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Cardiovascular diseases 
Cardiovascular-related diseases are a major cause of death worldwide. 

Despite increasing efforts to develop new medications intended to prevent 

mortality from cardiovascular diseases, the number of deaths has been 

steadily increasing since 2007 (see Figure 1.1). Among the most common 

cardiovascular diseases is cardiac arrest. Cardiac arrest is the leading cause of 

mortality worldwide, and is responsible for almost half of all deaths related 

to cardiovascular diseases (1). Survival rates after cardiac arrest range from 

1% to 10%  (2–4), but vary greatly depending on the country and population  

(1). Cardiomyopathies and inherited arrhythmias are responsible for 15% and 

2% of all cardiac arrest deaths, respectively. The Phospholamban (PLN) 

p.Arg14del mutation is a rare cardiomyopathy that appears in only 0.08% to 

0.38% in cardiomyopathy cohorts (5). Despite being rare, patient that carry a 

PLN mutation are subjected to malignant arrhythmias and end-stage heart 

failure, which can affect patients from a very young age.  

Stroke is another common cause of death worldwide (6,7). According to the 

World Health Organization (8), in 2016 stroke was the second leading cause 

of early death and disability, affecting millions of people worldwide, and it is 

expected to remain in this position until 2040 (8). Stroke can be divided into 

a hemorrhagic and an ischemic subtype. 
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Figure 1.1. The steady increase of number of deaths due to cardiovascular 

diseases. Adapted from (8). 

Hemorrhagic stroke 
Hemorrhagic stroke is the less common subtype of stroke, and accounts for 

10% to 20% of all stroke cases (9). It is most commonly caused by the 

ruptured of an artery that is weakened due to an aneurysm or malformation. 

Hemorrhagic stroke can be divided into intracranial and subarachnoid, the last 

being the less common one. Despite being less common, subarachnoid 

hemorrhagic (SAH) stroke is very severe, with a mortality rate of around 

50%, and often affects patients younger than 55 (10), leading to severe loss 

of productivity and quality of life. Patients with SAH are initially treated with 

clipping or coiling to stop the hemorrhage. After initial treatment, these 

patients are at risk to several complications, with rebleeding being the most 

common one, usually occurring within 24 hours after stroke onset  (11,12). 

Another complication is Delayed Cerebral Ischemia (DCI), which usually 

occurs from 4 to 14 days after stroke (9), and is one of the major causes of 

death and morbidity after SAH, requiring intensive patient monitoring  (13). 

Currently, nimodipine administered after stroke onset is the only treatment 
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for SAH that has shown to improve patient outcome and prevent 

complications  (11). 

Ischemic stroke 
Ischemic stroke accounts for around 80% of all strokes (14). It occurs when 

a blood clot blocks the blood flow of an intracranial vessel, leading to 

extensive ischemia of the brain tissue. In around 30% of ischemic stroke 

patients, the occlusion occurs in one of the major intracranial arteries, 

including the middle cerebral artery, the anterior cerebral artery and the 

carotid cerebral artery (15). This type of occlusion is called a Large Vessel 

Occlusion (LVO). Despite recent advances in treatment options, around one-

third of the patients who suffer an ischemic stroke die or remain dependent 

on nursing care (16). Therapy with intravenous alteplase (IV) has been proven 

to improve patient outcome, provided that it is administered within the 

effective time window (less than 4.5 hours after stroke onset) (14,17). Despite 

its proven success, recanalization (the restauration of cerebral blood flow in 

the affected region) is only achieved in 33% of the cases, due to several 

limitations in the treatment, which includes the appropriate time window for 

administration, low success rates in patients with LVO and large clot burden  

(14,18). Endovascular treatment (EVT) is a state-of-the-art treatment for 

patients with LVO. Combined with IVT, EVT has been shown to significantly 

improve patient outcome in many trials (16,19–21), becoming the standard 

treatment for ischemic stroke patients. 

Cardiomyopathies 
Cardiac arrest is often caused by a heart malfunction that causes abnormal 

heart rhythms, such as tachycardia or fibrillation. Patients who survive a 

cardiac arrest are admitted to the intensive care unit, where they are medicated 

and intensively monitored for signs of complications. Responsiveness is also 

evaluated during patient monitoring and, based on treatment guidelines, after 

72 hours it can already be decided to stop treatment and remove life support 

in case the patient remains unresponsive. Therefore, the accurate prediction 

of patient outcome can be of great assistance in decision support (22,23).  
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Phospholamban (PLN) is a phosphoprotein responsible for regulating 

calcium homeostasis in heart muscle cells. It was recently discovered in the 

Netherlands that a mutation in this gene can lead to severe ventricular 

arrhythmias, such as tachycardia and fibrillation, which increases the risk of 

developing heart-failure. It is estimated that, in the north of The Netherlands, 

1 in 1500 people carry this mutation without knowing it. Despite the fact that 

there is currently no treatment available to mitigate the effects of the mutation, 

early diagnosis is of utmost importance for patients to properly treat 

symptoms and reduce the risk of complications  (24–26).  

Computer Vision and Artificial intelligence  
Computer Vision and Artificial intelligence (AI) have been broadly and 

successfully used to address and solve clinical problems (27–36). Clinical 

data is often composed by a large number of variables, images and signals, 

that can offer great predictive value if used correctly. We present in Figure 

1.2, a diagram with an example of the data that is often collected during stroke 

care. As it can be observed in Figure 1.2, data from multiple sources and types 

are collected during patient care.  

In recent years, the development and use of AI has gained significant traction 

fueled by advances in computer hardware and powerful Graphical Processing 

Units  (GPUs). From the subfields of AI, machine learning and deep learning 

are amongst the most popular ones. Machine and deep learning can 

automatically learn patterns from the data, enabling the discovery of 

important feature interactions through linear and non-linear combinations. 

Provided that the right approach is used, machine learning models can handle 

a large number of variables and data from multiple sources, which are often 

available in clinical datasets. Regarding imaging data, in the past we relied 

on hand-crafted features derived from computer vision approaches  (e.g. 

filtering) to solve computer vision tasks. Nowadays, deep learning offers the 

possibility of learning filters that better fit the image and task at hand, which 

has greatly increased results in multiple clinical and non-clinical applications.  

In the field of cardiovascular diseases, machine/deep learning have been used 

broadly used for multiple types of tasks and data. For example, for 

electrocardiogram classification  (37–39), for predicting cardiac arrest  (40–
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42), for computing radiological stroke scores  (33,43,44), for predicting tissue 

outcome after stroke (27), and for predicting stroke patient outcome and 

complications  (45–48), among many others. In all these works, machine/deep 

learning led to state-of-the-art results, greatly improving the performance in 

those tasks and leading to new discoveries.  

Despite the success, there is still a lot of room for improvement in machine 

and deep learning models. Given the heterogeneous and complex nature of 

medical data, often being composed of demographics, images and signals, 

many approaches tend to focus on one type of data rather than exploring the 

combination of all data available, which can lead to information loss. 

Moreover, nonlinearities introduced by machine/deep learning models make 

model visualization and interpretation challenging, which can hamper the 

trust in results and their use in clinical practice. 
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Figure 1.2. Example of data collected during stroke care. During hospital 

admission patient demographics and evaluation scores are computed to assess 

stroke severity. Imaging is used to determine stroke subtype, location and confirm 

severity. Based on the data collected, the intervention is chosen and performed. 

Finally, the patient is intensively monitored for possible signs of complications. 

Thesis outline 
This thesis focuses on the application of machine/deep learning into the field 

of cardiovascular-related diseases. I have explored various methods for the 

prediction of patient functional outcome and reperfusion after treatment of 

ischemic stroke, for the prediction of complications such as delayed cerebral 

ischemia in hemorrhagic stroke, the classification of patients with 

Admission to 
the hospital

• Patient demographics 

• Compute basic scores

Imaging

• Compute brain imaging

• Evaluate imaging

Treatment

• Decide eligibility of intervention

• Perform intervention

Monitoring

• Monitor for complications

• (Glucose, blood pressure…)
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cardiovascular-related gene mutations using electrocardiogram (ECG), and 

for the prediction of patient outcome after cardiac arrest. In all these topics, I 

aimed at combining heterogeneous data when possible and available, and to 

explore the best way of interpreting and visualizing the prediction models. 

My main contributions were: (a) applications of machine/deep learning 

methods to clinically relevant topics,  (b) machine/deep learning approaches 

for heterogeneous data analysis (including image, signals and patient 

variables), (c) extensively optimized and validated model development 

pipelines, to prevent overoptimistic results and data leakage during training 

and testing, and (d) clinically interpretable models, to show the reasoning 

behind model predictions. 

Chapter 2 is about the prediction of delayed cerebral ischemia after 

subarachnoid hemorrhagic stroke, since previous models showed very low 

prediction accuracies, and DCI remains a major cause of death after SAH. We 

developed models that combined features automatically learned from NCCT, 

with patient demographics and radiological scores.  

Regarding ischemic stroke, in chapter 3 we investigated the prediction of 

good functional outcome at three months and good reperfusion (treatment 

outcome). We used all variables that were available at baseline from a large 

ischemic stroke registry, developed and validated several machine learning 

models, and compared them to previous prediction models found in literature.  

After evaluating all baseline variables, chapter 4 explored the predictive 

value from imaging data, where we adapted deep learning approaches to 

contrast enhanced computed tomography to predict functional outcome and 

reperfusion after acute ischemic stroke. We compared the added value from 

the automatically learned deep learning features to the common radiological 

scores used for patient condition assessment, and generated visualizations of 

important image regions. 

Chapter 5 focuses on the combination of clinical and imaging data for the 

prediction of good functional outcome and reperfusion in patients who 

suffered from an acute ischemic stroke. We implemented two approaches for 

extracting features from the images; a radiomics and a deep learning 

approach. For both, the whole 3D scans were used. Finally, we combined the 
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features learned with our approaches to all clinical variables available at 

baseline, evaluated performance and visualized feature importance.  

The prediction of poor functional outcome was assessed in chapter 6, since 

around 30% of ischemic stroke patients either die or remain severely disabled. 

For these patients, treatment would be essentially futile. Therefore, we aimed 

at creating models for selecting poor functional outcome patients, while 

keeping the number of misclassified good outcome patients as low as 

possible.  

In chapter 7, we present an approach for predicting the PLN gene mutation 

using ECG signals. We explored multiple approaches, using wavelets, 

convolutional neural networks and recurrent models and identified ECG 

regions that were deemed relevant for prediction. 

Chapter 8 is about predicting the outcome at 6 months of comatose patients 

after cardiac arrest using electroencephalograms (EEGs). We trained machine 

learning models on features extracted from the EEG signals and evaluated the 

differences in prediction accuracy between applying several kinds of stimuli 

to the patients and the signal background. 

Finally, in chapter 9 I discuss the main thesis findings, strengths and 

limitations of the applications of artificial intelligence to cardiovascular 

problems and suggest some areas of improvements for future research. 
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Abstract 
Background and Purpose: Delayed Cerebral Ischemia (DCI) is a severe 

complication in patients with aneurysmal subarachnoid hemorrhage. Several 

associated predictors have been previously identified. However, their 

predictive value is generally low. We hypothesize that Machine Learning 

(ML) algorithms for the prediction of DCI using a combination of clinical and 

image data lead to higher predictive accuracy than previously applied logistic 

regressions. 

Materials and Methods: Clinical and baseline CT image data from 317 

patients with aneurysmal subarachnoid hemorrhage were included. Three 

types of analysis were performed to predict DCI. First, the prognostic value 

of known predictors was assessed with logistic regression models. Second, 

ML models were created using all clinical variables. Third, image features 

were extracted from the CT-images using an auto-encoder and combined with 

clinical data to create ML models. Accuracy was evaluated based on the Area 

Under the Curve (AUC), sensitivity and specificity with 95% CI. 

Results: The best AUC of the logistic regression models for known predictors 

was 0.63 (0.62–0.63). For the ML algorithms with clinical data there was a 

small, but statistically significant, improvement in the AUC 0.68 (0.65–0.69). 

Notably, aneurysm width and height were included in many of the ML 

models. The area under the curve was the highest for ML models that also 

included image features 0.74 (0.72–0.75). 

Conclusion: Machine Learning algorithms significantly improve the 

prediction of DCI in patients with aneurysmal subarachnoid hemorrhage, 

particularly when image features are also included. Our experiments suggest 

that aneurysm characteristics are also associated to the development of DCI. 

  



Machine learning improves prediction of delayed cerebral ischemia in patients… 

23 

 

Introduction 
Delayed Cerebral Ischemia (DCI) is one of the most severe complications in 

patients with aneurysmal Subarachnoid Hemorrhage (aSAH) and is related to 

worsening of functional outcome. DCI occurs in 20 to 30% of patients who 

suffered from aSAH (1). The selection of patients with a high risk of 

developing DCI may improve patient outcome as well as reduce the costs 

related to futile intensive care monitoring for DCI (2). 

Several studies have identified risk factors associated with the development 

of DCI such as: World Federation of Neurosurgical Societies (WFNS) grade, 

age, aneurysm treatment (clipping or coiling), intraparenchymal and 

intraventricular hemorrhage, Total Blood Volume (TBV) (3), hypertension, 

diabetes mellitus, history of smoking, alcohol use, hyperglycemia and Hunt 

and Hess grade on admission (4).  

Most studies searching for DCI predictors relied on univariable and 

multivariable logistic regression analysis. The accuracy of these regression 

models is generally low (AUC of  0.63 (5) and 0.65 (6)) and their approaches 

often do not correct for over-optimistic results by applying bootstrapping or 

cross-validation strategies (7). 

The volume and availability of (digital) clinical and image data has 

enormously increased over the past years, opening up new possibilities for 

predictive modelling. The integration and interpretation of data from multiple 

sources of information can be quite challenging (8). Machine Learning (ML) 

is a field of computer science whose algorithms can learn patterns from large 

datasets with multiple variables. An advantage of ML algorithms is that, once 

the outcome label is defined, the algorithms can automatically optimize 

(learn) their parameters with minimal oversight (9). Differently from 

regression models, ML algorithms can handle large amounts of data and 

patient characteristics while taking all their interactions into account (9). 

Therefore, ML algorithms yield a potential predictive gain in accuracy over 

regression models (9,10).  

Recent works that applied ML algorithms to heterogeneous data (data from 

different sources, such as image and clinical characteristics) presented 
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positive results for classifying Alzheimer’s disease and predicting patients at 

risk for aortic stenosis (11,12).  

We hypothesize that ML algorithms can increase the accuracy of DCI 

prediction compared to traditional logistic regression models. Moreover, 

since the TBV and blood location present in baseline CT scans have already 

been proven to be associated to DCI (3,4,6), we hypothesize that the addition 

of automatically extracted image features from baseline CT-scans to clinical 

data improves accuracy of DCI prediction. To test these hypotheses, we 

explored three approaches for predicting the development of DCI in aSAH 

patients: (1) using known predictors from the literature and logistic 

regression, (2) using ML algorithms with all available variables, and (3) 

combining imaging and clinical data. 

Materials and Methods 
Population 
Patients were included from a prospectively collected cohort consisting of 

consecutive aSAH patients admitted to the (Academic Medical Center, 

Amsterdam, The Netherlands) between December 2011 and December 2015. 

Inclusion criteria were: 1) aSAH with subarachnoid blood visible on 

admission non-contrast CT, or confirmed by xantochromic cerebrospinal 

fluid after lumbar puncture, and 2) causative aneurysm proven on 

angiographic imaging. Patients who were included in the ongoing Ultra-Early 

Tranexamic Acid After Subarachnoid Hemorrhage (ULTRA) trial were 

excluded from the analysis because data from ongoing trials should not be 

used prematurely. Furthermore, we excluded patients for whom the admission 

CT-scan presented severe artifacts. As a result, a total of 317 were used for 

analysis. From the included 317 patients, 97 (30%) developed DCI. DCI was 

strictly defined as the occurrence of new focal neurological impairment or a 

decrease of two points or more on the Glasgow Coma Scale (GCS) (with or 

without new hypodensity on CT) that could not be attributed to other causes, 

according to Vergouwen et al (13). All patients received nimodipine orally 

(6x 60mg daily) as prophylaxis of DCI. The diagnosis was assessed by the 

treating neurosurgeon and patients were treated with hypertension induction. 

The medical ethics committee of (Academic Medical Center, Amsterdam, 
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The Netherlands) waived ethics approval for this retrospective analysis of 

pseudonymised patient data. The database has been pseudonymised and 

patients have given consent for the use of data for research  

Because of the sensitive nature of the data, it is available upon request to the 

corresponding author. All code used is publicly available at the authors 

Github page. 

Machine Learning Algorithms 
We selected the following ML algorithms: Logistic Regression (LR),  

Support Vector Machine (SVM) (14), Random Forest Classifier (RFC) (15), 

Multi-layer Perceptron (MLP) (16), Stacked Convolutional Denoising Auto-

encoders (17), and Principal Component Analysis (PCA). These algorithms 

have shown state-of-the-art results in several studies on disease prediction, 

image segmentation and image feature representation (17,18). The parameters 

used for these algorithms are presented in the Supplemental Tables I, II and 

III. For the development of ML models, datasets are generally split in two: a 

training and a testing dataset. Machine learning models are first trained using 

a training dataset to optimize the prediction. Subsequently, the accuracy of 

the ML algorithms is evaluated on the testing dataset. The separation of 

training and testing data adopted in cross-validation (7) is important to assess 

the model performance and generalization to unseen data. In this study, we 

used Monte-Carlo cross-validation with 100 random splits (with 75% for 

training and 25% for testing) of the dataset into training and testing data and 

5-fold cross-validation for optimizing the parameters of each model. 

Clinical Data 
A total of 48 variables were included in this study. The full list of available 

demographic and clinical variables is presented in the Supplemental Table 

IV. Collected radiological variables were: modified Fisher scale on 

admission, number, location, height and width of aneurysm were determined 

based on CTA image data. Furthermore, data on treatment (clipping, coiling 

or no treatment) was also collected. 

The percentage of missing values per variable is presented in the 

Supplemental Table IV. Missing values in the dataset were imputed using the 

incremental attribute regression imputation with random forest. This 
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imputation technique has shown high accuracy rates in several datasets (19). 

After data imputation, data normalization was performed by subtracting the 

mean and scaling to unit variance. For the nominal data, dummies were 

created. It has been shown that data normalization increases convergence 

rates (time and number of iterations for training the models) and it is 

necessary for many ML algorithms (20). 

Image Data 
The available baseline non-contrast CT image data consists of 512x512xN 

voxels (where N is the number of slices) with an average voxel spacing of 

0.45 ± 0.05 mm and an average slice thickness of 4.9 mm ± 0.6 mm. Some 

image-derived features that are well known for being associated with DCI are 

the TBV and the blood location (3). The manual extraction of features from 

medical images is a time-consuming task and these features might not be the 

only important ones available in the images (21). 

Potentially, each voxel can be considered a feature, therefore the number of 

features is too large to be efficiently used in ML algorithms. If the number of 

training samples is small compared to the number of features, the accuracy of 

ML algorithms can be strongly reduced, this problem is known as the curse 

of dimensionality (22). To avoid this problem and to account for variations in 

the image data (rotation and translation), in this work we applied image data 

downsampling and data augmentation following the approach adopted in a 

previous study (23). 

Therefore, since the number of image features (voxels) is very large and 

relevant unknown image features might still be present in the baseline CT 

scans, we opted for an unsupervised feature learning technique (24). Feature 

learning is a technique used to automatically extract useful information from 

image data when building ML models (21). The Stacked Denoising 

Convolutional Auto-encoder (SDCAE) (17) is an unsupervised feature 

learning technique designed to automatically learn the most relevant features 

of an image. The parameters used for the auto-encoder are presented in the 

Supplemental Table III. 
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Prediction Models 
In our experiments, we used the implementations of LR, SVM, RFC and MLP 

algorithms available in the Scikit-learn toolkit (20). The parameters used for 

optimization are presented in the Supplemental Tables I and II. The Microsoft 

Cognitive Toolkit (CNTK) (25) was used for the auto-encoder algorithm. In 

this study we explored three approaches described below. 

Prior knowledge variables with logistic regression 
We built 2 models using clinical variables for which the association with DCI 

has previously been established in literature (3,4) using multivariable logistic 

regression. The dataset is randomly split into training (75%) and testing 

(25%) set to prevent overoptimistic results. Model 1 included the following 

variables: WFNS, age, aneurysm treatment (clipping or coiling), 

intraparenchymal and intraventricular hemorrhage and TBV (3). Model 2 

included the following variables: hypertension, diabetes mellitus, history of 

smoking, alcohol use, hyperglycemia and Hunt and Hess grade on admission 

(4).  

Clinical variables with Machine Learning 
We built four predictive models using only clinical variables and ML 

algorithms (SVM, RFC, LR and MLP) and determined the most important 

variables. Figure 2.1 provides an overview of the workflow. First, the dataset 

is randomly split into training (75%) and testing (25%) set to prevent 

overoptimistic results and prevent overfitting. Subsequently, the training set 

is randomly split into training and validation using 5-fold cross-validation for 

feature selection and parameter optimization. Random Forest was used to 

assess feature importance since it is easily interpreTable (20). Based on the 

RF feature importance variables were recursively eliminated. The variables 

left after each elimination were used to optimize the models. Finally, The ML 

models were applied to the testing set and their accuracy was measured. The 

steps c-e (Figure 2.1) were repeated until only one feature was left. The steps 

a-e were repeated 100 times using Monte-Carlo cross-validation (7). The 

averages and 95% CI of the accuracy measures were computed for the 100 

cross validation iterations (Figure 2.1, step f). 
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Figure 2.1. Machine learning model creation workflow. 

