Dual Tree Complex Wavelet Transform (DTCWT) of hybrid features coefficients are obtained from the QRS segmented beat from ECG signal which are then used as a feature vector. Then the feature vectors are given to Extreme Learning Machine (ELM) and k- Nearest Neighbor (kNN) classifier for automatic classification of heartbeat. The performance of the proposed system is measured by sensitivity, specificity and accuracy measures

    Comprehensive electrocardiographic diagnosis based on deep learning

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death worldwide, and coronary artery disease (CAD) is a major contributor. Early-stage CAD can progress if undiagnosed and left untreated, leading to myocardial infarction (MI) that may induce irreversible heart muscle damage, resulting in heart chamber remodeling and eventual congestive heart failure (CHF). Electrocardiography (ECG) signals can be useful to detect established MI, and may also be helpful for early diagnosis of CAD. For the latter especially, the ECG perturbations can be subtle and potentially misclassified on manual interpretation and/or when analyzed by traditional algorithms found in ECG instrumentation. For automated diagnostic systems (ADS), deep learning techniques are favored over conventional machine learning techniques, due to the automatic feature extraction and selection processes involved. This paper highlights various deep learning algorithms exploited for the classification of ECG signals into CAD, MI, and CHF conditions. The Convolutional Neural Network (CNN), followed by combined CNN and Long Short-Term Memory (LSTM) models, appear to be the most useful architectures for classification. A 16-layer LSTM model was developed in our study and validated using 10-fold cross validation. A classification accuracy of 98.5% was achieved. Our proposed model has the potential to be a useful diagnostic tool in hospitals for the classification of abnormal ECG signals

    Classificação de episódios de fibrilação atrial por análise do ECG com redes neuronais artificiais MLP e LSTM

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáA fibrilação atrial (AF) é uma doença cardíaca que afeta aproximadamente 1% da população mundial, sendo a anomalia cardíaca mais comum. Apesar de não ser uma causa direta de morte, frequentemente está associada ou gera outros problemas que ameaçam a vida humana, como o derrame e a doença da artéria coronária. As principais características da AF são: a alta variação do ritmo cardíaco, o enfraquecimento ou desaparecimento da contração atrial e a ocorrência de irregularidades nas atividades dos ventrículos. O diagnóstico da AF é realizado por um médico especialista, principalmente através da inspeção visual de gravações de eletrocardiograma (ECG) de longo termo. Tais gravações podem chegar a várias horas, e são necessárias pois a AF pode ocorrer a qualquer momento do dia. Dessa forma surgem os problemas quanto ao grande volume de dados e as dependências de longo termo. Além disso, as particularidades e as variabilidades dos padrões de deformação de cada sujeito fazem com que o problema esteja também relacionado com a experiência do cardiologista. Assim, a proposta de um sistema computacional de auxílio ao diagnóstico médico baseado em inteligência artificial se torna muito interessante, uma vez que não sofre com a fadiga e é fortemente indicado para lidar com dados em grande quantidade e com alta variabilidade. Portanto, neste trabalho foi proposta a exploração de modelos de aprendizagem de máquina para análise e classificação de sinais ECG de longo termo, para auxiliar no diagnóstico da AF. Os modelos foram baseados em redes neuronais artificiais do tipo Multi-Layer Perceptron (MLP) e Long Short-Term Memory (LSTM). Utilizam-se os sinais da base de dados MIT-BIH Atrial Fibrillation, sem remoção de ruído, tendências ou artefatos, numa etapa de extração de características temporais, morfológicas, estatísticas e em tempo-frequência sobre segmentos de contexto variável (duração em segundos ou contagem de intervalos entre picos R). As características do sinal ECG utilizadas, foram: duração dos intervalos R-R (RRi) consecutivos, perturbação Jitter, perturbação Shimmer, entropias de Shannon e energia logarítmica, frequências instantâneas, entropia espectral e transformada Scattering. Sobre estes atributos foram aplicadas diferentes estratégias de normalização por Z-score e valor máximo absoluto, de forma a normalizar os indicadores de acordo com o contexto do sujeito ou local do segmento. Após a exploração de várias combinações destas características e dos parâmetros das redes MLP, obteve-se uma acurácia de classificação para a metodologia 10-fold cross-validation de 80,67%. Entretanto, notou-se que as marcações do pico das ondas R advindas da base de dados eram imprecisas. Dessa forma, desenvolveu-se um algoritmo de detecção do pico das ondas R baseado na combinação entre a derivada do sinal, a energia de Shannon e a transformada de Hilbert, resultado em uma acurácia de marcação dos picos R de 98,95%. A partir das novas marcações, determinou-se todas as características e em seguida foram exploradas diversas estruturas de redes neuronais MLP e LSTM, sendo que os melhores resultados em acurácia/exatidão para estas arquiteturas foram, respectivamente, 91,96% e 98,17%. Em todos os testes, a MLP demonstrou melhora de desempenho à medida que mais características foram sendo agregadas nos conjuntos de dados. A LSTM por outro lado, obteve os melhores resultados quando foram combinados 60 RRi e as respectivas entropias das ondas P, T e U.Atrial fibrillation (AF) is a heart disease that affects approximately 1% of the world population, being the most common cardiac anomaly. Although it is not a direct cause of death, it is often associated with or generates other problems that threaten human life, such as stroke and coronary artery disease. The main characteristics of AF are the high variation in heart rate, the weakening or disappearance of atrial contraction and the occurrence of irregularities in the activities of the ventricles. The diagnosis of AF is performed by a specialist doctor, mainly through visual inspection of long-term electrocardiogram (ECG) recordings. Such recordings can take several hours and are necessary because AF can occur at any time of the day. Thus, problems arise regarding the large amount of data and long-term dependencies. In addition, the particularities and variability of the deformation patterns of each subject make the problem also related to the cardiologist's experience. Thus, the proposal for a computational system to aid medical diagnosis based on artificial intelligence becomes very interesting, since it does not suffer from fatigue and is strongly indicated to deal with data in large quantities and with high variability. Therefore, in this work it was proposed to explore machine learning models for the analysis and classification of long-term ECG signals, to assist in the diagnosis of AF. The models were based on artificial neural networks Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM). The signals from the MIT-BIH Atrial Fibrillation database are used, without removing noise, trends or artifacts, in a stage of extracting temporal, morphological, statistical and time-frequency features over segments of variable context (duration in seconds or counting intervals between peaks R). The features of the ECG signal used were: duration of consecutive R-R (RRi) intervals, Jitter disturbance, Shimmer disturbance, Shannon entropies and logarithmic energy, instantaneous frequencies, spectral entropy and Scattering transform. On these attributes, different normalization strategies were applied by Z-score and absolute maximum value, to normalize the indicators according to the context of the subject or location of the segment. After exploring various combinations of these features and the parameters of the MLP networks, the accuracy of classification for the 10-fold cross-validation methodology was 80.67%. However, it was noted that the annotations of the peak of R waves from the database were inaccurate. Thus, an algorithm for detecting the peak of R waves was developed based on the combination of the derivative of the signal, the Shannon energy, and the Hilbert transform, resulting in an accuracy of marking the R peaks of 98.95%. From the new markings, all features were determined and then several structures of neural networks MLP and LSTM were explored, and the best results in accuracy for these architectures were, respectively, 91.96% and 98.17%. In all tests, MLP showed improvement in performance as more features were added to the data sets. LSTM, on the other hand, obtained the best result when 60 RRi and the respective entropies of the P, T and U waves were combined

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models
    corecore