Image  features and clinical data with Machine Learning 
We built four models using ML algorithms and a combination of the best 

clinical variables (determined with RFC) and features automatically extracted 

from CT-images using the auto-encoder (for implementation details see the 

Supplemental Section I. The number of features generated by the auto-

encoder was much higher than the number of features in the clinical dataset 

(2048 vs 48). Therefore, to preserve the value of the clinical features, the 

dimension of image features was reduced using PCA, which transforms the 

data into a smaller set of features  based on the variance as proposed by Zhang 

et al, (18). The number of PCA components was optimized based on the AUC. 
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The image features obtained with  PCA were added to the clinical features 

(most relevant ones obtained from the ML approach) and the dataset 

containing the combination of features was used with the workflow presented 

in (Figure 2.1).  

Model predictive performance assessment  
To evaluate the performance of each approach, we computed the average of 

the area under the curve (AUC) of the receiver operating characteristic curve 

(ROC) and the sensitivity and specificity with 95% CI. Differences in 

accuracy were considered significant if the CI did not overlap, and if the 95% 

CI of the difference between AUC distributions did not contain the null value. 

The specificity and sensitivity were calculated based on upper left corner of 

the ROC curve. 

Model interpretation 
Machine Learning models are often seen as black boxes. However, for 

clinical decision making it is of utmost importance to understand what 

variables are considered important for the model and, in a deeper level, what 

variable influenced each individual prediction. To increase the interpretability 

of our results we explored the best performing model (Random Forest), by 

computing the average feature importance and ranking them (from most 

important to least important) to provide more insight into the impact of those  

features in the models. 

For this purpose we applied a model explanation technique named Local 

Interpretable Model-agnostic Explanations (LIME) (26). LIME automatically 

creates an interpretable model locally around the prediction boundary of a 

given model (in our case the ML methods SVM, RF, LR, NN), providing an 

interpretation of each individual prediction and how the value of each variable 

affects it. To stress the importance of image features, we compared the models 

with and without image features and assessed the impact on DCI prediction 

using LIME. More details about LIME can be found in the Supplemental 

Section II. 
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Results 
The AUC values for the models built with variables manually chosen based 

on the prior knowledge approach are shown in Table 2.1. The combination of 

TBV, age, WFNS, treatment (clipping, coiling or no treatment), presence of 

intraparenchymal and intraventricular hemorrhage (Model 1) yielded the best 

average AUC of 0.63 (95% CI 0.62 - 0.63). 

Table 2.1. Average AUC, Sensitivity and Specificity with 95% CI of DCI prediction 

models for all approaches. First two columns specify which Data (variables) were 

used to build each Model 

Data Model AUC 

95% CI 

Sensitivity 

95% CI 

Specificity 

95% CI 

Prior 

knowledge 

variables* 

LR 

 (Model 1) 

0.63 

(0.62–0.63) 

0.67 

(0.64–0.70) 

0.62 

(0.59-0.65) 

Prior 

knowledge 

variables** 

LR 

 (Model 2) 

0.59 

(0.57–0.60) 

0.61 

(0.57–0.65) 

0.64 

(0.60-0.68) 

All clinical 

variables 

SVM 0.64 

(0.63–0.65) 

0.67 

(0.63–0.70) 

0.64 

(0.61-0.67) 

RFC 0.68 

(0.65–0.69) 

0.78 

(0.75–0.81) 

0.57 

(0.54-0.61) 

LR 0.61 

(0.60–0.63) 

0.65 

(0.61–0.68) 

0.62 

(0.59-0.67) 

MLP 0.63 

(0.62–0.64) 

0.59 

(0.56–0.62) 

0.79 

(0.76-0.81) 

All clinical 

variables see 

combined 

with extracted 

image 

features 

SVM 0.68 

(0.65–0.68) 

0.63 

(0.59–0.66) 

0.73 

(0.70-0.76) 

RFC 0.74 

(0.72–0.75) 

0.67 

(0.65–0.70) 

0.75 

(0.72-0.78) 

LR 0.65 

(0.64 - 0.67) 

0.65 

(0.62-0.67) 

0.69 

(0.66-0.71) 

MLP 0.67 

(0.66 – 0.68) 

0.64 

(0.60-0.67) 

0.72 

(0.69-0.75) 
AUC = Area under the curve; LR = Logistic Regression; SVM = Support Vector Machine; RFC = 

Random Forest; MLP = Multilayer Perceptron; All Variables =  see Supplemental Table IV.  

* WFNS, age, treatment (clipping or coiling), intraparenchymal and intraventricular hemorrhage, 

(TBV)  (3). 

** Hypertension, diabetes mellitus, history of smoking, alcohol use, hyperglycemia and Hunt and Hess 

grade on admission  (4). 

 

The most relevant clinical features (with the best AUC) selected by the ML 

models were, in order of relevance for the model: TBV, presence of 

intraparenchymal blood, time from ictus to CT, age, GCS, aneurysm height, 
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presence of subdural blood, aneurysm width, treatment (clipping, coiling or 

no treatment) and aneurysm location. The AUC measures for the ML methods 

are shown in Table 2.1 and the ROC curves are displayed in Figure 2.2 (top). 

The RFC had the highest accuracy with an AUC of 0.68 (95% CI 0.65 - 0.69). 

The AUCs for the Image features and clinical data with Machine Learning 

approach are shown in Table 2.1 and the ROC curves in Figure 2.2 (bottom). 

Again, the RFC had the highest accuracy with an AUC of 0.74 (95% CI 0.72 

- 0.75), which was the highest accuracy obtained in our experiments. The 

most relevant features for this approach were, in order of relevance for the 

model: two automatically extracted image features, TBV, presence of 

intraparenchymal blood, time from ictus to CT, two other automatically 

extracted image features, age, aneurysm height, presence of subdural blood, 

aneurysm width, and GCS. The 95% CI of the difference between the AUC 

distributions of the Clinical variables with Machine Learning approach and 

the Image features and clinical data with Machine Learning approach were: 

0.04 - 0.07. Therefore, we can conclude that there is statistically significant 

difference in the two distributions, suggesting that the image features 

extracted using an auto-encoder improved DCI prediction. 

The Supplemental Figure II presents the feature importance for the best 

performing model (RF)  using only clinical variables and using the 

combination of clinical variables and auto-encoder image features.  
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Figure 2.2. LIME model explanation of a DCI positive patient. The model built 

using the clinical variables suggest a lower risk of DCI (top). After including the 

image features (bottom), the model suggests a higher risk for DCI. 
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Figure 2.3 was created using the model explanation technique LIME using 

clinical features (top) and  the combination of clinical and image features 

(bottom) to explain the decision of the RF model for a specific DCI patient.  

 

Figure 2.3. Average ROC curve for only clinical variables with ML methods (top) 

and both clinical and image features with ML (bottom). RFC= Random Forest; 

SVM= Support Vector Machine; MLP = Multilayer Perceptron; LR= Logistic 

Regression. 
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We can note that the model without images suggests a lower risk of DCI 

(0.36), even though some variables point to a higher risk. This occurs because 

most of the variables point to a lower risk. 

After combining the clinical and image features, many still point to a lower 

risk of DCI, though the majority of image features point to a higher risk of 

DCI. The combined features increase the total risk of DCI for this patient. 

More examples can be found in the Supplemental Figure I and II. 

Discussion 
In this dataset, most ML methods showed higher accuracy in predicting DCI 

compared to logistic regression. The prediction accuracy of the models was 

improved when image features extracted automatically with auto-encoder 

were combined into the model. The highest average accuracy was obtained 

using the RFC and the combination of clinical and image features. Using 

LIME, we have shown how each feature used in the model affects an 

individual prediction, providing insight into the “black-box” ML models. 

This visualization provides insight into a model’s risk prediction. We have 

further provided a visualization of how the combination of image feature 

improved the accuracy of DCI risk prediction (Figure 2.3).  

 Our results suggest that the TBV, blood location, age, GCS, and treatment 

are associated with the occurrence of DCI, which is in accordance with 

previous studies (3,4,6). These previous studies relied mostly on 

multivariable LR. Notably, the accuracy obtained by LR models were the 

lowest in our study. With the use of ML algorithms, we found variables that 

increased the predictive accuracy, which have not been associated with DCI 

before (time from ictus to CT, presence of subdural blood, GCS, treatment, 

and aneurysm height, width and location). However, a causal relationship 

between these features and DCI was not further explored in this study. “In our 

analysis, some of the parameters with value in the prediction of DCI were not 

identified as risk factors in previous studies. For example, in contrast to 

previous studies (3,4), aneurysm width and height were included in our ML 

models. ML models use different mechanisms than commonly used linear 

regression techniques, which may put these parameters forward in the 

predictions. However, these parameters were not the most relevant ones in 
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our ML models, which is expressed by the relative low importance compared 

to other parameters (Supplemental Figure I). 

In (27), the outcome of SAH patients using ML was the main topic. Their 

family of methods was restricted to decision trees, while in our work we 

included multiple families of methods such as Neural Networks, Support 

Vector Machines, Logistic Regression and Ensemble methods. Since the 

learning process of these families of methods differ from each other, a higher 

range of feature relationships could be explored in our set-up. The major 

contribution of our study comes from the combination of clinical and image 

data. With an automatic unsupervised feature extraction approach, image 

features were extracted from baseline CT scans and their combination with 

clinical features showed significant improvement in DCI prediction. Since 

our approach is unsupervised, the images do not require any sort of annotation 

and are less prone to bias from labels and overfitting. A downside of our 

approach is that the multiple downsampling steps hamper the interpretation 

of these image features. 

There was a significant increase in sensitivity when comparing prior 

knowledge model 1 to  RFC using all clinical variables. This shows that the 

RFC was better at identifying patients at risk of DCI than the other models. 

Though, the models were not statistically significant better at identifying 

patients not at risk. The combination of clinical data with image features 

increased the specificity of the models, making them more precise at 

identifying patients not at risk of developing DCI, which for clinical practice 

may be more useful to reduce the costs related to futile intensive care 

monitoring for DCI (2).  

A limitation of common regression models is that the number of features that 

can be included is limited. Based on the Rule of Ten, one should have at least 

10 events per feature included in the LR model. Note that it has already been 

proven that this rule is not so strict and  that models with less events per 

feature (5-9) can still be used with good predictive results (28). In our dataset 

we had less than three events per feature, which makes the LR model prone 

to overfitting. The NCCT images contained a large number of voxels. Using 

the whole image for training the auto-encoder increases the risk of overfitting, 

due to the large number of input image features and parameters to optimize. 
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We reduced this risk by downscaling and augmenting the scans and applying 

cross-validation. The ML algorithms used in this study are able to handle such 

high dimensional feature spaces with less risk of overfitting, provided that 

proper approaches, such as data augmentation, cross-validation and 

regularization are taken into account (7,8). Even though Monte-Carlo cross-

validation was used with 100 iterations, it does not replace the need for 

validation on an external dataset. Moreover, the loosely formulated 

definitions used for DCI makes external validation even harder, since two 

datasets with the same definition are needed. In our study, however, DCI was 

strictly defined according to the definition of Vergouwen et al (13) and 

consistently adopted throughout the dataset.  

To determine the best parameter configurations to build the ML models can 

be computationally expensive and time consuming. Moreover, selecting the 

range of values used for fine-tuning is difficult. In this study, the selection of 

the range of values for the parameters was based on previous studies and the 

Scikit -learn toolkit implementation suggestions (20,29). Nevertheless, it may 

be worthwhile to study models with different (number of) parameters. 

The interpretation of these 3D-image features is challenging, as discussed in 

other studies (30). This will be subject of future work which will investigate 

other feature extraction techniques for the image data that are easier to 

visualize, to provide insight in the interpretation of the image features. 

Conclusion 
Our findings indicate that ML algorithms improves prediction of DCI in 

patients with aSAH in the population studied. We show that features that have 

not been considered before may increase the accuracy of DCI prediction. 

Feature visualization using LIME provides a better understanding of the 

models and might improve clinical decision making. Imaging features 

extracted automatically using ML techniques further improve the accuracy in 

predicting DCI. 
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Supplemental material 
Supplemental Table I. Hyper-parameters used for SVM 

Classifier Kernel Type Penalty 

parameter C 

Kernel 

coefficient γ 

Degree of the 

Polynomial 

kernel 

SVM Linear [0.001, 0.01, 

0.1, 1, 10, 100] 

n.a. n.a. 

 Radial basis 

function 

[0.001, 0.01, 

0.1, 1, 10, 100] 

[1, 0.1, 0.01, 

0.001, 0.0001] 

n.a. 

 Polynomial [0.001, 0.01, 

0.1, 1, 10, 100] 

[1, 0.1, 0.01, 

0.001, 0.0001] 

[1,2,3,4] 

 

Supplemental Table II. Hyper-parameters used for RFC and MLP 

Classifier Parameter Name Parameter Value 

RFC Number of Trees [100,200,400,600,800] 

 Max features for split auto, sqrt and log2 

 Quality of split Gini or Entropy 

MLP Hidden Layer sizes [50,25], [60,30 ], [60,40,20], [50,30,10], 

[70,40,20], [70,30], [80,50,30], 

[80,60,30,10] 

 Regularization 

parameter 

[0.1, 0.01, 0.001, 0.0001] 

 Batch size [64, 128]   

 Learning rate [0.01, 0.05, 0.001, 0.005, 0.0001] 

 

Supplemental Table III. Hyper-parameters used for the auto-encoder 

Patch Size Conv 

Layer 

Max 

Pool 

Conv 

Layer 

Max 

pool 

Conv 

Layer 

Max 

pool 

128x128x19 7x7x7 

feature 

maps=16 

2x2x2 

stride 

(2:2:1) 

5x5x5  

feature 

maps=16 

2x2x2 

stride    

(2:2:2) 

3x3x3 

feature 

maps=32 

2x2x2 

stride    

(2:2:1) 

128x128x19 5x5x5 

feature 

maps=16 

2x2x2 

stride 

(2:2:1) 

3x3x3 

feature 

maps=16 

2x2x2 

stride    

(2:2:2) 

3x3x3 

feature 

maps=32 

2x2x2 

stride    

(2:2:1) 
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Supplemental Table IV. Patient characteristics 

Variable All (317) no DCI 

(220) 

DCI 

(97) 

Missing

% 

p-value 

Age (mean/SD) 57.66 

(12.1) 

57.68 

(10.9) 

57.62 

(12.6) 

0 

(0.0) 

0.964 

Female sex (%) 211 

(66.6) 

143 

(70.1) 

68 

(65.0) 

0 

(0.0) 

0.448 

History of aneurysmal 

subarachnoid hemorrhage 

(%) 

5  

(1.6) 

4  

(1.0) 

1  

(1.8) 

31 

 (9.8) 

1.0 

History of intracerebral 

hemorrhage (%) 

2  

(0.6) 

2  

(0.0) 

0  

(0.9) 

31  

(9.8) 

1.0 

History of cardiovascular 

disorder (%) 

58 

(18.3) 

43  

(15.5) 

15 

(19.5) 

24 

 (7.6) 

0.50 

History of diabetes mellitus 

(%) 

21  

(6.6) 

15 

 (6.2) 

6  

(6.8) 

29  

(9.1) 

0.939 

History of hypertension (%) 104 

(32.8) 

75  

(29.9) 

29 

(34.1) 

27 

 (8.5) 

0.521 

History of hyper cholesterol 

(%) 

53 

(16.7) 

35 

 (18.6) 

18 

(15.9) 

32  

(10.1) 

0.617 

 

History of Smoking (%)    83  

(26.2) 

0.628 

No 55 

(17.4) 

37  

(18.6) 

18 

(16.8) 

  

Yes, but stopped 60 

(18.9) 

44 

 (16.5) 

16 

(20.0) 

  

Yes, still smokes 119 

(37.5) 

79  

(41.2) 

40 

(35.9) 

  

History of alcohol use (%) 134 

(42.3) 

89 

(46.4) 

45 

(40.5) 

83  

(26.2) 

0.349 

Previous MRs (%)    89  

(28.1) 

0.741 

0 158 

(49.8) 

108 

(51.5) 

50 

(49.1) 

  

1 46 

(14.5) 

30  

(16.5) 

16 

(13.6) 

  

2 16 

 (5.0) 

11  

(5.2) 

5  

(5.0) 

  

3 6 

 (1.9) 

4  

(2.1) 

2  

(1.8) 

  

4 1 

 (0.3) 

0  

(1.0) 

1  

(0.0) 

  

5 1  

(0.3) 

1  

(0.0) 

0 

 (0.5) 

  

Patient sedated (%) 64 

(20.2) 

43 

 (21.6) 

21 

(19.5) 

112 

(35.3) 

0.631 

Glasgow coma scale 

(mean/SD) on admission 

13.17 

(3.2) 

13.17 

(2.9) 

13.14 

(3.3) 

99.00 

(31.2) 

0.946 

WFNS on admission (%)    79 

 (24.9) 

0.391 

1 118 

(37.2) 

86  

(33.0) 

32 

(39.1) 
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Supplemental Table IV (continued)  

2 55 

(17.4) 

33  

(22.7) 

22 

(15.0) 

  

3 9  

(2.8) 

5  

(4.1) 

4  

(2.3) 

  

4 32 

(10.1) 

23  

(9.3) 

9  

(10.5) 

  

5 24  

(7.6) 

15 

 (9.3) 

9  

(6.8) 

  

Hunt and Hess score (%)    7  

(2.2) 

0.238 

1 55 

(17.4) 

37 

 (18.6) 

18 

(16.8) 

  

2 96 

(30.3) 

71  

(25.8) 

25 

(32.3) 

  

3 56 

(17.7) 

33 

 (23.7) 

23 

(15.0) 

  

4 24  

(7.6) 

15 

 (9.3) 

9 

 (6.8) 

  

5 79 

(24.9) 

59 

 (20.6) 

20 

(26.8) 

  

Fisher score (%)    1 

 (0.3) 

0.228 

1 11 

 (3.5) 

10  

(1.0) 

1  

(4.5) 

  

2 18 

 (5.7) 

14 

 (4.1) 

4  

(6.4) 

  

3 44 

(13.9) 

27 

 (17.5) 

17 

(12.3) 

  

4 243 

(76.7) 

168 

(77.3) 

75 

(76.4) 

  

Modified Fisher score (%)    1 

 (0.3) 

0.317 

 

0 

12  

(3.8) 

11 

 (1.0) 

1  

(5.0) 

  

1 17  

(5.4) 

13 

 (4.1) 

4 

 (5.9) 

  

2 2 

 (0.6) 

2  

(0.0) 

0  

(0.9) 

  

3 69 

(21.8) 

45 

 (24.7) 

24 

(20.5) 

  

4 216 

(68.1) 

148 

(70.1) 

68 

(67.3) 

  

Presence of intraventricular

 hemorrhage (%) 

214 

(67.5) 

148 

(68.0) 

66 

(67.3) 

88 

 (27.8) 

0.782 

Presence of intraparenchym

al hemorrhage (%) 

83 

(26.2) 

54 

 (29.9) 

29 

(24.5) 

172 

(54.3) 

0.434 

Presence of subdural hemor

rhage (%) 

19  

(6.0) 

13 

 (6.2) 

6 

 (5.9) 

209 

(65.9) 

0.979 

Total hemorrhage volume (

mean/SD) 

37.22 

(30.3) 

34.60 

(31.0) 

43.22 

(29.6) 

2.00 

(0.6) 

0.023 

Time from Ictus to admissio

n (mean/SD) 

30.93 

(107.0) 

31.60 

(58.6) 

29.39 

(122.4) 

30.93 

(107.0) 

0.829 
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Supplemental Table IV (continued) 

Number of aneurysms (mea

n/SD) 

 

1.28 

(0.7) 

1.31 

(0.6) 

1.23 

(0.7) 

0.00 

(0.0) 

0.292 

Height of aneurysm (mean/

SD) 

  

6.82 

(5.4) 

6.93 

(3.8) 

6.58 

(6.0) 

6.00 

(1.9) 

0.539 

Width of aneurysm (mean/S

D) 

 

5.51 

(4.3) 

5.54 

(3.4) 

5.45 

(4.6) 

7.00 

(2.2) 

0.855 

Side of aneurysm (%) 

 

   3 

 (0.9) 

0.021 

Left 156 

(49.2) 

99  

(58.8) 

57 

(45.0) 

  

Right 131 

(41.3) 

94 

 (38.1) 

37 

(42.7) 

  

Middle 27  

(8.5) 

24 

 (3.1) 

3  

(10.9) 

  

Shape of aneurysm (%)    5 

 (1.6) 

0.573 

Saccular  284 

(89.6) 

195 

(91.8) 

89 

(88.6) 

  

Non-saccular (fusiform/rupt

ured)  

26 

 (8.2) 

20  

(6.2) 

6  

(9.1) 

  

Other 2 

 (0.6) 

1 

 (1.0) 

1  

(0.5) 

  

Aneurysm treatment (%)    0 (0.0) 0.002 

No 48 

(15.1) 

44  

(4.1) 

4  

(20.0) 

  

Coiling 212 

(66.9) 

144 

(70.1) 

68 

(65.5) 

  

Clipping 54 

(17.0) 

30 

 (24.7) 

24 

(13.6) 

  

Coiling plus stent 2 

 (0.6) 

1 

 (1.0) 

1 

 (0.5) 

  

Flow diversion 1 

 (0.3) 

1 

 (0.0) 

0 

 (0.5) 

  

Rebleed number (%)    91 

 (28.7) 

0.628 

0 178 

(56.2) 

120 

(59.8) 

58 

(54.5) 

  

1 34 

(10.7) 

26 

 (8.2) 

8 

 (11.8) 

  

2 12 

 (3.8) 

7 

 (5.2) 

5 

 (3.2) 

  

3 1 

 (0.3) 

1 

 (0.0) 

0 

 (0.5) 

  

5 1 

 (0.3) 

1 

 (0.0) 

0 

 (0.5) 

  

Treatment for rebleed (%)    0 

 (0.0) 

0.998 
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No 254 

(80.1) 

176 

(80.4) 

78 

(80.0) 

  

Yes, based on both CT bloo

d increase and clinical deter

ioration  

27  

(8.5) 

19 

 (8.2) 

8 

 (8.6) 

  

Yes, based on blood increas

e on CT scan 

6 

 (1.9) 

4 

 (2.1) 

2  

(1.8) 

  

Yes, based on clinical deteri

oration 

30  

(9.5) 

21 

 (9.3) 

9 

 (9.5) 

  

Location of aneurysm (%)    0 

 (0.0) 

0.044 

Posterior circulation 66 

(20.8) 

53 

 (24.1) 

13 

 (13.4) 

  

Anterior circulation 251 

(79.2) 

167 

 (75.9) 

84  

(86.6) 

  

 

Supplemental Section I – Auto-encoder implementation 

Stacked Convolutional Auto-encoder is a typical unsupervised feature learning 

algorithm that scales well to high-dimensional inputs and is robust to noise and 

variations This method, learns features (characteristics) from the image by first 

encoding the input into a lower dimensional space using convolutional and pooling 

layers, and then reconstructs it using the inverse operations (deconvolution and 

unpooling)(1). The weights from this network are trained based on the difference 

between the input image and the reconstructed output image. The features learned 

by the auto-encoder are used to reconstruct the image. These features are usually an 

average representation of the images, which is unlikely to yield the discovery of a 

more useful representation than the input image. To solve this problem, we used the 

same approach from (2) which consists in applying noise to the input image and 

trying to reconstruct the normal scan using the SCAE. This approach is called 

Stacked Denoising Convolutional Auto-encoder (SDCAE) and will force the auto-

encoder to extract more robust features. 

To speed up the training process (and allow the use of more samples per mini-batch) 

the images were downscaled by a factor of 4, resulting in scans of size 128x128x20. 

In order to account for variations in the data and increase the number of samples, we 

performed data augmentation using label-preserving transformations (translation, 

rotation and reflection), following the approach used in (3).   

Supplemental Section II - Lime explanation 

Machine learning (ML) methods are often seen as black boxes, since explaining their 

predictions is usually not a trivial task. In order to build trust, it is important to 
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visualize which features influenced the model’s prediction. LIME is a tool that can 

be used to locally explain the predictions of a given model. The explanation is based 

on visual representations that provide qualitative understanding of the model. While 

a model’s decision boundary can be very complex globally, it can be easier to 

interpret the vicinity around a particular sample of this complex decision boundary. 

This particular sample is perturbed and a sparse linear model is built around it and 

used for explanation. In summary, LIME creates an explanation by approximating a 

“black box” model by a more interpretable one. 

More examples of LIME explanations are shown in Supplemental Figures II and III. 

In Figure II (top), a patient that developed DCI received a low risk prediction when 

using only clinical features and a Random Forest model, even though some variables, 

such as total blood volume, strongly suggest a higher risk of DCI. After including 

image features (Figure II bottom), the risk for DCI increased (from 0.24 to 0.71), 

and most of the images features suggested a higher risk of DCI. In Figure III (top) a 

patient that did not develop DCI was assessed with LIME. First the risk for DCI and 

no DCI is similar (top). After including the image features (Figure III bottom), some 

image features strongly suggest a lower risk of DCI, which reduces the overall risk 

predicted by the ML model.  
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Supplemental Figure I. Feature Importance  for RF classifier. Top using only the 

clinical data and bottom using a combination of clinical and image features. 
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Supplemental Figure II. LIME model explanation of a DCI positive patient. The 

model built using the clinical features suggest a lower risk of DCI (Top). After 

including the image features (bottom), the model suggests a higher risk for DCI. 
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Supplemental Figure III. LIME model explanation of a DCI Negative patient. 

The model built using the clinical features suggest a higher risk of DCI (Top). 

After including the image features (bottom), the model suggests a lower risk for 

DCI. 

Supplemental References 
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Abstract 
Background: Endovascular treatment (EVT) is effective for stroke patients 

with a large vessel occlusion (LVO) of the anterior circulation. To further 

improve personalized stroke care, it is essential to accurately predict outcome 

after EVT. Machine learning might outperform classical prediction methods 

as it is capable of addressing complex interactions and non-linear relations 

between variables. 

Methods: We included patients from the Multicenter Randomized Clinical 

Trial of Endovascular Treatment for Acute Ischemic Stroke in the 

Netherlands (MR CLEAN) Registry, an observational cohort of LVO patients 

treated with EVT. We applied the following machine learning algorithms: 

Random Forests, Support Vector Machine, Neural Network, and Super 

Learner and compared their predictive value with classic logistic regression 

models using various variable selection methodologies. Outcome variables 

were good reperfusion (post-mTICI ≥2b) and functional independence 

(modified Rankin Scale ≤2) at 3 months using 1) only baseline variables and 

2) baseline and treatment variables. Area under the ROC-curves (AUC) and 

difference of mean AUC between the models were assessed. 

Results: We included 1383 EVT patients, with good reperfusion in 531 (38%) 

and functional independence in 525 (38%) patients. Machine learning and 

logistic regression models all performed poorly in predicting good 

reperfusion (range mean AUC:0.53-0.57), and moderately in predicting 3-

month functional independence (range mean AUC:0.77-0.79) using only 

baseline variables. All models performed well in predicting 3-month 

functional independence using both baseline and treatment variables (range 

mean AUC:0.88-0.91) with a negligible difference of mean AUC 

(0.01;95%CI:0.00-0.01) between best performing machine learning 

algorithm (Random Forests) and best performing logistic regression model 

(based on prior knowledge).  

Conclusion: In patients with LVO machine learning algorithms did not 

outperform logistic regression models in predicting reperfusion and 3-month 

functional independence after endovascular treatment. For all models at time 
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of admission radiological outcome was more difficult to predict than clinical 

outcome. 

Introduction 
Endovascular treatment (EVT) is effective for ischemic stroke patients with 

a large vessel occlusion (LVO) of the anterior circulation. EVT results in a 

number needed to treat of 2.6 to reduce disability by at least one level on the 

modified Rankin Scale (mRS).1 A recent meta-analysis showed a positive 

treatment effect of EVT across patient subgroups including different age 

groups, varying stroke severity, sex, and stroke localization.1 However, many 

clinical and imaging predictors or their combinations were not considered in 

the subgroup analysis. Moreover, the RCTs that provided the data differed in 

their patient selection criteria. To further improve personalized stroke care, it 

is essential to accurately predict outcome and eventually differentiate 

between patients who will and will not benefit from EVT.  

Machine learning belongs to the domain of artificial intelligence and provides 

a promising tool in pursuing personalized outcome prediction, which is 

increasingly used in medicine.2-7 The machine learning methodology allows 

discovering empirical patterns in data through automated algorithms. In some 

clinical settings machine learning algorithms outperform classical regression 

models such as logistic regression, possibly through more efficient processing 

of non-linear relationships and complex interactions between variables,6, 8 

although poorer performance has also been observed.9 

In this study, we used multiple machine learning algorithms and logistic 

regression with multiple variable selection methods to predict radiological 

and clinical outcome after EVT in a cohort of well-characterized stroke 

patients. We hypothesized that machine learning algorithms outperform 

classic multivariable logistic regression models in terms of discrimination 

between good and poor radiological and clinical outcome.  

Methods 
Patients 
We included patients registered between March 2014 and June 2016 in the 

Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute 
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Ischemic Stroke in the Netherlands (MR CLEAN) Registry. The MR CLEAN 

Registry is an ongoing, national, prospective, open, multicenter, 

observational monitoring study covering all 18 stroke intervention centers 

that perform EVT in the Netherlands, of which 16 participated in the MR 

CLEAN trial.10 The registry is a continuation of the MR CLEAN trial 

collaboration and includes all patients undergoing EVT (defined as entry into 

the angiography suite and receiving arterial puncture) for acute ischemic 

stroke in the anterior and posterior circulation. In the current analysis we 

included those patients who adhered to the following criteria: age 18 years 

and older, treatment in a center that participated in the MR CLEAN trial, and 

LVO in the anterior circulation (internal carotid artery (ICA), internal carotid 

artery terminus (ICA-T), middle (M1/M2) cerebral artery, or anterior 

(A1/A2) cerebral artery), shown by CT angiography (CTA) or digital 

subtraction angiography (DSA).11 

Clinical baseline characteristics 
We assessed the following clinical characteristics at admission: National 

Institutes of Health Stroke Scale (NIHSS), Glasgow Coma Scale, medical 

history (TIA, ischemic stroke, intracranial hemorrhage, subarachnoid 

hemorrhage, myocardial infarction, peripheral artery disease, diabetes 

mellitus, hypertension, hypercholesterolemia), smoking, laboratory tests 

(blood glucose, INR, creatinine, thrombocyte count, CRP), blood pressure, 

medication (thrombocyte aggregation inhibitors, oral anticoagulant drugs, 

anti-hypertensive drugs, statins), modified Rankin Score (mRS) before stroke 

onset, administration of intravenous tPA (yes/no), stroke onset to groin time, 

transfer from another hospital, and whether the patient was admitted during 

weekend or off hours. 

Radiological baseline parameters  
All imaging in the MR CLEAN Registry was assessed by an imaging core 

laboratory.11 On non-contrast CT, the size of initial lesion in the anterior 

circulation was assessed by the Alberta Stroke Program Early CT Score 

(ASPECTS). ASPECTS is a 10 point quantitative topographic score 

representing early ischemic change in the middle cerebral artery territory, 

with a scan without ischemic changes receiving an ASPECTS of 10 points.12 

In addition, presence of leukoaraiosis and old infarctions, hyperdense vessel 
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sign, and hemorrhagic transformation of the ischemic lesion were assessed on 

non-contrast CT.  

 On CTA, the core lab determined clot burden score, clot location, collaterals, 

and presence of intracranial atherosclerosis. The clot burden score evaluates 

the extent of thrombus in the anterior circulation by location scored on a 0–

10 scale. A score of 10 is normal, implying clot absence; a score of 0 implies 

complete multi-segment vessel occlusion.12 Presence of intracranial carotid 

artery stenosis, atherosclerotic occlusion, floating thrombus, pseudo-

occlusion, and carotid dissection were scored on CTA of the carotid arteries. 

Collaterals were assessed using a 4 point scale, with 0 for absent collaterals 

(0% filling of the vascular territory downstream of the occlusion), 1 for poor 

collaterals (>0% and ≤50% filling of the vascular territory downstream of the 

occlusion), 2 for moderate collaterals (>50% and <100% filling of the 

vascular territory downstream of the occlusion), and 3 for excellent collaterals 

(100% filling of the vascular territory downstream of the occlusion).13  

Treatment specific variables 
Variables collected during EVT were type of sedation during the procedure 

(general or conscious), use of a balloon guiding catheter, carotid stent 

placement, performed procedure (DSA only or thrombectomy), and type of 

EVT-device (stent retriever, aspiration device, or a combination of both). In 

addition, data were collected on adverse events during the procedure 

(perforation, dissection, distal thrombosis on DSA). 

Interventional DSA parameters in our dataset were occluded vessel segment 

(ICA: origin, cervical, petrous, cavernous, supraclinoid, M1-M4, A1, A2), 

arterial occlusive lesion (AOL) recanalization score before and after EVT,14 

evidence of vascular injury (i.e. perforation, or dissection, vasospasm, new 

clot in different vascular territory or distal thrombus confirmed with 

imaging), and modified Thrombolysis in Cerebral Infarction (mTICI)-score 

before and after EVT. The mTICI-score grades the following categories of 

cerebral reperfusion: no reperfusion of the distal vascular territory (0), 

minimal flow past the occlusion but no reperfusion (1), minor partial 

reperfusion (2a), major partial reperfusion (2b), and complete reperfusion 

(3).15 Further variables analyzed were time from stroke onset to 

recanalization, post-EVT stay on intensive care, high care or stroke care, 



Chapter 3 

54 

 

NIHSS after EVT (<48h), delta NIHSS (pre-treatment NIHSS subtracted 

from NIHSS <48h after EVT) and hemicraniectomy or symptomatic 

intracranial hemorrhage <48h after EVT.  

Outcome 
The primary radiological outcome was good reperfusion defined as modified 

TICI-score directly post-procedure (post-mTICI) ≥ 2b.15 The primary clinical 

outcome was functional independence at 3 months after stroke (mRS ≤ 2). 

We excluded patients in whom any of the main outcomes (3-month mRS and 

post-mTICI) were missing. 

To investigate the full potential of Machine learning compared with 

conventional methods in different settings after stroke we defined two 

prediction settings:  

First, we assessed the probability of good reperfusion and good 3-month 

functional independence in our cohort of patients that underwent EVT based 

only on variables that were available on admission before entry into the 

angiography suite. With this baseline prediction setting we are able to 

investigate the added value of machine learning for models that could 

potentially support future clinical decision making regarding the performance 

of EVT yes or no.  

Second, we tested the models for predicting 3-month functional independence 

in patients after EVT was performed. For this analysis we used all variables 

collected up to 48 hours after the end of the endovascular procedure (baseline 

and treatment variables). 

Machine learning algorithms 
The machine learning algorithms used in our study were Random Forests, 

Artificial Neural Network and Support Vector Machine, because they are 

among the algorithms that are currently most widely and successfully used 

for clinical data.2-7 Each one of them represents a different algorithm ‘family’, 

each with radically different internal algorithm structures.16 Since it was not 

known beforehand which kind of algorithm would perform best, we chose 

algorithms with different internal structures to increase the probability of 

good discriminative performance. We also used Super Learner, which is an 

ensemble method that finds the optimal weighted combination of predictions 
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of the Random Forests, Artificial Neural Network and Support Vector 

Machine algorithms used in this study. Ensemble methods such as Super 

Learner have been shown to increase predictive performance by increasing 

model flexibility.17 For the implementation of all machine learning algorithms 

we used off-the-shelf methods in the Python module Scikit-Learn.18  

Super Learner 
Super Learner is a stacking algorithm using cross-validated predictions of 

other models (i.e. a machine learning algorithm and logistic regression) and 

assigning weights to these predictions to optimize the final prediction. Super 

Learner’s predictive performance has been found to surpass individual 

machine learning models in various clinical studies.17, 19, 20 

Random Forests 
Random Forests consists of a collection of decision tree classifiers that are fit 

on random subsamples of patients and variables in the dataset. The variation 

of the subsampled variables creates a robust classifier. In the decision trees, 

each node represents a variable and splits the input data into branches based 

on an objective function that determines the optimal threshold for separating 

the outcome classes. The predictions from each tree are used as ‘votes’, and 

the outcome with the most votes is considered the predicted outcome for that 

specific patient.6, 21 From the Random Forests algorithm variable importances 

can be derived, which are the sum of weights of nodes of the trees containing 

a certain variable, averaged over all trees in the forest.22  

Support Vector Machine  
Support Vector Machine (SVM) is a kernel-based supervised machine 

learning classifier which can also be used to output probabilities. The SVM 

works by first mapping the input data into a high dimensional variable space. 

For binary classification, a hyperplane is subsequently determined to separate 

two classes such that the distance between the hyperplane and the closest data 

points is maximized.23 

Artificial Neural Network  
In this study we use the multilayer perceptron, a popular class of artificial 

neural network architecture composed of one or more interconnected layers 

of neurons that process data from the input layer into predictions for the 
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output layer. The algorithm computes a weight for each neuron based on input 

activation. These weights are updated by backpropagation and stochastic 

gradient descent.24, 25   

Logistic regression 
For logistic regression, generally a set of variables has to be selected to be 

included in the model. Since model performance can rely heavily on selecting 

the right variables, we tested five different variable selection methods prior 

to logistic regression. We first selected variables based on prior knowledge, 

a still widely used method that could be considered ‘classical’.26 We selected 

13 variables available at baseline that were included in a previous study for a 

similar purpose.27 (Supplemental Table Ia) In addition, from baseline and 

treatment variables we selected 15 variables based on expert opinions of 

vascular neurologists and radiologists. (Supplemental Table Ib).  

We further considered four automated variable selection methods: i) 

backward elimination, which is also considered to be a more classical 

approach,26 and three state-of-the-art variable selection methods: ii) least 

absolute shrinkage and selection operator (LASSO)28, iii) Elastic Net, which 

is a modification of the LASSO found to outperform the former while still 

having the advantage of a similar sparsity of representation29, and iv) 

selection based on Random Forests variable importance.  

Analysis pipeline 
We imputed missing values using multiple imputations by chained equations 

(MICE).30 Variables with 25% missing values or more were discarded from 

further analysis. All remaining variables used in this study are listed in 

Supplemental Table II and III. In total, 53 baseline variables and 30 treatment 

variables were used as input for machine learning algorithms and automated 

variable selection methods for logistic regression.  

The ordinal clinical (NIHSS) and radiological (clot burden and ASPECTS) 

scores were presented as continuous scores in all models to increase model 

efficiency, and we assumed linear trends underlying the ordinal scores.  

We used nested cross-validation (CV), consisting of an outer and an inner CV 

loop. In the outer CV loop we used stratified CV with 100 repeated random 

splits resulting in a training set including 80% and a test set including 20% of 
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all patients. Each training set was used as input for the inner CV loop, 

consisting of ten-fold CV.31, 32 In the inner CV loop we selected variables for 

the logistic regression models using the different variable selection methods, 

and optimized hyperparameters of all machine learning models. 

Hyperparameters are tuning parameters specific to each machine learning 

algorithm whose values have to be preset and cannot be directly learned from 

the data. We optimized hyperparameters with the random grid search module 

from Scikit-Learn.18 We selected those with highest area under the receiver 

operating characteristic (AUC) across all internal CV folds to find the best set 

of selected variables and hyperparameters. Figure 3.1 shows a schematic 

representation of our nested CV methodology. 

 

Figure 3.1. Schematic representation of nested cross-validation methodology. 

For all Random Forests models of both prediction settings we ranked 

variables by decreasing variable importance. For each variable we assessed 

the frequency of being among the 15 most important variables in a Random 

Forests model for each of the 100 external CV folds (Table 3.3). 

Model performance 
We assessed model discrimination (the ability to differentiate between 

patients with good and poor outcome) with receiver operating characteristic 

(ROC) analyses. Because of our outer CV loop with 100 repeated random 

splits, we obtained 100 different AUCs from every model. We computed the 
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average ROC-curve and mean AUC with 95% confidence intervals (CI) for 

all models. We evaluated differences between mean AUCs of the best 

performing machine learning model and best performing logistic regression 

model by computing the difference of means including the associated 95% 

CI. 

Results 
Of the 1627 patients registered between March 2014 and June 2016, we 

excluded 244 patients for this analysis because of age < 18 (n = 2), posterior 

circulation stroke (n = 79), missing MR CLEAN trial center (n = 20), and 

missing mRS or post-mTICI (n = 143). Mean age was 69.8 years (SD ± 14.4) 

and 738 (54%) of the 1383 included patients were men. In total, 531 (38%) 

patients had good reperfusion after EVT and 525 (38%) were functionally 

independent (mRS ≤ 2) three months after stroke. Baseline characteristics are 

shown in Table 3.1. 

  



Predicting outcome of endovascular treatment for acute ischemic stroke… 

59 

 

Table 3.1. Baseline characteristics of participants 

Characteristics All patients (n = 1383) 

Mean age ± SD (years) 69.8 ± 14.4 

Men, n (%) 738 (53.5) 

NIHSS score, median (IQR) 16 (11 - 20) 

Mean systolic blood pressure ± SD (mm Hg) 150 ± 25 

Medical history, n (%) 
 

   Atrial fibrillation 411 (30.7) 

   Hypertension 697 (51.1) 

   Diabetes mellitus 235 (17.1) 

   Myocardial infarction 216 (15.9) 

   Peripheral artery disease 127 (9.4) 

   Ischaemic stroke 227 (16.5) 

   Hypercholesterolemia  411 (29.7) 

Pre-stroke mRS > 2, n (%) 158 (11.6) 

Smoking, n (%) 314 (22.9) 

Medication use, n (%) 
 

   DOAC** 35 (2.6) 

   Coumarine  179 (13.0) 

   Antiplatelet 461 (33.7) 

   Heparin  52 (3.8) 

   Blood pressure medication 707 (52.1) 

   Statin  490 (36.2) 

Intravenous alteplase treatment, n (%) 1054 (76.2) 

ASPECTS, median (IQR) 9 (7 - 10) 

Time from stroke onset to groin in minutes, median (IQR) 210 (160 - 270) 

Collateral score ≥ 2 

 

764 (55) 

*National Institutes of Health Stroke Scale score 

**Direct Oral Anticoagulant drugs 

 

Prediction of good reperfusion after EVT in patients at time of 

admission 
Discrimination between good and poor reperfusion of the best machine 

learning algorithm (Support Vector Machine, mean AUC: 0.55) and the best 

logistic regression model (using backward elimination, mean AUC: 0.57) was 

similar (difference of mean AUCs: 0.02; 95% CI: 0.01 – 0.03). 
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Discrimination was poor for all models, with a mean AUCs ranging from 0.53 

to 0.57 (Table 3.2). Variable selection using LASSO or Elastic Net was not 

possible likely because the signal-to-noise ratio was insufficient.18  

Table 3.2. Discrimination of machine learning algorithms and logistic regression 

models across the various prediction settings 

Models, AUC 

 (95% CI)* 

Prediction setting 

 (used variables: predicted outcome) 

Baseline: 

post-mTICI 

Baseline: 

mRS 

All variables: 

mRS 

Super Learner 0.55 

 (0.54 - 0.56) 

0.79 

 (0.79 - 0.80) 

0.90 

 (0.90 - 0.91) 

Random Forests 0.55 

 (0.55 - 0.56) 

0.79 

 (0.79 - 0.79) 

0.91 

 (0.90 - 0.91) 

Support Vector Machine 0.53 

 (0.53 - 0.54) 

0.78 

 (0.77 - 0.78) 

0.88 

 (0.88 - 0.89) 

Neural Network 0.53 

 (0.53 - 0.54) 

0.77 

 (0.76 - 0.77) 

0.88 

 (0.88 - 0.89) 

LR: automated selection** 
  

   Random Forests 0.55 

 (0.55 - 0.56) 

0.78 

 (0.78 - 0.78) 

0.90 

 (0.90 - 0.90) 

   LASSO NA¥ 0.78 

 (0.78 - 0.79) 

0.90 

 (0.89 - 0.90) 

   Elastic Net NA¥ 0.77 

 (0.77 - 0.78) 

0.89 

 (0.88 - 0.89) 

   Backward elimination 0.57 

 (0.57 - 0.58) 

0.78 

 (0.77 - 0.78) 

0.90 

 (0.89 - 0.90) 

LR: Prior knowledgeǂ 0.55 

 (0.55 - 0.58) 

0.78 

 (0.78 - 0.79) 

0.90 

 (0.90 - 0.90) 

*Model discrimination is assessed by calculating mean Area Under the Curve (AUC) of the 

receiver operating characteristic across all outer cross-validation folds. 

**Logistic regression using automated variable selection methods. 
¥Variable selection not possible, likely due to insufficient signal-to-noise ratio. 
ǂLogistic regression using variables based on prior knowledge. 

 

Prediction of 3-month functional independence in patients at time 

of admission 
Discrimination of good functional outcome of the best machine learning 

algorithm (Super Learner, mean AUC: 0.79) and the best logistic regression 
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model (using LASSO, mean AUC: 0.78) was similar (difference of mean 

AUCs: 0.01; 95% CI: 0.01 – 0.01).  

Discrimination was moderate for all models, with a mean AUCs ranging from 

0.77 to 0.79.  

Prediction of 3-month functional independence in patients after 

performance of EVT 
Discrimination of good functional outcome of the best machine learning 

algorithm (Random Forests, mean AUC: 0.91) and the best logistic regression 

model (using prior knowledge, mean AUC: 0.90) was similar (difference of 

mean AUCs: 0.01; 95% CI: 0.00 – 0.01).  

Discrimination was good for all models, with mean AUCs ranging from 0.88 

to 0.91. 

We performed a post hoc analysis in patients with good reperfusion as defined 

by post-mTICI ≥ 2b, predicting 3-month functional outcome both at time of 

admission and after performance of EVT. We did not find significant 

differences in performance between machine learning algorithms and logistic 

regression models in this patient subset (data not shown). 

In Table 3.3 we show the top 15 variables based on the frequency of being 

among the 15 most important variables in a Random Forests model for each 

of the 100 external CV folds. 
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Table 3.3. Variable importance of Random Forests for various prediction settings 

(used variables: predicted outcome) 

 

NCCT = non-contrast CT; CRP = C-Reactive Protein; RR = blood pressure; NIHSS = 

National Institutes of Health Stroke Scale score. 

*Frequency of being among the 15 most important variables in a Random Forests model for 

each of the 100 external CV folds. **Location of intracranial occlusion on CTA. 

Discussion 
We found no difference in performance between best performing machine 

learning algorithms and best performing logistic regression models in 

predicting radiological or clinical outcome in stroke patients treated with 

EVT. For prediction of good reperfusion using variables available at baseline, 

all models showed a poor discriminative performance. This could indicate 

that reperfusion after EVT depends on characteristics not present in our 

variables available at time of admission, such as vascular anatomy or 

interventionalist related factors. Prediction of 3-month functional 

independence using variables known at baseline was moderate, predicting 3-

month functional independence using baseline and treatment variables 

resulted in good performance. 
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We hypothesized that machine learning would outperform logistic regression 

models due to simultaneous assessment of a large number of variables, and 

more efficient processing of non-linear relations and interactions between 

them. Although a large number of variables (83 in total, see Supplemental 

Table II and III) were available for analysis in the MR CLEAN Registry 

database, performance of best machine learning algorithms and best logistic 

regression models were similar. This could indicate that interactions and non-

linear relationships in our dataset were of limited importance.   

To interpret our results, several methodological limitations have to be 

considered. First, due to their great flexibility machine learning algorithms 

are prone to overfitting, which results in optimistic prediction performance. 

To account for overfitting we used nested CV, which is considered to be an 

effective method for this aim.33 Second, our outer CV loop resulted in 100 

AUCs per model leading to relatively small confidence intervals of mean 

AUCs. Although this increases the probability of statistically significant 

differences between mean AUCs of various models, the clinical relevance of 

these mean AUC differences is difficult to interpret. Because in our study 

mean AUC differences between models are minimal, clinical relevance of 

these differences is also negligible. Third, we used data from a registry. 

Registries might be prone to selection bias. However, we expect that selection 

bias in our study was minimal because the MRCLEAN Registry in principle 

covers all patients treated with EVT in the Netherlands. In addition, in all 

centers patients were treated according to national guidelines, and registration 

of treatment was a prerequisite for reimbursement.11 

Strong points of this study include the large sample size and standardized 

collection of patient data. Moreover, because of extensive hyperparameter 

tuning and state-of-the art variable selection methods, machine learning and 

logistic regression models were compared at their best performance. In 

several other studies that compared machine learning algorithms with only 

logistic regression methods using variables based on prior knowledge, 

machine learning outperformed logistic regression.6, 7, 34 Variable selection 

based on prior knowledge has the major drawback that predictive patterns in 

the data may be missed, as variable selection is strictly based on the literature 

and expert opinion.26 In our study however, logistic regression using variables 
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based on prior knowledge performed similarly to logistic regression using 

automated variable selection methods. 

The distinction between machine learning and ‘classical’ regression methods 

is largely artificial. However, a clear distinction between various machine 

learning algorithms and logistic regression exists in terms of model 

transparency, which could be seen as the understanding of the mechanism by 

which the model works.35 Logistic regression has the advantage of 

transparency at the level of individual variable coefficients, since from these 

coefficients odds ratios can be derived. However, variable importances 

derived from the Random Forests algorithm also offer insight in the 

importance of individual variables for prediction performance.22 These 

variable importances take interaction between variables into account and have 

a similar interpretation for continuous and discrete variables, unlike odds 

ratios which constitute an effect per unit change of a predictor. Hence, 

Random Forests could be used as an efficient screening tool to pick up 

predictive patterns in the data that could potentially lead to further hypothesis-

driven research. In Table 3.3 we show the top 15 variables from either the 

baseline or baseline and treatment variable set, based on Random Forests 

variable importance. The majority of variables in Table 3.3 do not overlap 

with the selection of variables based on prior knowledge, potentially 

providing researcher with additional information.  

In this dataset we found no clinically relevant differences in prediction of 

reperfusion and 3-month functional independence across all models. 

However, since it is generally not known on beforehand which type of model 

will result in the best predictive performance in a new dataset, our 

methodology could be of importance in future studies. We present an analysis 

pipeline with both machine learning algorithms and logistic regression 

models including state-of-the-art variable selection methods. Assessing 

predictive performance of all models simultaneously enables the researcher 

to make the proper trade-off between predictive performance and model 

transparency. As our analysis pipeline is fully automated and input variables 

and outcome label can be altered at will, it is relatively easy to reuse in future 

studies. The Python code of our pipeline has been made publicly available in 

an online repository (http://bit.ly/mrcleanml). 
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Supplemental material 
Supplemental Table I. Variables selected for logistic regression based on prior 

knowledge 

a. Baseline variables 

(n = 13) 

b. Baseline and treatment variables 

(n = 15)  

Age Age 

mRS prior to stroke mRS prior to stroke 

History of diabetes mellitus History of diabetes mellitus 

History of previous ischemic stroke History of hypertension 

History of atrial fibrillation History of previous ischemic stroke 

Systolic blood pressure Systolic blood pressure 

Intravenous thrombolysis Intravenous thrombolysis 

Collateral score on CTA Collateral score on CTA 

Location of intracranial occlusion on CTA Time from onset stroke to groin  

ASPECTS score on baseline Duration of EVT procedure  

NIHSS at baseline Location of intracranial occlusion on DSA 

Duration stroke onset stroke to groin  mTICI post EVT 

Clot burden score on CTA NIHSS post EVT (24-48 hours) 
 

General anesthesia during EVT 

  Symptomatic intracerebral hemorrhage 

mRS = modified Rankin Scale; CTA = CT angiography; DSA = Digital Substraction 

Angiography; mTICI = modified Thrombolysis in Cerebral Infarction score; AOL = Arterial 

Occlusive Lesion recanalization score; NIHSS = National Institutes of Health Stroke Scale 

score; DSA = Digital Substraction Angiography. 
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Supplemental Table II. Variables available at baseline 

Variables (n = 53)   

Age Non-contrast CT 

Sex     Hyperdense artery sign 

Medical history    Relevant (new) ischemia/ hypodensity 

   Stroke    Hemorrhagic transformation 

   Myocardial infarction    Leukoariosis 

   Peripheral artery disease    Old infarcts in same ASPECTS region 

   Diabetes mellitus     ASPECTS score  

   Hypertension CT angiography 

   Atrial fibrillation    Intracranial atherosclerosis 

   Hypercholesterolemia    Vascular malformation/ aneurysm 

mRS prior to stroke    Most proximal occlusion segment  

Medication use    Collateral score 

   Antiplatelet use    Clot burden score 

   DOAC use    Symptomatic carotid bifurcation 

   Coumarine use       Stenosis  

   Heparin use       Atherosclerotic occlusion  

   Blood pressure medication       Floating thrombus  

   Statin use       Pseudo-occlusion  

RR systolic       Carotid dissection 

RR diastolic NIHSS at baseline 

Laboratory parameters Admission on weekend 

   INR Admission during off hours 

   Thrombocyte count Transfer from other hospital 

   Creatinine Intravenous thrombolysis 

   CRP Glasgow Coma Scale 

   Glucose Duration from onset to groin in minutes 

Smoking   

NIHSS = National Institutes of Health Stroke Scale score; CRP: C-Reactive Protein; INR: 

International Normalized Ratio; mRS = modified Rankin Scale; DOAC = Direct Oral 

Anticoagulant drugs. 
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Supplemental Table III. Variables available during and after EVT 

Variables (n = 30)   

Most proximal occlusion segment on DSA Stent placement in ICA 

Occlusion other territories Balloon angioplasty 

Used balloon guiding Evidence of vascular injury on DSA 

Complication during intervention Duration from onset to recanalization 

Performed procedure  Duration of procedure 

First used EV treatment General anesthesia 

Attempts with MERCI as first choice Conscious sedation 

Administration of EVT medication Reperfusion during EVT 

Hemicraniectomy IC stay 

mTICI score pre EVT High care stay 

mTICI score post EVT Stroke care stay 

Occlusion side on DSA Delta NIHSS: follow-up minus baseline 

Pre-EVT AOL score Delta NIHSS ≥ 4 points higher after EVT 

Post-EVT AOL score Symptomatic intracranial hemorrhage  

Total attempts NIHSS after 24-48 hours 

EVT = Endovascular Treatment; DSA = Digital Substraction Angiography; mTICI = 

modified Thrombolysis in Cerebral Infarction score; AOL = Arterial Occlusive Lesion 

recanalization score; NIHSS = National Institutes of Health Stroke Scale score. 
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CHAPTER 4. 
Data-efficient deep learning of radiological image data 

for outcome prediction after endovascular treatment of 

patients with acute ischemic stroke 
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Abstract 
Treatment selection is becoming increasingly more important in acute 

ischemic stroke patient care. Clinical variables and radiological image 

biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, 

among others) have an important role in treatment selection and prognosis. 

Radiological biomarkers require expert annotation and are subject to inter-

observer variability. Recently, Deep Learning has been introduced to 

reproduce these radiological image biomarkers. Instead of reproducing these 

biomarkers, in this work, we investigated Deep Learning techniques for 

building models to directly predict good reperfusion after endovascular 

treatment (EVT) and good functional outcome using CT angiography images. 

These models do not require image annotation and are fast to compute. We 

compare the Deep Learning models to Machine Learning models using 

traditional radiological image biomarkers. We explored Residual Neural 

Network (ResNet) architectures, adapted them with Structured Receptive 

Fields (RFNN) and auto-encoders (AE) for network weight initialization. We 

further included model visualization techniques to provide insight into the 

networ7k’s decision-making process. We applied the methods on the MR 

CLEAN Registry dataset with 1301 patients. The Deep Learning models 

outperformed the models using traditional radiological image biomarkers in 

three out of four cross-validation folds for functional outcome (average AUC 

of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model 

visualization showed that the arteries were relevant features for functional 

outcome prediction. The best results were obtained for the ResNet models 

with RFNN. Auto-encoder initialization often improved the results. We 

concluded that, in our dataset, automated image analysis with Deep Learning 

methods outperforms radiological image biomarkers for stroke outcome 

prediction and has the potential to improve treatment selection. 
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Introduction 
Stroke is ranked among the leading causes of death and permanent disability 

in the last 15 years worldwide [1], [2]. Approximately 80% of all stroke 

patients with untreated large vessel occlusion in the anterior circulation do 

not regain functional independence or die within 90 days after stroke onset 

[3]. The Multicenter Randomized Clinical Trial of Endovascular Treatment 

for Acute Ischemic Stroke in the Netherlands (MR CLEAN Registry) has 

shown that this patient population can be effectively treated with 

endovascular treatment (EVT) [4].  

Accurate prediction of reperfusion and functional outcome has the potential 

to improve stroke care, as it could lead to selecting the most beneficial 

treatment option for the individual patient: to perform or to withhold EVT. 

Recent studies on outcome prediction strategies in ischemic stroke patients 

after EVT utilized clinical variables and radiological image biomarkers [5], 

[6]. In favor of standardized prognosis, various radiological stroke imaging 

biomarkers have been defined by specific, visually observable phenomena 

that imply stroke severity and functional outcome. These biomarkers include 

the extent of tissue damage characterized by edema (e.g. ASPECTS [7]) and 

extent of blood flow through the collateral circulation  (e.g. Collateral Score 

[8]), and they have been proven to be associated with functional outcome. 

The number of proposed radiological image biomarkers for prognosis in acute 

ischemic stroke is quite large. In MR CLEAN Registry, for example, 20 

biomarkers have been assessed. These biomarkers are commonly scored 

manually, may demand a considerable time effort and suffer from observer 

variability. For the collateral score, observer agreement as low as 50% with 

kappa’s ranging from 0.49 to 0.60 has been reported [9], and for the 

ASPECTS score a mean deviation close to one point has been found, with 

above 25% of the cases deviating more than two points [10]. Details about 

the other image biomarkers are shown in Supplemental Table I. 

Machine Learning (ML) enables the discovery of empirical patterns and 

linear/non-linear relationships in data through automated algorithms. 

Regarding imaging data, Deep Learning (DL) algorithms are particularly able 

to learn important predictive patterns, which may lead to increased prediction 

accuracy [11].  For example, an encoder-decoder CNN (inspired by the 
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SegNet [12]) was developed to predict final lesion volume and outcome in 

acute ischemic stroke patients using magnetic resonance imaging, with an 

AUC of 0.88 (10% higher than linear models) [13]. E-ASPECTS, a machine 

learning-based commercial software developed to automate ASPECTS 

scoring in CT scans, has recently been used to predict functional recovery and 

adverse outcome in acute ischemic stroke patients [14]. In the stroke lesion 

segmentation challenge (ISLES), a multi-scale 3D-CNN was the best 

performing model, with an average Dice score of 0.59  [15]. This multi-scale 

3D-CNN (named DeepMedic [15]) was also successfully applied to CTA to 

detect acute ischemic stroke (and segment the lesion) with an AUC of 0.93 

[16]. However, these specific DL approaches are generally limited by the 

manual determination of many of the biomarkers that are considered ground 

truth but suffer from high inter-observer variability. Besides, DL methods 

generally come at the cost of high complexity models with low 

interpretability [17], hampering the applicability in clinical settings. 

Due to the recent success of DL approaches in stroke medical imaging, we 

hypothesize that data-efficient DL methods trained on CT Angiography 

(CTA) imaging data might outperform well-known radiological image 

biomarkers in predicting good reperfusion after EVT and good functional 

outcome in patients with acute ischemic stroke. Next to assessing the 

accuracy, we adopt visualization techniques, since these prediction systems 

can be of more assistance when they provide direct insights into their 

decision-making process beyond generating a probability distribution. 

Methods 
Clinical data and pre-processing 
We included 1526 ischemic stroke patients registered between March 2014 

and June 2016 in the MR CLEAN Registry part1 [18]. The MR CLEAN 

Registry is an ongoing, prospective, observational, multicenter study at 16 

intervention hospitals in the Netherlands. Imaging data (CTA scans) available 

before EVT were used to develop the DL models and to determine 

radiological image biomarkers by expert radiologists. 

The raw CTA scans were of size (512x512xS), where S was the number of 

axial slices. Due to limited computational resources, we opted to reduce 
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sparsity and dimensionality of images by computing Maximum Intensity 

Projections (MIPs) from the CTA data in the axial plane. First, CTA scans 

were co-registered to a reference scan (a scan with no abnormalities) using 

rigid registration with the Elastix software [19] and the skull was removed 

from the images with a region growing algorithm since it is of high intensity 

and can hamper the quality of the MIPs [20]. The attenuation of the MIPs was 

clipped between +50 and +400 Hounsfield Units (HU) and normalized to the 

interval of [0,1]. The surrounding air was removed to reduce image size. The 

final image data size used as input for the DL models was 368x432 pixels 

(voxel size of 0.52,0.52 mm). After the pre-processing steps, 225 patients 

were excluded due to failure during registration, poor image quality, and 

noise or artifacts, leaving a total of 1301 patients to be used for model 

development. Table 4.1 contains the baseline characteristics of the patients 

used in our models. 

We created models to predict two outcome measures. First, good functional 

outcome after ischemic stroke - defined by the dichotomized modified Rankin 

Scale (mRS ≤ 2) at 90 days - mRS is a scale commonly used to assess the 

disability of stroke patients in daily activities. mRS ranges from 0 to 6, where 

zero means no disability, progressing to five (severe disability) and six 

(death). 

Second, good reperfusion - defined by the dichotomized modified 

Thrombolysis In Cerebral Infarction score (mTICI ≥ 2b). mTICI is a score 

that ranges from 0 (no antegrade reperfusion of the occluded vascular 

territory) to 3 (complete reperfusion). mTICI was assessed by 20 

neuroradiologists and one neurologist at an imaging core laboratory. The 

observers were blinded to all clinical findings, except occlusion location. 

mTICI was scored on digital subtraction angiography images [18]. 
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Table 4.1. Characteristics of patients in MR CLEAN Registry. Values correspond 

to the percentages of participants unless stated otherwise 

Characteristics All 

patients 

N=1301 

mRS 

0 – 2 

N=463 

mRS 

3 – 6 

N=838 

mTICI 0-

2a 

N = 552 

mTICI 

2b-3 

N = 749 

Age (years) 

(median/IQR) 

71 

(59 - 79) 

66 

(55 - 74) 

74 

(63 - 82) 

72 

(60 - 80) 

70 

(59 - 78) 

Men (%) 695  

(53.4) 

262 

(56.6) 

433  

(51.7) 

290 

 (52.5) 

405  

(54.1) 

NIHSS at baseline 

(median/IQR) 

16 

(11 - 20) 

1 

(9 - 17) 

17 

(13 - 21) 

16 

(12 - 20) 

15 

(11 - 19) 

Onset to groin 

puncture time 

(mins) (IQR) 

210 

(160-270) 

19 

(145-253) 

220 

(170-279) 

215 

(157-281) 

205 

(160-265) 

Systolic blood 

pressure 

 (mm Hg) 

(Mean/STD) 

150 

 (1.89) 

146  

(4.86) 

152  

(3.03) 

152  

(4.63) 

148  

(3.16) 

Intravenous 

alteplase treatment 

(%) 

1014 

(77.9) 

380 

(82.1) 

634 

(75.7) 

411 

(74.5) 

603 

(80.5) 

ASPECTs at  

Baseline  

(subgroups) 

0-4 81 

(6.2) 

16 

(3.5) 

6 

(7.8) 

36 

(6.5) 

45 

(6.0) 

5-7 310  

(23.8) 

95 

(20.5) 

215 

(25.7) 

131 

(23.7) 

179 

(23.9) 

8-10 880 

(67.6) 

340 

(73.4) 

540 

(64.4) 

370 

(67.0) 

510 

(68.1) 

 

Structured Receptive Field Neural Networks (RFNNs) 
Conventional CNNs (Convolutional Neural Networks) hardly excel in the 

presence of relatively small datasets, which presents a common challenge for 

many medical applications. To this end, in this work we explore a data-

efficient CNN formulation that builds on the structure of biological receptive 

fields.  

Structured Receptive Field Neural Networks (RFNNs) were proposed in [21] 

and have been shown to outperform CNNs on small- and medium-sized 
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datasets. RFNNs redefine convolutional kernels as linear combinations of 

Gaussian derivative filters. Contrary to traditional kernels, only the 

combination weights are trained, whereas the set of Gaussian derivatives is 

fixed. In this way, the number of parameters to train is potentially decreased, 

and prior knowledge about the spatial properties of local features is 

introduced. Gaussian filters and the Scale-space theory in computer vision 

[22] have been broadly explored in the medical imaging domain. Scale-space 

approaches have been successfully applied to medical imaging classification 

and segmentation with great performance improvements since they often 

assist the classifiers by revealing low and high-level features without 

introducing artifacts [23]–[25]. Furthermore, the interpretability of CNNs is 

enhanced by explicitly connecting classical image processing methods with 

the data-driven paradigm. 

Figure 4.1 illustrates the computation of I*N kernels of a RFNN 

convolutional layer l, where I is the number of input feature maps and N is 

the number of output feature maps. This RFNN formulation can be used in 

any convolutional layer to replace the conventional convolutional kernels 

while keeping the architecture of a CNN intact. 

 

Figure 4.1. Construction of RFNN convolutional kernels. Φm denotes the fixed set 

of Gaussian derivatives, αl the combination weights in the lth convolutional layer, 

and Fl
(I,n) the convolutional kernel producing the nth  output feature map of ltg layer 

from ith input feature-map. 

Unsupervised pre-training 
A random initialization scheme can place the parameters of a CNN in regions 

that do not generalize well, while the limitations in training data and 

computational resources create a burden in improving generalization during 
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training (e.g. increasing batch size). These problems make the training of deep 

architectures unstable and can lead to lower model accuracy [26]. Moreover, 

supervised training of CNNs is influenced by the ground truth labels, even 

though learning effective image features does not necessarily rely on image 

annotation. 

To face these challenges, we included unsupervised pre-training in the 

experiments using stacked denoising convolutional Auto-Encoders (AE) 

[26]. AEs learn a feature representation by compressing the input into a latent 

space and subsequently reconstruct the input using this representation. By 

optimizing the reconstruction from the input data, the AE is able to learn 

features that best represent the image. We constructed AEs from each CNN 

model by using their convolutional layers as the encoder part and extending 

with a corresponding sequence of transposed convolutional blocks as the 

decoder. Transposed convolutional blocks are comprised of the same Batch-

Normalization, ReLU, convolutional sequence but convolutions are replaced 

by up-sampling transposed convolutions. Using the training data, we trained 

an AE until the loss between the output and the input images stopped 

decreasing (depicted by the dashed lines in Figure 4.2). The learned encoding 

part of the network was subsequently used to train a dense layer using the 

labels (in a transfer learning fashion)  [27], [28]. The weights from the 

encoding part were used in two approaches: keeping them frozen during the 

training or fine-tuning them during the training of the dense layer [27]. 
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Figure 4.2. Unsupervised and supervised training pipeline. First the AE is trained 

based on the reconstruction loss and then the trained encoder is used to train a 

dense layer for prediction. 

Baseline models 
To assess the added value of DL methods compared to existing radiological 

image biomarkers, we created ML-based models using radiological image 

biomarkers that have shown state-of-the-art results on the same dataset [5]. 

In these baseline prediction models, we used 20 radiological imaging 

biomarkers, which have been manually scored by designated experts of the 

core-lab of the MR CLEAN Registry. These radiological image biomarkers 

have shown predictive value for functional outcome and thus are commonly 

considered in clinical practice [4], [29], [30]. Supplemental Table I lists all 

included radiological imaging biomarkers. We developed two clinical 

baseline prediction models for both outcome measures using only 

radiological image biomarkers. The first is a Logistic Regression (LR) model, 

following the most common approach in clinical research. The second is a 

Random Forest Classifier (RFC), which has earlier been successfully used for 

the same patient population [5]. 

To assess the benefits of the proposed application of RFNN convolutional 

layers and unsupervised pre-training, we compared them to a standard DL 

model. We developed and optimized a ResNet architecture, and used it as the 

standard DL model. The ResNet architecture was composed of  four blocks 

with two consecutive convolutions in each block, and skip-connections 

connecting the input and the output of blocks [31]. Inspired by [28], we 
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followed the Batch-Normalization, ReLU, convolution sequence in each 

layer. Further details about the ResNet architecture can be found in 

Supplemental Tables II-III and Supplemental Figure II. Details of the ResNet-

AE implementation for unsupervised pre-training are shown in Supplemental 

Table IV. RFNN models had the same ResNet (ResNet-AE in case of 

unsupervised pre-training) architecture, but the conventional convolutional 

kernels were replaced with structured receptive field kernels. 

Experimental Setup 
The 1301 patients were split into four balanced folds for cross-validation. In 

our data, class imbalance for functional outcome (mRS) was 463 good 

outcome (35.6%) and 838 (64.4%) unfavorable outcome. For reperfusion 

(mTICI), class imbalance was smaller, with 749 (60.9%) as good reperfusion 

and 552 (39.1%) as poor reperfusion. Since our data was slightly imbalanced, 

we opted for balancing the classes using random under-sampling. For each 

iteration, three folds were used to train and optimize the models, and one fold 

was used for testing the models. Area Under the Curve (AUC) was used to 

assess model accuracy. For each CNN model, we created three training 

schemes: (1) training models from scratch; (2) using unsupervised pre-

training to initialize convolutional weights (encoder part of the AE) and 

keeping them unchanged during supervised training; and (3) keeping pre-

trained encoder weights unchanged for 50 epochs, then releasing and fine-

tuning the whole architecture. We selected the cut-off of 50 epochs (from 25, 

50 or 75) by monitoring convergence of convolutional filters and training 

loss. Further details about the experimental setup and the hyper-parameters 

used for optimization can be found in Supplemental Table V. All experiments 

were run on a PC with a single Titan X Pascal GPU, AMD Ryzen 7 1700X 

CPU, 16GB of RAM memory and Windows 10. 

Model Visualization  
Deep Neural Networks are commonly referred to as black boxes because of 

their complex structure utilizing millions of parameters, in contrast to 

classical image processing techniques. In medical applications, a good 

prediction system, in addition to high accuracy, also needs to deliver 

interpretable predictions. Even though RFNN convolutional layers increase 

interpretability, here we further investigate the explanation of neural 
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predictions of our models. We hypothesize that the best way to explain 

outcome predictions is to visualize traits of input scans that led the model to 

the prediction. Various visualization techniques that analyze prediction 

models have been developed [32], [33]. Here, we explored the visualizations 

with Gradient-weighted Class Activation Mapping (Grad-CAM) [33]. Grad-

CAM is a popular technique for generating visual interpretations of CNN-

based networks, which fuses the localization and class-discriminative 

properties of Class Activation Mapping [34] and the precision of Guided 

Backpropagation [35]. Grad-CAM explains predictions by unveiling the 

gradient-weighted contribution of convolutional feature maps in the input 

space. In practice, we used the implementation of a slightly improved version 

of the technique, namely Grad-CAM++ [36]. 

We created two visualizations for each of the best mRS and mTICI prediction 

models. The first, coined GCAM, was created with the gradient-weighted 

CAM method. It reveals the parts of a certain input scan that were the most 

influential in making a prediction as a heat-map. The second, coined GWGBP 

(gradient weighted guided backpropagation), was created using the output of 

Guided Backpropagation throughout the whole network multiplied pixel-wise 

by the output of GCAM. GWGBP shows how the network interprets an input 

scan in terms of the most relevant imaging features utilized for a prediction. 

We thresholded GCAM heat-maps at 0.5 significance level to facilitate 

interpretation by highlighting the most contributing areas only. 

Results 
The average and range of AUC values for predicting good functional outcome 

(mRS ≤ 2) and good reperfusion (mTICI ≥ 2b) are reported in Table 4.2. The 

LR and RFC methods used with the radiological image biomarkers for 

predicting good functional outcome resulted in an AUC of 0.68 for LR and 

0.66 for RFC.  For predicting reperfusion, the AUC was 0.52 for both 

methods. The best average AUC for mRS prediction was obtained using the 

RFNN-ResNet model without AE pre-training (trained from scratch). The 

best average AUC for mTICI prediction was obtained with RFNN-ResNet-

AE fine-tuned (with AE initialization and fine-tuning). Note that all models 

benefit from the AE pre-training for mTICI prediction. However, this is not 
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the case for the prediction of mRS, where RFNN-ResNet yielded the best 

result. Also, there was no difference in AUC between LR and RFC, as shown 

in previous studies [5]. Most importantly, the best performing data-efficient 

models outperformed the radiological image biomarkers baseline as well as 

standard CNN models for both mRS and mTICI outcome predictions. The 

AUC results for each fold are shown in Supplemental Tables VI and VII. 

Table 4.2. AUC using 4-fold cross-validation. Standard ResNet and RFNN-ResNet 

trained with scheme (1), ResNet-AE and RFNN-ResNet-AE with scheme (2) and 

ResNet-AE fine-tuned and RFNN-ResNet-AE fine-tuned with scheme (3). 

Method mRS AUC 

Avg (range) 

mTICI AUC 

Avg (range) 

LR Baseline 0.68 (0.66 – 0.69) 0.52 (0.51 – 0.54) 

RFC Baseline 0.66 (0.64 – 0.69) 0.52 (0.50 – 0.55) 

Standard ResNet  0.56 (0.54 – 0.58) 0.51 (0.41 – 0.56) 

ResNet-AE 0.58 (0.53 – 0.61) 0.57 (0.55 – 0.58) 

ResNet-AE fine-tuned 0.57 (0.51 – 0.66) 0.57 (0.54 – 0.60) 

RFNN-ResNet 0.71 (0.62 – 0.75) 0.57 (0.55 – 0.59) 

RFNN-ResNet-AE 0.65 (0.60 – 0.69) 0.55 (0.53 – 0.57) 

RFNN-ResNet-AE fine-tuned 0.67 (0.59 – 0.73) 0.65 (0.55 – 0.72) 

 

In Figures 4.3 and Figure 4.4 we present the model visualization for the best 

models, RFNN-ResNet and RFNN-ResNet-AE fine-tuned, respectively. We 

can observe in the center column (GCAM), that the affected side of the brain 

(right in this case) contributes the most for the predictions (Figure 4.3). Even 

though the relevant regions are relatively large, the most important regions 

(depicted in red), are usually more specific. In the right column (GWGBP), 

we can see that the arteries are highlighted as important features learned by 

the model in Figure 4.3, while in Figure 4.4 we observe a noisier pattern. 

Additional model visualization examples are shown in Supplemental Figure 

I. 
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Figure 4.3. Visualization of predictions for mRS using the RFNN-ResNet model. 

Original MIP scans shown in the left column, the GCAM heat-map in overlay in 

the center and the GWGBP visualization on the right. Colors indicate the level of 

contribution of each region (GCAM). Most contributing regions (1.0) are 

represented in red, less contributing (0.5) in blue. 

 

Figure 4.4. Visualization of the predictions for mTICI using the RFNN-ResNet-AE 

fine-tuned model. Order of visualizations corresponds to Figure 4.3. 
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Discussion 
We have shown that data-efficient DL analysis of CTA images outperformed 

prediction models with commonly used radiological image biomarkers in 

predicting reperfusion and functional outcome for patients with acute 

ischemic stroke. With model visualization tools, we have shown that the 

arteries are amongst the most common and influential features extracted by 

the DL models when predicting outcomes. 

Recent studies on DL learning applied to stroke focused mostly on 

reproducing radiological image biomarkers and image segmentation tasks. In 

[37], SegNet [12] (an encoder-decoder architecture for image segmentation) 

was applied to MRI stroke imaging focused on predicting tissue outcome after 

acute ischemic stroke. DeepMedic [38], an open-source 3D CNN, was 

applied to CTA to detect ischemic stroke and segment lesions with high 

sensitivity and specificity in [16] and [14], showed that e-ASPECTS, a 

commercially available artificial intelligence software for ASPECTS scoring, 

is statistically non-inferior to neuroradiologists in scoring ASPECTS. A 

method using 3D CNNs was proposed in [39] for automatic assessment of 

DWI-ASPECTS with high accuracy. Finally, [13] presents a CNN named 

Stroke U-Net (SUNet) that was developed to segment and predict outcome of 

acute stroke lesions, and showed better results than 3D U-Net and uResNet. 

Our results indicate an improvement by using structured convolutional 

kernels and unsupervised pre-training to predict good reperfusion (mTICI ≥ 

2b) when compared to baseline models. The performance improvement 

derived from the use of Gaussian filters confirms the effect that has already 

been previously seen in previous medical imaging classification tasks [24].   

The best performing method was the RFNN-ResNet-AE fine-tuned model 

(with auto-encoder initialization and fine-tuning after 50 epochs). For good 

functional outcome prediction (mRS ≤ 2), the RFNN-ResNet model (trained 

from scratch) achieved the highest AUC, slightly outperforming the baseline 

prediction models, with higher AUC scores for three out of four testing folds 

(Supplemental Tables VI and VII). Interestingly, for good mRS prediction, 

the unsupervised pre-training and supervised fine-tuning strategy resulted in 

a lower AUC when compared to the RFNN-ResNet. This could be caused by 

the nature of the output labels. mTICI is derived directly from imaging thus 
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more general image features (most effectively learnt by unsupervised 

learning) appeared to have the potential to be more predictive. One of the 

strongest predictors of mRS is age [5], [18], [40], which naturally reflects on 

many attributes of the brain detectable on CTA, e.g. atherosclerosis, structural 

abnormalities of the vasculature, changes in white matter and brain volume 

[41]. Recognition of any of these properties directly or indirectly on images 

can potentially lead to more confident mRS prediction in contrast to more 

general image features learnt during unsupervised training. We believe, for 

mRS, that supervised training from scratch enabled RFNN-ResNet models to 

grasp such complex features and discriminate subsets of patients better than 

more general image features learned in an unsupervised fashion. Our 

experiments suggest that image features learned directly from MIP images 

using RFNN-ResNet models can predict patients with good mTICI and mRS 

with higher accuracy than prediction models using well-known radiological 

image biomarkers. However, it should be mentioned that the predictive 

performance of the models is still limited. 

MIP images are either present in organized databases or can be computed 

quickly and efficiently in seconds, making our method  suitable for clinical 

practice. A prediction from our DL models takes only a few seconds, although 

the pre-processing steps (registration, skull-stripping and MIP computation) 

might take up to a couple of minutes (around 2 minutes for a scan with 400 

slices). Consequently, an important advantage of our approach is that it is 

orders of magnitude faster and it does not require any manual image 

annotation, even during pre-processing, while delivering comparable 

prediction accuracy as existing radiological imaging biomarkers.  

We selected the ResNet architecture based on state-of-the-art performance on 

natural image classification and refined it for our task. Our main aim was to 

evaluate the advantages of RFNN kernels over the standard ones. Despite 

optimizing some hyper-parameters, deeper and wider architectures (such as 

DenseNets) could potentially yield better results in our experiments and 

should be explored in the future. CNNs intrinsically contain many parameters 

that need to be optimized. In determining these parameters, we were restricted 

by limited computational resources – single GPU –, thus deeper models 

trained with larger batches or with 3D images might further improve 
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predictions. Also, note that we did not explore transfer learning from another 

domain (e.g. ImageNet [42]), because the input images would have to be 

scaled down to a lower resolution. This could lead to the loss of relevant 

information and the depths of layers would be restricted by the chosen 

architecture. Another potential limitation is the use of MIPs. Even though a 

lot of information is lost in using MIPs to represent the 3D images, the MIPs 

retain important artery structures, while keeping the input size feasible for 

training the DL models and reducing sparsity.  

Even though k-fold cross-validation was applied, validation on an external 

dataset should be considered in future studies. Furthermore, we opted for a 

small number of folds for cross-validation due to the limited number of 

samples and class imbalance, as a high number of folds would lead to a test 

set with few samples, causing severe variance in our results. Also, due to the 

high number of experiments and hyper-parameters (from the optimizers and 

the RFNN), increasing the number of folds would have increased the duration 

of experiments radically. Besides, 4-fold cross-validation does not provide 

enough AUC values to compute the statistical significance of differences in 

accuracy between models. With more data available, more cross-validation 

folds could be performed to assess if the difference in AUC between models 

is statistical significant.  

Other important clinical factors that are predictive for good mRS and mTICI, 

such as age, National Institutes of Health Stroke Scale (NIHSS), time from 

stroke onset to groin puncture, among others, should also be included in future 

prediction models[5], [6]. Finally, we selected the cut-off of ≤2 for mRS to 

make our models comparable to previous mRS prediction modeling research 

[5], [6]. However, other cut-offs should be explored, for instance mRS≤5, 

where the patients are severely disabled. Besides, provided that more data is 

available in the future, experiments comparing models trained on the full 

dataset and models trained on smaller portions could be used to quantify the 

extent of RFNN improvements over standard ResNets. 

Understanding predictions is of utmost importance to improve reliable 

decision support for individual prospective patients and to further assist in 

discovering relevant-yet-unseen image features. From our visualizations, one 

can observe that the highest contribution for good mRS prediction comes 
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mostly from one – the occluded – side of the brain. For predicting reperfusion, 

however, information from both sides of the brain is taken into account. For 

good mRS prediction, it is clear from the GWGBP, that arteries – i.e., the 

extent of blood flow – were important for prediction, since such patterns were 

extracted in all cases. The important role of arteries is well known in clinical 

practice. For example, the collateral score (which is highly dependent on the 

visualization of the arteries in the brain) is commonly used to assess the 

alternative blood flow and is strongly associated with the size of infarction. 

The occlusion location is also an important predictor of functional outcome 

and reperfusion. Regarding mTICI, in cases of poor reperfusion, little is 

known about the reasons despite a successful recanalization after EVT, 

though many aspects of the artery have an effect on the efficacy of EVT 

treatment [43], [4], [44]. Further study is necessary to evaluate and properly 

quantify the visual explanations of the networks in more depth, since the most 

important regions are diverse, arteries are not always at the same location and 

stroke can occur in various locations of both sides of the brain. Given the 

important role of arteries and the feature pattern extracted by the networks, 

we suggest that future research on mTICI and mRS prediction should include 

the artery pattern as a feature.   Also, one could create quantitative measures 

of interpretability of models, sensitivity and specificity of detection of certain 

features could greatly facilitate the understanding and improvement of DL 

models, which can help to identify new relevant image regions and patterns. 

Conclusion 
We have shown that, in our dataset, automated radiological image analysis 

with data-efficient DL methods outperforms the combination of multiple 

radiological image biomarkers for good stroke outcome prediction. Our 

approach does not require image annotation and is faster to compute than any 

radiological image biomarker considered in this study. We also improved the 

interpretability of our models using model visualization tools, which is 

valuable in clinical practice. Even though DL has shown improvement for 

outcome prediction, the predictive value is still relatively low and clinical 

characteristics should be included in future prediction models. 
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Supplemental material 
Supplemental Table I. Description of Imaging biomarkers available before EVT 

Variable Description 

Hyperdense artery sign (HAS) on baseline 

non-contrast CT [45] 

Indicator of clot occlusion in case of acute 

ischemic stroke. 

Relevant (new) ischemia or hypodensity Evident 

Hemorrhagic transformation at baseline The conversion of a bland infarction into an 

area of hemorrhage. Potentially severe 

complication of ischemic stroke.  

Leukoaraiosis Neuroimaging abnormalities of the white 

matter, which appear as hypodense or 

hyperintense areas, are located 

predominantly in the periventricular area. 

Presence of old infarcts in same ASPECTS 

region 

Evident 

ASPECTS at baseline A 10-point quantitative topographic CT 

scan score where segmental assessment of 

the MCA vascular territory is made and 1 

point is deducted from the initial score of 10 

for every region involved. 

Intracranial atherosclerosis on CTA  Evident 

Intracranial vascular malformation or 

aneurysm visible on CTA 

Evident 

Most proximal occlusion segment on CTA  Evident 

Collateral score on CTA Scoring system that allows quick evaluation 

of collateral filling delay in acute ischemic 

stroke. A score on a scale of 0 to 5 is given, 

with 5 being the mildest and 0 the most 

severe. 

Clot burden score Scoring system to define the extent of 

thrombus found in the proximal anterior 

circulation by location and is scored on a 

scale of 0–10. A score of 10 is normal, 

implying clot absence. 

Less than 50% atherosclerotic stenosis at 

symptomatic carotid bifurcation on CTA 

Narrowing of the symptomatic bifurcation 

<50% 

50% or more atherosclerotic stenosis at 

symptomatic carotid bifurcation on CTA 

Narrowing of the symptomatic bifurcation 

≥50% 

Atherosclerotic occlusion at symptomatic 

carotid bifurcation on CTA baseline 

Evident 
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Supplemental Table I (continued)  

Floating thrombus at symptomatic carotid 

bifurcation on CTA baseline 

Elongated thrombus attached to the arterial 

wall with circumferential blood flow with 

cyclical motion relating to cardiac cycles 

Pseudo-occlusion at symptomatic carotid 

bifurcation on CTA baseline 

Entity where flow-related artifact leads to 

an appearance of complete carotid 

bifurcation occlusion on computed 

tomographic angiography (CTA) or digital 

subtraction 

angiography (DSA), where in reality the 

carotid bifurcation 

is patent 

Carotid dissection at symptomatic carotid 

bifurcation on CTA baseline 

A condition where the layers of the carotid 

artery are spontaneously separated, which 

can potentially lead to ischemic stroke 

Carotid web at symptomatic carotid 

bifurcation on CTA baseline 

A rare condition where a thin, linear, 

membrane extends from the posterior 

aspect of the internal carotid artery bulb 

into the lumen, located just beyond the 

carotid bifurcation 

Other lesion at symptomatic carotid 

bifurcation on CTA baseline 

Lesions at the symptomatic carotid 

bifurcation on CTA, other than the above 

 

 
Supplemental Table II. Parameters of the ResNet architecture (same for RFNN-

ResNet) 

Dropout (in blocks / after dense layer) 0.1 / 0.2 

Batch normalization momentum 0.7 

Scale of Gaussians in initial conv layer 

(RFNN-ResNet) 

2.0 

Scale of Gaussians in composite layers 

(RFNN-ResNet) 

1.0 

Order of derivatives of Gaussians (RFNN-

ResNet) 

3 
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Supplemental Table III. Output dimensions of ResNet architecture (same for 

RFNN-ResNet) 

 

  

Layers Output Type 

Initial convolution 215x187x16 7 x 7 conv, stride 2 x 2  

Block (1) 108x94x16 3 x 3 conv, stride 1 x 1 
x 1 

3 x 3 conv, stride 2 x 2 
 

Block (2) 54x47x32 3 x 3 conv, stride 1 x 1 
x 1 

3 x 3 conv, stride 2 x 2 
 

Block (3) 27x24x64 3 x 3 conv, stride 1 x 1 
x 1 

3 x 3 conv, stride 2 x 2 
 

Block (4) 14x12x128 3 x 3 conv, stride 1 x 1 
x 1 

3 x 3 conv, stride 2 x 2 
 

Dense Layer 1x2x128 14 x 6 avg pool, stride 14 x 6 

128 256D Fully-connected 

Classification 

Layer 

2 128D Fully-connected, 2D softmax 
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Supplemental Table IV. Output dimensions of ResNet-AE architecture (same for 

RFNN-ResNet-AE) 

 
 

 
Supplemental Table V. Parameters of training algorithm 

 Unsupervised training Supervised training 

Algorithm RMS Prop SGD with Nesterov mom 

Momentum 0.9 0.9 

Batch size 128 128 

Learning rate 0.01 0.01 

Number of epochs 50 100 

Number of epochs before 

learning division by 10 

- 50 

Weight decay Adaptive to equal initial 

cross entropy loss 

1e-5 

 

  

Layers Output Type  

Initial convolution 215x187x16 7 x 7 conv, stride 2 x 2  E

n

c

o

d

e

r  

Block (1a) 108x94x16 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (2a) 54x47x32 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (3a) 27x24x64 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (4a) 14x12x128 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (4b) 27x24x64 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

D

e

c

o

d

e

r  

Block (3b) 54x47x32 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (2b) 108x94x16 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Block (1b) 215x187x16 3 x 3 conv, stride 2 x 2 
x 1 

3 x 3 conv, stride 1 x 1 
 

Final convolution 430x374x1 7 x 7 conv, stride 2 x 2 
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Supplemental Table VI. AUC results for each fold from the 4-fold cross-validation 

for good functional outcome  prediction (mRS ≤ 2). ResNet and RFNN-ResNet 

pertain to training scheme (1), ResNet-AE and RFNN-ResNet-AE to (2) and ResNet-

AE fine-tuned and RFNN-ResNet-AE fine-tuned to (3). 

Method Fold-0 Fold-1 Fold-2 Fold-3 Avg 

LR Baseline 0.64 0.64 0.64 0.67 0.65 

RFC Baseline 0.65 0.66 0.63 0.66 0.65 

Standard ResNet  0.56 0.58 0.56 0.54 0.56 

ResNet-AE 0.61 0.53 0.58 0.60 0.58 

ResNet-AE fine-tuned 0.55 0.56 0.51 0.66 0.57 

RFNN-ResNet 0.62 0.75 0.71 0.75 0.71 

RFNN-ResNet-AE 0.61 0.60 0.68 0.69 0.65 

RFNN-ResNet-AE fine-tuned 0.59 0.67 0.67 0.73 0.67 

 

 

Supplemental Table VII. AUC results for each fold from the 4-fold cross-validation 

for good reperfusion prediction (mTICI ≥ 2b). ResNet and RFNN-ResNet pertain to 

training scheme (1), ResNet-AE and RFNN-ResNet-AE to (2) and ResNet-AE fine-

tuned and RFNN-ResNet-AE fine-tuned to (3). 

Method Fold-0 Fold-1 Fold-2 Fold-3 Avg 

LR Baseline 0.52 0.51 0.51 0.54 0.52 

RFC Baseline 0.50 0.53 0.51 0.55 0.52 

Standard ResNet  0.41 0.52 0.56 0.54 0.51 

ResNet-AE 0.57 0.58 0.57 0.55 0.57 

ResNet-AE fine-tuned 0.54 0.57 0.55 0.60 0.57 

RFNN-ResNet 0.55 0.58 0.59 0.55 0.57 

RFNN-ResNet-AE 0.53 0.55 0.57 0.54 0.55 

RFNN-ResNet-AE fine-tuned 0.55 0.72 0.65 0.66 0.65 
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Supplemental Figure I. Visualization of predictions using the RFNN-ResNet 

model. Original MIP scans and their respective GCAM heat-map in overlay. Each 

pair representes a different scan. Colors indicate the level of contribution of each 

region (GCAM). Most contributing regions (1.0) are represented in red, less 

contributing (0.5) in blue. 
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Supplemental Figure II. ResNet architecture used in our approaches. 
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Abstract  
Background: Accurate prediction of acute stroke patient outcome is of utmost 

importance for stroke patient care. Recent studies on prediction modeling for 

stroke focused mostly on clinical characteristics and radiological scores 

available at baseline. Radiological images are composed of millions of 

voxels, and a lot of information can be lost when representing this information 

by a single value. Therefore, in this study we aimed at developing prediction 

models that take into account the whole imaging data combined with clinical 

data available at baseline.  

Methods: We included 3279 patients from the MR CLEAN Registry; a 

prospective, observational, multicenter registry of ischemic stroke patients 

treated with EVT. We developed two approaches to combine the imaging data 

to the clinical data. The first approach was based on radiomics features, 

extracted from 70 atlas regions combined to the clinical data to train machine 

learning models. For the second approach, we trained 3D deep learning 

models using the whole images and the clinical data. We compared models 

trained with only the clinical data to models trained with the combination of 

clinical and image data. Finally, we explored feature importance plots for the 

best models and identified many known variables and image features/brain 

regions that were relevant in the model decision process. 

Results: From 3279 patients included, 1241 (37%) patients had a good 

functional outcome (mRS ≤ 2) and 1954 (60%) patients had good reperfusion 

(eTICI ≥2b). There was no significant improvement by combining the image 

data to the clinical data for mRS prediction (mean AUC of 0.81 vs 0.80), 

regardless of the approach used.  Regarding predicting reperfusion,. there was 

a significant improvement when image features were combined to the clinical 

ones (mean AUC of 0.54 vs 0.61), with the highest AUC obtained by the deep 

learning approach. 

Conclusions: The combination of radiomics and deep learning image features 

with clinical data significantly improved the prediction of good reperfusion. 

We found no improvement in the prediction of good functional outcome, 

despite many image features appearing as important in the model 

visualization. 
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Introduction 
Around one third of patients who suffer from acute ischemic stroke die or 

remain severely disabled, making stroke a very severe condition worldwide  

(1). Occlusions in one of the major cerebral arteries are present in one third 

of patients, and is often referred as large vessel occlusion (LVO)  (2). 

Endovascular treatment (EVT) is the standard treatment for LVO, and its 

great benefits have been proven extensively  (3–6). However, despite 

successful treatment, around 30% of patients still present a poor outcome at 

3 months. Outcome after treatment is dependend on multiple factors, from 

patient characteristics and condition to severity and location of the occlusion  

(7).  Accurate prediction of patient outcome has been explored in several 

studies and it is of utmost importance to correctly identify patients who will 

and who will not have a good outcome. This information can be used to  

further personalize acute stroke care  (7,8). 

Most prediction models found in literature focused on small subsets of 

clinical features  (7), although some recent studies have explored a broader 

set of variables  (8,9). In most cases, information in radiological images was 

included in the form of visual scores, such as ASPECTS and the collateral 

score. However, translating millions of voxels in a radiological image to one 

or several visual scores potentially can result in significant loss of 

information.  

In this study we explored a more extensive feature representation of 

radiological images, including a multitude of handcrafted features 

(radiomics) and automatically learned features using deep learning 

approaches. We hypothesized that a more extensive image feature 

representation can lead to improved outcome prediction of ischemic stroke 

patients through leveraging information that is complementary to or more 

detailed than radiological scores. We performed the combination of the 

automatically extracted images features with patient data available at 

baseline, and evaluated their impact on prediction accuracy of both clinical 

and radiological outcomes. Finally, we presented the feature importance for 

the best models and their impact in the predictions.  
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Methods 
Study population 
We included 3279 patients from the MR CLEAN Registry, a prospective, 

observational, multicenter study, which consecutively included all EVT-

treated acute ischemic stroke patients in the Netherlands since the completion 

of the MR CLEAN trial (10) in March 2014. The central medical ethics 

committee of the Erasmus Medical Centre Rotterdam, the Netherlands, 

evaluated the study protocol and granted permission (MEC-2014–235) to 

carry out the data collection as a registry. (11) Patients provided permission 

for study participation through an opt-out procedure. Data that have been used 

for this study are available upon reasonable request from the MR CLEAN 

Registry committee (mrclean@erasmusmc.nl). 

Variables and outcome 
All variables available at baseline were included in the models, including 

radiological scores. In total, 58 variables were selectively included. Ordinal 

variables such as pre-stroke mRS, collaterals, ASPECTS, National Institutes 

of Health Stroke Scale (NIHSS), Clot Burden Score (CBS), and Glasgow 

Coma Scale were treated as linear continuous scores. We created dummies 

for variables with multiple categories, therefore, the final input size for the 

models consisted of 58 features. A complete list of variables available can be 

found in the Supplemental Table I.  

We created prediction models for two outcome variables, (1) favorable 

functional outcome after 3 months, defined by the modified Rankin Scale 

(mRS ≤ 2) and (2) good reperfusion defined by the modified Thrombolysis in 

Cerebral Infarction (eTICI)-score after EVT (post-eTICI ≥ 2b). 

Image data pre-processing 
We included CT angiography (CTA) scans from all patients available in the 

dataset, following the approach from  (12), where the added value of CTA for 

outcome predictions has already been proven. The first step in pre-processing 

the images was to strip the skull, since it contains voxels that are not relevant 

for the prediction tasks  (13). For this segmentation task, we used a U-Net  

(14), (a convolutional neural network designed for segmentation of 
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biomedical images) trained on skull segmentations that were created using 

the approach described in  (15) and subsequently manually corrected.  

Since the slice thickness and the orientation of the head varied significantly 

between different scans, we registered the images to a reference scan using 

rigid and affine transformations. For this, we used an atlas as reference scan  

(16), with a size of  256x256x90 voxels. This atlas was developed using the 

Laboratory of Neuro Imaging Probabilistic Brain Atlas (LPBA40), which is 

publicly available  (17). The atlas served not only as reference for registration, 

but it also contains the annotation of 70 brain regions, which allowed region-

based feature extraction.   

Radiomics approach 
For the first approach, we computed radiomics features for each brain region 

of the scans that were registered to the atlas. An advantage of crafting features 

from specific regions is that we can easily trace back which regions of the 

brain were the most important for prediction. We used all 70 regions 

contained in the atlas. For each region, 18 first-order features were computed 

using the Pyradiomics library  (18). This resulted in a total of 1260 features. 

Since some regions overlapped and others were relatively small, we checked 

the correlation between the features. We only kept features that were less than 

50% correlated to the others  (19) reducing the number of radiomics features 

to 68. This was necessary since highly correlated features (multicollinearity) 

can hamper learning  (19). For example, in case the of Logistic Regression, 

multicollinearity can lead severe variations in the coefficients, making the 

results less robust and trustworthy. Moreover, the large number of features 

would also be a problem because of the limited sample size n=3001  (20). A 

complete list of the computed features is presented in the Supplemental Table 

II. These features were subsequently combined (concatenated) with the 

clinical data available at baseline and used to create prediction models for the 

outcomes. We selected the following state-of-the-art machine learning 

models: Random forest classifier (RFC) (21), Support vector machine (SVM) 

(22), Artificial neural networks (NN) (23), Gradient boosting (XGB) (24) and 

Logistic regression (LR). 
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Deep learning approach 
In the deep learning approach, the skull-stripped scans were used to train 

Convolutional Neural Networks (CNNs) to predict outcome. We opted for 

using skull-stripped scans prior to image registration to keep the information 

in the scans as raw as possible, and avoid changes in the Hounsfield units 

caused by the registration process. Moreover, we included transformations 

for data augmentation, such as rotation and flipping, which makes registration 

a futile step. Therefore, the registered scans were only used in radiomics 

approach. Since the input for deep learning models has to be uniform, and the 

voxel size among scans was not, we resampled the scans in all directions. The 

final input size to the network was 256x256x30 voxels. To increase the 

number of training samples and account for possible variations in the data, 

we performed data augmentation (vertical flipping and rotation). We trained 

and optimized 3D CNNs to predict favorable functional outcome and good 

reperfusion.  For each network implemented, we added a Squeeze and 

Excitation (SE) module before the fully-connected layers  (25), since it has 

been shown to greatly improve results in diverse Resnet models in multiple 

prediction tasks. The SE module models interdependencies between channels 

by adding learnable weights channels-wise. This way, the contribution of 

certain features in a given channel can have more or less impact than the 

others in the final prediction. Finally, we combined the clinical features with 

the image features by concatenating the clinical features to the image features 

before the fully-connected layers of the CNN  (26–28).  

We selected the ResNet10 architecture since it has shown comparable results 

to deeper architectures in medical imaging related tasks  (29) while keeping 

training time feasible. The models were trained from scratch with the SE 

module. Finally, we used a Transfer Learning based approach, using the 

model developed in  (29). In that model, the aim was to develop a robust 

ResNet by training it in a large amount of medical data  (by putting together 

multiple datasets), including CT and MRI scans. By doing so, the CNN was 

able to learn filters that can extract relevant image features and generalized 

well to other tasks, making it ideal for transfer learning to other datasets with 

less images. 
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The ResNet model was trained from scratch for 75 epochs, and for 50 epochs 

when Transfer Learning was used. Following the results presented in  (30), 

we opted to train the models built from scratch for longer than those using 

Transfer Learning to allow for a more fair comparison. We optimize our 

models using the Focal Loss  (31), since there was some class imbalance in 

our labels (around 0.4/0.6 for both labels). Finally, we used the Adam 

optimizer  (32), with a learning rate of 0.001 and the weight decay to 0.00006. 

The other hyper-parameters were left unchanged. The mini-batch size varied 

from two (for the 3D ResNets) to eight (for the 2D ones).  

Pipeline and experiment setup 
Several of the 58 clinical variables included in our experiments had missing 

values. We imputed the missing values using Multiple Imputation with 

Chained Equations  (33), since it has shown state-of-the-art results in several 

datasets. After imputation, we created dummies for the categorical variables. 

The data was then scaled by subtracting the mean and dividing by the standard 

deviation, for optimal performance of ML models. We used an inner and outer 

k-fold cross-validation strategy to train, validate and test our models. First, in 

the outer cross-validation loop, the dataset was split into training and testing 

using a 5-fold cross-validation strategy (4 folds are used for training and 1 for 

testing). The training set was then split again (inner-cross-validation) into 

training and validation, with 20% being used for validation. The validation 

set is used to assess model performance during training, for early-stopping 

and for hyper-parameter optimization. The list of the hyper-parameters used 

to optimize the models is shown in the Supplemental Table III.  

For each approach, we designed four experiments to predict the outcomes: 

first (coined clinical), using all clinical features available at baseline, 

therefore including patient demographics and image derived scores such as 

ASPECTS; second (coined image), using only the features hand-crafted or 

learned (radiomics or deep learning features) from the CTA scans; third 

(coined combination), by combining all the features from the first experiment 

with the features of the second (all clinical data available at baseline, 

including image scores, and features learned from CTA scans), and fourth 

(coined no image score), by repeating the first and third experiments, but 

without any image derived scores such as ASPECTS or collateral scores. 
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To assess statistically significant differences between the models, we reported 

the Confidence Intervals for all the cross-validation iterations and used the 

McNemars test  (34).  

All code used for the development of the models and data analysis is available 

at: https://github.com/L-Ramos/mrclean_combination.   

Feature importance  
To visualize feature importance of our models  we used SHAP (SHapley 

Additive exPlanations), which is based on game theory to explain the output 

of any machine learning model  (35). In SHAP, the contribution of a feature 

is given by computing the average contribution of all features by permuting 

all of them. SHAP has many advantages over other feature visualization 

techniques, such as LIME (Local Interpretable Model-agnostic Explanations)  

(36). SHAP provides global explanations instead of sample-oriented ones, 

offers tools to evaluate feature dependence and interactions and, the output 

explanations are generated based on the trained model provided by the user, 

instead of training a new model to explain feature importance, which is the 

case for LIME. Finally, with SHAP, the impact of low and high values of a 

given feature have in the final outcome can be more clearly evaluated with 

the plots, along with how important the feature is in predicting the correct 

class  (35).  

Results 
Study population 
Of the 3279 patients that were eligible, 278 were excluded due failure during 

skull-stripping (133 patients), because of incomplete scans, severe artifacts or 

due to failure during image registration (145 patients). In total 3001 patients 

were included, the mean age was 72 years old, and median baseline NIHSS 

was 16 (Supplemental Table I). At 90 days, 1241 (37%) patients had a good 

functional outcome (mRS ≤ 2) with 214 missing values (7%). Regarding 

reperfusion (post-eTICI ≥2b), 1954 (60%) patient had good reperfusion after 

treatment, with 90 missing values (3%). 
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Radiomics approach 
We present the results of good functional outcome prediction using the 

radiomics approach in Table 5.1. The AUC value was the highest for the 

clinical experiment (0.81), though it does not differ significantly from the 

combination experiment. The AUC is the lowest for the image experiment 

(0.69). For the combination experiment, the best AUC was 0.80. Sensitivity 

was the highest for the clinical experiment (0.79), while Specificity was the 

highest for the combination (0.77). The difference between the clinical and 

the combination experiments was not statistically significant (p-value=0.12) 

for the RFC. 

There was no significant difference (drop of 0.01 or at most 0.02 in the 

average of all measures) in the results of the no image score experiment, see 

Supplemental Table IV.  

In Table 5.2 we show the results for good reperfusion prediction (post-eTICI 

≥ 2b). The highest AUC was for the combination experiment (0.57), while 

the lowest was for the clinical experiment (0.51). Sensitivity was the highest 

(0.91) for the image experiment, but specificity was also the lowest (0.11), 

showing that the RFC model might be biased towards one of the classes in 

this experiment. The same does not occur for all models in the image 

experiment, LR for instance, shows a good balance between sensibility and 

specificity values for all experiments. The difference between the clinical and 

the combination experiments was statistically significant, p-value=0.008 for 

the RFC. 

Finally, there was no significant difference in the measures for the no image 

scores experiment, see Supplemental Table V. 
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Table 5.1. Results of the clinical, image and combination for the radiomics approach 

for predicting good functional outcome (mRS<=2). Average over 5-fold cross-

validation 

Methods 
AUC 

95% CI 
F1-Score Sensitivity Specificity PPV NPV 

Clinical Experiment 

RFC 0.81 

(0.79-0.82) 

0.69 

(0.67-0.72) 

0.72 

(0.68-0.76) 

0.75 

(0.72-0.77) 

0.67 

(0.63-0.71) 

0.79 

(0.76-0.82) 

SVM 0.81 

(0.80-0.83) 

0.71 

(0.68-0.74) 

0.79 

(0.75-0.82) 

0.70 

(0.68-0.72) 

0.65 

(0.61-0.69) 

0.82 

(0.79-0.85) 

LR 0.81 

(0.80-0.82) 

0.71 

(0.68-0.73) 

0.77 

(0.74-0.80) 

0.71 

(0.69-0.73) 

0.65 

(0.62-0.69) 

0.81 

(0.78-0.84) 

XGB 0.81 

(0.80-0.82) 

0.71 

(0.68-0.74) 

0.77 

(0.74-0.81) 

0.71 

(0.70-0.72) 

0.66 

(0.62-0.69) 

0.82 

(0.79-0.84) 

NN 0.81 

(0.80-0.82) 

0.69 

(0.68-0.71) 

0.73 

(0.66-0.80) 

0.74 

(0.67-0.81) 

0.67 

(0.60-0.73) 

0.79 

(0.75-0.84) 

Image Experiment 

RFC 0.68 

(0.65-0.70) 

0.50 

(0.42-0.58) 

0.45 

(0.33-0.57) 

0.77 

(0.71-0.83) 

0.58 

(0.53-0.62) 

0.66 

(0.61-0.71) 

SVM 0.69 

(0.66-0.71) 

0.60 

(0.54-0.65) 

0.64 

(0.58-0.71) 

0.64 

(0.62-0.66) 

0.56 

(0.50-0.62) 

0.72 

(0.67-0.76) 

LR 0.68 

(0.66-0.70) 

0.58 

(0.53-0.63) 

0.60 

(0.53-0.66) 

0.67 

(0.65-0.69) 

0.56 

(0.53-0.60) 

0.70 

(0.65-0.74) 

XGB 0.67 

(0.65-0.69) 

0.55 

(0.52-0.58) 

0.56 

(0.51-0.61) 

0.67 

(0.63-0.71) 

0.55 

(0.51-0.59) 

0.68 

(0.64-0.72) 

NN 0.65 

(0.59-0.71) 

0.49 

(0.45-0.52) 

0.45 

(0.37-0.52) 

0.72 

(0.61-0.83) 

0.54 

(0.48-0.61) 

0.65 

(0.60-0.69) 

Combination Experiment 

RFC 0.80 

(0.79-0.81) 

0.67 

(0.64-0.70) 

0.66 

(0.60-0.73) 

0.77 

(0.72-0.82) 

0.67 

(0.63-0.72) 

0.76 

(0.73-0.80) 

SVM 0.79 

(0.78-0.81) 

0.70 

(0.67-0.73) 

0.78 

(0.73-0.82) 

0.68 

(0.66-0.71) 

0.64 

(0.60-0.67) 

0.81 

(0.78-0.84) 

LR 0.80 

(0.78-0.81) 

0.70 

(0.66-0.73) 

0.76 

(0.72-0.80) 

0.70 

(0.68-0.73) 

0.65 

(0.60-0.69) 

0.80 

(0.78-0.83) 

XGB 0.80 

(0.78-0.81) 

0.69 

(0.67-0.71) 

0.76 

(0.72-0.79) 

0.69 

(0.66-0.72) 

0.64 

(0.61-0.67) 

0.80 

(0.77-0.83) 

NN 0.78 

(0.77-0.79) 

0.67 

(0.65-0.68) 

0.64 

(0.60-0.68) 

0.74 

(0.70-0.75) 

0.66 

(0.62-0.68) 

0.74 

(0.68-0.76) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, 

gradient boosting; NN, neural networks. AUC, area under the curve; NPV, negative 

predictive value; PPV, positive predictive value. 
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Table 5.2. Results of the clinical, image and combination experiments for the 

radiomics approach for predicting good reperfusion (post- eTICI ≥ 2b). Average 

over 5-fold cross-validation 

Methods AUC 

95% CI 

F1-Score Sensitivity Specificity PPV NPV 

Clinical Experiment 

RFC 0.53 

(0.51-0.55) 

0.71 

(0.68-0.74) 

0.79 

(0.74-0.84) 

0.26 

(0.19-0.32) 

0.64 

(0.60-0.69) 

0.42 

(0.36-0.48) 

SVM 0.54 

(0.53-0.56) 

0.39 

(0.08-0.70) 

0.32 

(0.01-0.64) 

0.73 

(0.44-1.02) 

0.68 

(0.65-0.72) 

0.39 

(0.35-0.43) 

LR 0.54 

(0.51-0.56) 

0.61 

(0.57-0.66) 

0.59 

(0.54-0.64) 

0.44 

(0.39-0.50) 

0.64 

(0.61-0.68) 

0.39 

(0.34-0.43) 

XGB 0.51 

(0.50-0.54) 

0.63 

(0.57-0.69) 

0.63 

(0.55-0.71) 

0.37 

(0.30-0.45) 

0.63 

(0.58-0.68) 

0.37 

(0.33-0.41) 

NN 0.51 

(0.50-0.53) 

0.70 

(0.62-0.79) 

0.81 

(0.60-1.03) 

0.19 

(0.03-0.41) 

0.63 

(0.59-0.67) 

0.37 

(0.32-0.43) 

Image Experiment 

RFC 0.54 

(0.52-0.56) 

0.75 

(0.74-0.75) 

0.91 

(0.81-1.01) 

0.11 

(0.01-0.22) 

0.64 

(0.59-0.68) 

0.42 

(0.35-0.50) 

SVM 0.55 

(0.53-0.57) 

0.70 

(0.61-0.79) 

0.79 

(0.55-1.03) 

0.25 

(0.03-0.53) 

0.64 

(0.60-0.69) 

0.41 

(0.37-0.46) 

LR 0.53 

(0.50-0.57) 

0.61 

(0.57-0.64) 

0.57 

(0.53-0.61) 

0.47 

(0.40-0.54) 

0.65 

(0.61-0.69) 

0.39 

(0.32-0.46) 

XGB 0.53 

(0.50-0.56) 

0.64 

(0.60-0.68) 

0.65 

(0.54-0.75) 

0.39 

(0.28-0.49) 

0.64 

(0.61-0.68) 

0.40 

(0.33-0.46) 

NN 0.53 

(0.50-0.56) 

0.67 

(0.65-0.69) 

0.69 

(0.66-0.73) 

0.36 

(0.32-0.40) 

0.65 

(0.61-0.69) 

0.41 

(0.35-0.46) 

Combination Experiment 

RFC 0.57 

(0.55-0.59) 

0.75 

(0.71-0.78) 

0.89 

(0.85-0.93) 

0.15 

(0.10-0.19) 

0.64 

(0.60-0.68) 

0.45 

(0.38-0.52) 

SVM 0.57 

(0.54-0.61) 

0.63 

(0.59-0.66) 

0.58 

(0.55-0.61) 

0.52 

(0.46-0.58) 

0.68 

(0.63-0.72) 

0.42 

(0.38-0.47) 

LR 0.57 

(0.54-0.60) 

0.63 

(0.60-0.66) 

0.59 

(0.57-0.62) 

0.50 

(0.46-0.55) 

0.67 

(0.63-0.72) 

0.42 

(0.38-0.46) 

XGB 0.57 

(0.55-0.58) 

0.59 

(0.55-0.64) 

0.54 

(0.46-0.61) 

0.55 

(0.46-0.63) 

0.67 

(0.63-0.71) 

0.41 

(0.36-0.46) 

NN 0.53 

(0.51-0.55) 

0.66 

(0.62-0.70) 

0.68 

(0.63-0.72) 

0.37 

(0.32-0.43) 

0.65 

(0.60-0.70) 

0.40 

(0.37-0.43) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient 

boosting; NN, neural networks. AUC, area under the curve; NPV, negative predictive value; PPV, 

positive predictive value. 

 



Chapter 5 

112 

 

Feature importance – radiomics approach 
In Figure 5.1 and Figure 5.2 we present feature importance using SHAP for 

the clinical (Figure 5.1) and the combination( Figure 5.2) experiments for 

RFC model and mRS prediction  (for all 5-fold cross-validation iterations). 

The performance measures were the same across the models, therefore, we 

present feature importance for RFC model only, since SHAP has extensive 

support for three based models. Despite the addition of multiple radiomics 

features in the combination experiment, the top three most important features 

remain the same for both experiments  (Age, NIHSS at baseline and pre-

stroke mRS). Is it also clear that low values of these three features is 

associated to good functional outcome. Collateral score and the Glasgow 

Comma Scale  (GCS), become more important when the radiomics features 

are combined to the clinical data. Other features, like leukoariosis and sex 

seem to lose importance when the radiomics features are combined. Finally, 

radiomics features from the following regions seem to have a significant 

impact in the prediction model, despite no improvements in the performance 

measures:  precuneous cortex, middle frontal gyrus, superior temporal gyrus, 

temporal fusiform cortex, frontal orbital cortex, lateral occipital cortex and 

subcallosal cortex. 
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Figure 5.1. SHAP feature importance for the clinical experiment for mRS 

prediction using the RFC model. For visualization purposes we included only the 

top 20 features. Features are shown in order of importance, from most important  

(top) to less important  (bottom). The color legend on the right shows how the 

feature values influence outcome: high values are depicted in red, while low values 

are presented in blue. Positive SHAP values  (above zero in de x-axis) mean that 

the feature values are associated to the positive outcome  (in this case good 

functional outcome), while SHAP values below zero indicate the opposite. * at 

symptomatic carotid bifurcation on CTA at baseline. 
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Figure 5.2. SHAP feature importance for the combination experiment for mRS 

prediction using the RFC model. For visualization purposes we included only the 

top 20 features. Features are shown in order of importance, from most important  

(top) to less important  (bottom). The color legend on the right shows how the 

feature values influence outcome: high values are depicted in red, while low values 

are presented in blue. Positive SHAP values  (above zero in de x-axis) mean that 

the feature values are associated to the positive outcome  (in this case good 

functional outcome), while SHAP values below zero indicate the opposite. * at 

symptomatic carotid bifurcation on CTA at baseline. 

In Figure 5.3 and Figure 5.4 we show the feature importance using SHAP for 

the clinical  (Figure 5.3) and combination  (Figure 5.4) experiments for the 

prediction of good reperfusion using the RFC model. In this case, the most 

important features are different from each other when comparing both 

experiments. While the duration from onset to IVT, the RR systolic, CRP 

level and age seem to be the most important for the clinical experiment, these 

features are all replaced by many radiomics features from multiple brain 

regions in the combination experiment. This difference can also explain the 

slightly increased performance of the combination experiment when 

compared to the clinical and image ones. 
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Figure 5.3. SHAP feature importance for the clinical  experiment for the prediction 

of good reperfusion using the RFC model. For visualization purposes we included 

only the top 20 features. Features are shown in order of importance, from most 

important  (top) to less important  (bottom). The color legend on the right shows 

how the feature values influence outcome: high values are depicted in red, while 

low values are presented in blue. Positive SHAP values  (above zero in de x-axis) 

mean that the feature values are associated to the positive outcome  (in this case 

good r), while SHAP values below zero indicate the opposite. * at symptomatic 

carotid bifurcation on CTA at baseline.  * at symptomatic carotid bifurcation on 

CTA at baseline. 
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Figure 5.4. SHAP feature importance for the combination  experiment for the 

prediction of good reperfusion using the RFC model. For visualization purposes we 

included only the top 20 features. Features are shown in order of importance, from 

most important  (top) to less important  (bottom). The color legend on the right 

shows how the feature values influence outcome: high values are depicted in red, 

while low values are presented in blue. Positive SHAP values  (above zero in de x-

axis) mean that the feature values are associated to the positive outcome  (in this 

case good r), while SHAP values below zero indicate the opposite. * at 

symptomatic carotid bifurcation on CTA at baseline.  * at symptomatic carotid 

bifurcation on CTA at baseline. 

 

Deep learning approach 
In Table 5.3 we present the results for predicting good functional outcome 

using the deep learning approach. To keep the number of experiments 

feasible, we present results for the clinical and combination experiments. All 

the measures were similar for both the clinical and combination experiments. 

Regardless, for the combination experiment, training the ResNet10 models 

from scratch resulted in a worse performance than when using Transfer 

Learning from other image datasets. Similar to the radiomics approach, there 

seems to be no improvement in the performance measures when combining 
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the image learned features to the clinical data. The difference between the 

clinical and the combination was not significant, p-value=0.285 for the 

ResNet10 trained using Transfer Learning. 

Table 5.3. Results of all experiments from the deep learning approach for predicting 

good functional outcome  (mRS<=2). Average over 5-fold cross-validation 

Methods AUC F1-Score Sensitivity Specificity PPV NPV 

Clinical Experiment 

Feed 

Forward 

0.77 

(0.76-0.78) 

0.66 

(0.61-0.71) 

0.70 

(0.66-0.73) 

0.70 

(0.67-0.74) 

0.63 

(0.57-0.70) 

0.76 

(0.72-0.80) 

Combination Experiment 

ResNet10 

From 

Scratch 

0.54 

(0.45-0.64) 

0.29 

(0.13-0.70) 

0.30 

(0.20-0.79) 

0.78 

(0.39-1.00) 

0.58 

(0.25-0.91) 

0.61 

(0.51-0.72) 

Combination Experiment 

ResNet10 

Transfer 

Learning 

0.77 

(0.75-0.78) 

0.66 

(0.62-0.70) 

0.70 

(0.67-0.73) 

0.70 

(0.68-0.73) 

0.63 

(0.57-0.68) 

0.76 

(0.72-0.80) 

 

Finally, we present in Table 5.4 the results for predicting good reperfusion. 

All evaluation measures are higher for the combination experiment, and, 

despite confidence intervals are often overlapping, the average AUC is 0.08 

higher. Again, the Transfer Learning approach for the Resnet10 model 

yielded better results than training from scratch. The difference between the 

clinical and the combination experiments was statistically significant, p-

value<0.005 for the ResNet10 trained using Transfer Learning. 

Table 5.4. Results of all experiments from the deep learning approach for predicting 

good reperfusion  (post- eTICI ≥ 2b). Average over 5-fold cross-validation 

Methods AUC F1-Score Sensitivity Specificity PPV NPV 

Clinical Experiment 

Feed 

Forward 

0.53 

(0.50-0.55) 

0.57 

(0.54-0.61) 

0.51 

(0.48-0.54) 

0.53 

(0.52-0.55) 

0.65 

(0.59-0.71) 

0.38 

(0.32-0.43) 

Combination Experiment 

ResNet10  

From 

Scratch 

0.50 

(0.50-0.52) 

0.13 

(0.00-0.56) 

0.12 

(0.00-0.51) 

0.87 

(0.46-1.00) 

0.15 

(0.00-0.62) 

0.36 

(0.31-0.40) 

Combination Experiment 

ResNet10  

Transfer 

Learning 

0.61 

(0.50-0.72) 

0.63 

(0.54-0.71) 

0.57 

(0.50-0.64) 

0.57 

(0.50-0.64) 

0.69 

(0.60-0.80) 

0.43 

(0.40-0.45) 



Chapter 5 

118 

 

Discussion 
Our results suggest that there is a statistically significant improvement in 

performance for the prediction of good reperfusion  (post-eTICI ≥ 2b) when 

data driven image features were combined with the clinical data, regardless 

of the radiomics or deep learning  approach. In contrary,  the addition of 

image features does not improve the prediction of good functional outcome  

(mRS<=2), regardless of the approach. Despite the lack of improvement in 

prediction accuracy for good functional outcome, radiomics features were 

relatively important for the models, when viewing the 20 features with highest 

feature importance.  

In terms of prediction accuracy, our results are in line with previous works on 

mRS and reperfusion prediction, where AUCs around 0.80 and 0.57 

respectively were reported  (8,37). The current study is among the  first to 

assess the combination of clinical and image features using both a radiomics 

and deep learning approaches for the prediction of good functional outcome 

and reperfusion. A previous study  (38) explored a combination of clinical 

and image data using deep learning approaches to predict good functional 

outcome at baseline, and found a significant improvement in the AUC, 

despite presenting AUC values lower than the ones reported in this study and 

in the literature  (8). Despite not finding the same improvements as reported 

in  (38), our work included a much larger population  (3279 patients vs 500 

respectively) and we performed extra cross-validation iterations, while  (38) 

reported the results for only one fold, which might be due to chance.  

Strenghts of our study include the large and heterogeneous population 

compared to previous studies that aimed at predicting good functional 

outcome and reperfusion  (8,12,37). A heterogeneous dataset is important 

since we aimed to develop models on data that is as close to the clinical 

practice as possible. Besides, we employed two different approaches for 

combining the data, a radiomics approach, offering a more interpretable and 

visual solution, and a deep learning approach, which is a more state-of-the-

art solution, increasing our chances of finding significant improvements. 

Another strength of our study is the use of inner and outer cross-validation 

for optimizing and testing the models, which can help identifying overfitting 

and reduces the risk of reporting overoptimistic results.  
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Several methodological challenges need to be considered interpreting the 

results of this study. First, only a relatively small number of Deep Learning 

models were used, and they were all based on the same architecture  

(ResNet10). Second, while other, deeper architectures are available and could 

yield better results, training a deeper architecture often requires more data and 

computer power. Since each validation iteration of our experiments takes 

around 24 hours to compute on a single GPU  (and deeper 3D architectures 

would not fit the GPU memory), optimizing other models was out of the scope 

of this study. Also, given the size of our dataset, one could perform more 

cross-validation iterations, which would make our results more robust. Third, 

another limitation is the use of CTA modality, while other modalities could 

also be of added value like non contrast CT  (NCCT). We chose to use CTA 

instead of NCCT because previous deep learning studies  (12) already found 

a significant added value from CTAs for predicting good outcome, but did 

not explore a 3D approach for the images or their combination with clinical 

data. Fourth, the large number of variables included can also be a downside, 

since some are not readily available at baseline, despite all being possible to 

compute before treatment  (either from patient history or recent imaging).  

This study contributes to the understanding of imaging and clinical features 

that are associated good functional outcome and reperfusion. Age, NIHSS at 

baseline and pre-stroke mRS were found to be the top most important 

variables for functional outcome prediction, regardless of the data 

experiment, and have also been found to be relevant in previous studies  

(8,37). Besides that, with our imaging approaches we identified many 

relevant brain regions that have also been reported to be significantly 

associated to functional outcome  (16).  Regarding the prediction of good 

reperfusion, our findings suggest that image features  (radiomics or deep 

learning) can significantly improve prediction and may replace many 

common clinical predictors in the models. For future research, one should 

consider computing more complex radiomics such as the gray level co-

occurrence matrix or shape based features, since these have already been 

shown to be significantly associated to stroke patient outcome  (39). 

Regarding deep learning, deeper ResNet networks could be considered, 

provided that enough data is available to train such models, and a Transfer 
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Learning approach should often be explored, since this can greatly surpass 

models trained from scratch as shown in this study. 

Conclusion 
We found a significant improvement in the prediction of good reperfusion 

when combining image to clinical features. Regarding functional outcome, 

the addition of image features had no impact in the prediction accuracy. 

Nevertheless, the prediction accuracy of our models is still rather limited to 

be considered in clinical practice. The visualization of prediction feature 

importance showed both known and novel features with predictive value. 

Finally, we found that Transfer Learning can be of great assistance when 

training deep learning models for prediction tasks. 
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Supplemental material 
Supplemental Table I. Details of included variables. A1, first segment of anterior 

cerebral artery; ASPECTS, Alberta stroke programme early CT score; cat, 

categorical; CBS, clot burden score; cont, continuous; CRP, C-reactive protein; 

CTA, CT angiography; DOAC, direct oral anticoagulant; ER, emergency room; 

HAS, hyperdense artery sign; IQR, interquartile range; M1/M2/M3, 

first/second/third segment of middle cerebral artery; mRS, modified Rankin Scale; 

NCCT, non-contrast CT; NIHSS, National Institutes of Health stroke scale; RR, 

blood pressure (Riva-Rocci). 

Name Occurrence (%) 

N=3279 

Missing 

n (%) 

Analyzed 

as 

Previous stroke  27 (1) cat 

0 – no 2706 (83)   

1 – yes  546 (17)   

Myocardial infarction     67 ( 2) cat 

0 – no   2759 (84)   

1 – yes    453 (14)   

Peripheral arterial disease     68 ( 2) cat 

0 – no   2910 (89)   

1 – yes    301 ( 9)   

Diabetes     24 ( 1) cat 

0 – no   2723 (83)   

1 – yes   532 (16)   

Hypertension     66 ( 2) cat 

1 – yes   1688 (51)   

0 – no   1525 (47)   

Atrial fibrillation     43 ( 1) cat 

0 – no   2464 (75)   

1 – yes    772 (24)   

Hypercholesterolemia    143 ( 4) cat 

0 – no   2169 (66)   

1 – yes    967 (29)   

Antiplatelet use     41 ( 1) cat 

0 – no   2227 (68)   

1 – yes   1011 (31)   

DOAC use     40 ( 1) cat 

0 – no   3132 (96)   

1 – yes    107 ( 3)   

Coumarin use     24 ( 1) cat 

0 – no   2839 (87)   

1 – yes    416 (13)   

Heparin use     43 ( 1) cat 

0 – no   3135 (96)   

1 – yes    101 ( 3)   

Blood pressure medication     62 ( 2) cat 
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Supplemental Table I (continued) 
1 – yes   1739 (53)   

0 – no   1478 (45)   

Statin use     74 ( 2) cat 

0 – no   2070 (63)   

1 – yes   1135 (35)   

HAS on baseline NCCT    131 ( 4) cat 

1 – yes   1704 (52)   

0 – no   1444 (44)   

Relevant (new) ischemia / 

hypodensity 

   157 ( 5) cat 

1 – yes   1908 (58)   

0 – no   1214 (37)   

Hemorrhagic 

transformation 

   137 ( 4) cat 

0 – no   3098 (94)   

1 – yes     44 ( 1)   

Leukoariosis    128 ( 4) cat 

0 – no  1903 (58)   

1 – yes   1248 (38)   

Old infarcts in same 

ASPECTS region? 

   126 ( 4) cat 

0 – no   2721 (83)   

1 – yes    432 (13)   

Intracranial atherosclerosis 

on CTA scored by core lab 

   132 ( 4) cat 

1 – yes  1886 (58)   

0 – no   1261 (38)   

Sex  0 (0) cat 

Male  1696 (52)   

Female  1583 (48)   

Most proximal occlusion 

segment on CTA scored 

by core lab, based on CBS  

   151 ( 5) cat 

Distal M1  1061 (32)   

Proximal M1   754 (23)   

ICA-T   663 (20)   

M2   455 (14)   

Intracranial ICA   161 ( 5)   

None    13 ( 0)   

M3     9 ( 0)   

A2     6 ( 0)   

A1     6 ( 0)   

Smoking    758 (23) cat 

0 – no   1813 (55)   

1 – yes    708 (22)   

Inclusion on weekday or 

weekend 

 0 (0) cat 
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Supplemental Table I (continued) 
0 – weekday  2415 (74)   

1 – weekend    864 (26)   

Admission between 17.00-

08-00 (weekday)/ 

weekend or holiday. Based 

on ER time. 

 0 (0) cat 

1 – office hours  2088 (64)   

0 – outside office hours  1191 (36)   

Transfer from other 

hospital 

     1 ( 0) cat 

1 – transfer   1783 (54)   

0 – no transfer  1495 (46)   

Contraindications for IVT   2461 (75) cat 

0 – no   772 (24)   

1 – yes     46 ( 1)   

No abnormalities at 

symptomatic carotid 

bifurcation on CTA 

baseline by core lab 

   400 (12) cat 

0 – no abnormalities  2110 (64)   

1 – any abnormalities   769 (23)   

50% or more 

atherosclerotic stenosis at 

symptomatic carotid 

bifurcation on CTA 

baseline 

   400 (12) cat 

0 – no   2615 (80)   

1 – yes    264 ( 8)   

Atherosclerotic occlusion 

at symptomatic carotid 

bifurcation on CTA 

baseline by core lab 

   400 (12) cat 

0 – no   2564 (78)   

1 – yes    315 (10)   

Floating thrombus at 

symptomatic carotid 

bifurcation on CTA 

baseline by core lab 

   400 (12) cat 

0 – no   2826 (86)   

1 – yes     53 ( 2)   

Pseudo-occlusion at 

symptomatic carotid 

bifurcation on CTA 

baseline by core lab 

   400 (12) cat 

0 – no   2684 (82)   

1 – yes    195 ( 6)   
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Supplemental Table I (continued) 

Carotid dissection at 

symptomatic carotid 

bifurcation on CTA 

baseline by core lab 

   400 (12) cat 

0 – no   2777 (85)   

1 – yes    102 ( 3)   

Occlusion side on CTA 

scored by core lab 

     2 ( 0) cat 

Left hemisphere  1745 (53)   

Right hemisphere  1515 (46)   

Neither    17 ( 1)   

In-hospital stroke    534 (16) cat 

0 – no   2416 (74)   

1 – yes    329 (10)   

Second occlusion in other 

territory present on CTA 

scored by core lab 

   546 (17) cat 

0 – no   2454 (75)   

1 – yes    279 ( 9)   

Collateral score on CTA 

scored by core lab 

   207 ( 6) cont 

100% of occluded area   595 (18)   

>50% but less <100% 1190 (36)   

filling <50% of occluded 

area 

1100 (34)   

Absent collaterals 187 ( 6)   

Pre-stroke mRS     72 ( 2) cont 

0  2170 (66)   

1   424 (13)   

2   241 ( 7)   

3   211 ( 6)   

4   133 ( 4)   

5    28 ( 1)   

90-day mRS    214 ( 7) cat 

6 886 (27)   

2 561 (17)   

1 471 (14)   

3 404 (12)   

4 366 (11)   

0 209 ( 6)   

5 168 ( 5)   

Post-eTICI     90 ( 3) cat 

3   905 (28)   

2b   702 (21)   

2a   597 (18)   

0   543 (17)   
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Supplemental Table I (continued) 
2c   347 (11)   

1    95 ( 3)   

ASPECTS baseline scored 

by core lab – median 

(IQR) 

    9 (7- 10)   109 ( 3) cont 

CBS at baseline – median 

(IQR) 

    6 (4-  8)   766 (23) cont 

NIHSS at baseline – 

median (IQR) 

   16 (11- 20)    55 ( 2) cont 

Glucose level at baseline – 

median (IQR) 

    7 (6-  8)   371 (11) cont 

RR systolic at baseline – 

median (IQR) 

  150 (131-165)    89 ( 3) cont 

RR diastolic at baseline – 

median (IQR) 

   80 (71- 91)    97 ( 3) cont 

INR at baseline – median 

(IQR) 

    1 (1-  1)   608 (19) cont 

Thrombocyte count at 

baseline – median (IQR) 

  234 (194-289)   445 (14) cont 

CRP level at baseline – 

median (IQR) 

    4 (2- 10)   651 (20) cont 

Age – median (IQR)    72 (61- 80)     0 ( 0) cont 

Total glasgow coma scale 

at baseline – median (IQR) 

   13 (11- 15)   113 ( 3) cont 

Duration from onset to 

groin in minutes – median 

(IQR) 

  195 (150-260)    15 ( 0) cont 

Duration: onset to IVT in 

minutes in first hospital – 

median (IQR) 

   24 (18- 33)  1353 (41) cont 

 

Supplemental Table II. List of radiomics features computed per atlas region in the 

radiomics approach. Adapted from the PyRadiomics documentation (17). ROI: 

Region of Interest. 

Feature Name Explanation 

10th Percentile The 10th  percentile of the ROI 

90th Percentile The 90th  percentile of the ROI 

Energy Energy is a measure of the magnitude of voxel values in an image. A 

larger values implies a greater sum of the squares of these values. 

Entropy Entropy specifies the uncertainty/randomness in the image values. It 

measures the average amount of information required to encode the 

image values. 
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Supplemental Table 2 (continued) 

Interquartile 

Range 

The 75th  minus the 25th  percentiles of the image array, respectively. 

Kurtosis It is a measure related to the peak of the distribution of values in the 

image ROI. A higher kurtosis implies that the mass of the 

distribution is concentrated towards the tail(s) rather than towards the 

mean. A lower kurtosis implies the reverse: that the mass of the 

distribution is concentrated towards a spike near the Mean value. 

Maximum Maximum gray level intensity within the ROI 

Mean Mean gray level intensity within the ROI 

Mean Absolute 

Deviation 

The mean distance of all intensity values from the Mean Value of the 

image array). 

Median Median gray level intensity within the ROI. 

Minimum Minimum gray level intensity within the ROI 

Range The range of gray values in the ROI given by:  maximum – 

minimum. 

Robust Mean 

Absolute 

Deviation 

mean distance of all intensity values from the Mean Value calculated 

on the subset of image array with gray levels in between, or equal to 

the 10th and 90th percentile 

Root Mean 

Squared 

Square-root of the mean of all the squared intensity values. It is 

another measure of the magnitude of the image values 

Skewness  Measures the asymmetry of the distribution of values about the Mean 

value. Depending on where the tail is elongated and the mass of the 

distribution is concentrated, this value can be positive or negative. 

Total Energy Total Energy is the value of Energy feature scaled by the volume of 

the voxel in cubic mm. 

Uniformity Measure of the sum of the squares of each intensity value. This is a 

measure of the homogeneity of the image array, where a greater 

uniformity implies a greater homogeneity or a smaller range of 

discrete intensity value 

Variance Variance is the mean of the squared distances of each intensity value 

from the Mean value. This is a measure of the spread of the 

distribution about the mean. 
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Supplemental Table III. Hyper-parameters used for optimizing the Machine 

Learning models using grid-search.  

Classifier Parameter Name Parameter Value 

RFC Number of Trees [100,200,400,600,800,1000,1200,1400] 

Max features for split auto, sqrt and log2 

Max depth of trees [10,20,30,40, 50, 60, 70, 80, 90, 100, 

None] 

Quality of split Gini or Entropy 

Minimum number of samples 

required to split an internal node 

[2,4,6,8] 

Minimum number of samples 

required to be at a leaf node 

[2,4,6,8,10] 

SVM Kernel type Linear, Radial basis function, 

Polynomial 

Penalty parameter C [0.001, 0.01, 0.1, 1, 10, 100] 

Kernel coefficient γ (gamma) [1, 0.1, 0.01, 0.001, 0.0001] 

Degree of the Polynomial kernel [1,2,3,4,5,6] 

LR Regularization [0.001, 0.01, 0.1, 1, 10, 100] 

Optimization algorithm [newton-cg, lbfgs, liblinear, sag, saga] 

NN Hidden Layer sizes [90,180,90], [90,120,90], [90,90], 

[90,180], [90], [180] 

Activation ReLU, logistic 

Regularization parameter [0.1, 0.01, 0.001, 0.0001] 

Batch size [32, 64, 128]   

Learning rate [0.01, 0.001, 0.005] 

Optimization algorithm Adam 

XGB Learning rate [0.1, 0.01, 0.001, 0.005] 

Minimum sum of instance weight 

(hessian) needed in a child 

[1, 5, 10] 

Minimum loss reduction required 

to make a further partition on a 

leaf node of the tree 

[0, 0.5, 1, 1.5, 2, 5] 

Subsample ratio of the training 

instances 

[0.7, 0.8, 0.9, 1.0] 

 Parameters for subsampling the 

columns 

[0.3,0.4,0.5,0.6,0.7,0.8] 

Maximum depth of a tree [3, 5, 7, 9, 10] 
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Supplemental Table IV. Result of the forth experiment (no image score) for the 

radiomics approach for predicting good functional outcome (mRS<=2). All image-

related scores were removed from the clinical data. The average of 5 cross validation 

iterations is presented. RFC, random forest classifier; SVM, support vector machine; 

LR, logistic regression; XGB, gradient boosting; NN, neural networks. AUC, area 

under the curve; NPV, negative predictive value; PPV, positive predictive value. 

Methods AUC F1-Score Sensitivity Specificity PPV NPV 

Clinical (no image scores) 

RFC 0.80 

(0.78-0.82) 

0.68 

(0.65- .72) 

0.72 

(0.68-0.76) 

0.73 

(0.71-0.75) 

0.65 

(0.61-0.70) 

0.78 

(0.76-0.81) 

SVM 0.80 

(0.78-0.82) 

0.70 

(0.66-0.73) 

0.79 

(0.73-0.84) 

0.66 

(0.65-0.68) 

0.63 

(0.58-0.67) 

0.82 

(0.78-0.85) 

LR 0.80 

(0.78-0.81) 

0.69 

(0.66-0.73) 

0.77 

(0.73-0.81) 

0.68 

(0.67-0.69) 

0.63 

(0.59-0.67) 

0.81 

(0.77-0.84) 

XGB 0.79 

(0.77-0.81) 

0.68 

(0.65-0.72) 

0.75 

(0.70-0.80) 

0.69 

(0.67-0.70) 

0.63 

(0.60-0.66) 

0.79 

(0.76-0.83) 

NN 0.80 

(0.78-0.81) 

0.68 

(0.65-0.71) 

0.72 

(0.68-0.76) 

0.72 

(0.67-0.76) 

0.64 

(0.59-0.70) 

0.78 

(0.75-0.81) 

Combination (no image  scores) 

RFC 0.79 

(0.78-0.81) 

0.67 

(0.64-0.70) 

0.68 

(0.65-0.72) 

0.75 

(0.72-0.78) 

0.66 

(0.62-0.70) 

0.77 

(0.74-0.79) 

SVM 0.79 

(0.78-0.80) 

0.69 

(0.67-0.72) 

0.77 

(0.74-0.80) 

0.68 

(0.66-0.69) 

0.63 

(0.60-0.66) 

0.81 

(0.78-0.83) 

LR 0.79 

(0.78-0.80) 

0.68 

(0.65-0.71) 

0.75 

(0.70-0.81) 

0.68 

(0.66-0.70) 

0.63 

(0.59-0.66) 

0.79 

(0.76-0.83) 

XGB 0.79 

(0.77-0.81) 

0.69 

(0.66-0.72) 

0.76 

(0.74-0.79) 

0.67 

(0.65-0.70) 

0.62 

(0.58-0.67) 

0.80 

(0.78-0.82) 

NN 0.72 

(0.69-0.75) 

0.60 

(0.55-0.64) 

0.60 

(0.54-0.66) 

0.71 

(0.69-0.73) 

0.59 

(0.55-0.64) 

0.71 

(0.68-0.75) 
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Supplemental Table V. Results of the forth experiment (no image score) for the 

radiomics approach for predicting good reperfusion (post-eTICI ≥ 2b). All image-

related scores were removed from the clinical data. The average of 5 cross validation 

iterations is presented. RFC, random forest classifier; SVM, support vector machine; 

LR, logistic regression; XGB, gradient boosting; NN, neural networks. AUC, area 

under the curve; NPV, negative predictive value; PPV, positive predictive value. 

Methods AUC F1-Score Sensitivity Specificity PPV NPV 

Clinical (no image scores) 

RFC 0.51 

(0.48-0.54) 

0.70 

(0.67-0.73) 

0.77 

(0.72-0.82) 

0.25 

(0.21-0.30) 

0.64 

(0.59-0.68) 

0.39  

(0.33-0.46) 

SVM 0.53 

(0.51-0.55) 

0.75 

(0.66-0.83) 

0.92 

(0.72-1.13) 

0.09 

(0.16-0.33) 

0.64 

(0.60-0.67) 

0.43  

(0.19-0.61) 

LR 0.53 

(0.52-0.55) 

0.63 

(0.58-0.68) 

0.61 

(0.56-0.66) 

0.42 

(0.38-0.46) 

0.64 

(0.60-0.69) 

0.39  

(0.36-0.42) 

XGB 0.51 

(0.50-0.52) 

0.64 

(0.58-0.71) 

0.65 

(0.54-0.76) 

0.39 

(0.31-0.47) 

0.64 

(0.60-0.69) 

0.40 

(0.36-0.44) 

NN 0.52 

(0.49-0.55) 

0.76 

(0.71-0.80) 

0.94 

(0.83-1.05) 

0.07 

(0.06-0.20) 

0.63 

(0.59-0.67) 

0.43 

(0.23-0.64) 

Combination (no image  scores) 

RFC 0.57 

(0.54-0.60) 

0.74 

(0.71-0.76) 

0.87 

(0.84-0.89) 

0.17 

(0.13-0.21) 

0.64 

(0.60-0.68) 

0.42 

(0.33-0.52) 

SVM 0.56 

(0.53-0.60) 

0.65 

(0.54-0.75) 

0.66 

(0.42-0.90) 

0.41 

(0.12-0.70) 

0.66 

(0.62-0.70) 

0.42 

(0.35-0.49) 

LR 0.56 

(0.53-0.59) 

0.61 

(0.59-0.64) 

0.57 

(0.55-0.60) 

0.49 

(0.44-0.54) 

0.66 

(0.62-0.70) 

0.40 

(0.35-0.46) 

XGB 0.56 

(0.54-0.59) 

0.60 

(0.57-0.64) 

0.55 

(0.52-0.59) 

0.53 

(0.48-0.57) 

0.67 

(0.63-0.70) 

0.41 

(0.36-0.46) 

NN 0.52 

(0.50-0.55) 

0.66 

(0.64-0.69) 

0.70 

(0.60-0.79) 

0.34 

(0.22-0.46) 

0.64 

(0.59-0.69) 

0.39 

(0.33-0.45) 
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Abstract 
Background: Although endovascular treatment  (EVT) has greatly improved 

outcomes in acute ischemic stroke, still one third of patients die or remain 

severely disabled after stroke. If we could select patients with poor clinical 

outcome despite EVT, we could prevent futile treatment, avoid treatment 

complications, and further improve stroke care. We aimed to determine the 

accuracy of poor functional outcome prediction, defined as 90-day mRS≥5, 

despite EVT treatment. 

Methods: We included 1526 patients from the MR CLEAN Registry; a 

prospective, observational, multicenter registry of ischemic stroke patients 

treated with EVT. We developed machine learning prediction models using 

all variables available at baseline prior to treatment. We optimized the models 

for  both maximizing the AUC reducing the number of false positives.  

Results: From 1526 patients included, 480  (31%) of patients showed poor 

outcome. The highest area under the curve was 0.81 for random forest. The 

highest area under the precision recall curve was 0.69 for the SVM.  The 

highest achieved specificity was 95% with a sensitivity of 34% for neural 

networks, indicating that all models contained false positives in their 

predictions. From 921 mRS 0-4 patients, 27 to 61  (3 to 6%) were incorrectly 

classified as poor outcome. From 480 poor outcome patients in the registry, 

99 to 163  (21 to 34%) were correctly identified by the models.  

Conclusions: All prediction models showed a high area under the curve. The 

best-performing models correctly identified 34% of the poor outcome patients 

at a cost of misclassifying 4% of non-poor outcome patients. Further studies 

are necessary to determine whether these accuracies are reproducible before 

implementation in clinical practice. 
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Introduction 
Over the past four years, endovascular thrombectomy  (EVT) unquestionably 

proved its value in anterior circulation acute ischemic stroke. (1–8) Despite 

the encouraging results however, still approximately 30% of patients die or 

remain dependent of daily nursing care after EVT, making their treatment 

benefit essentially minimal. (5,6) 

If we could reliably select patients with poor outcome after stroke despite 

EVT, we could spare patients a futile treatment with a needless risk of 

complications and enable a more efficient use of resources. (9) Unfortunately, 

so far, no studies have been able to definitively identify a subgroup of patients 

that should not be treated with EVT. (9) 

 In patient selection, it could be useful to predict poor outcome. Many 

previous studies focused on predicting functional independence after EVT. 

(10) However, the use of such models would raise an ethical question. If a 

model predicts a zero percent chance of functional independence with EVT 

for a patient, one might advise to not treat. Untreated, the patient likely has a 

worse outcome, possibly needing continuous care in a nursing home. Treated, 

the patient may be able to function with some assistance in daily activities. 

Should we not treat this patient? A more valuable argument could be a reliable 

prediction of death or complete dependence of continuous care, even after 

EVT.  

Some studies, such as MR PREDICTS, used data from randomized trials to 

predict treatment benefit as a Rankin Scale  (mRS) score shift, using ordinal 

logistic regression. (11) Predicting treatment benefit can be useful: if a patient 

is predicted to benefit from EVT in addition to regular care, one would 

proceed with EVT. However, data from randomized trials are necessary for 

such a model, since predicted outcomes need to be based on a sufficient 

number of patients that did or did not receive EVT without indication bias. 

The amount of available data from randomized trials on EVT is limited. No 

new data after the HERMES trials will be available to train and validate 

models. (5) An outcome measure that can enable long-term model 

improvement such as poor functional outcome could be of added value to 

models predicting treatment benefit. 
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 Only a few studies have used poor outcome as their outcome measure, 

however, they had a limited amount of data and focused on linear classifiers. 

(12) Machine learning  (ML) may be of added value in predicting outcome 

after EVT. The number of relevant prognostic factors in stroke patients is 

high, and their effects on outcome may be indirect, combined, or otherwise 

complicated. With the ability to identify relevant prognostic variables through 

linear and non-linear relationships, ML may have added value in poor 

outcome prediction.  

ML belongs to the artificial intelligence domain, where algorithms are 

designed to automatically learn patterns from data. In the work by  (10), ML 

methods predicted functional independence after acute ischemic stroke in a 

large population  (1383 patients), with reasonable certainty  (area under the 

curve [AUC] 0.79). 

Since the addition of EVT to standard care, the amount of available outcome 

data has greatly increased, now allowing for more powerful and elaborate 

prediction modelling. In the current study, we aim to assess the accuracy of 

pre-procedural prediction of poor functional outcome after EVT using ML 

models, in patients from the MR CLEAN Registry.  

Methods 
Study population 
We included patients from the MR CLEAN Registry, which is a prospective, 

observational, multicenter study, consecutively including all EVT-treated 

acute ischemic stroke patients in the Netherlands since the completion of the 

MR CLEAN trial (13) in March 2014. The MR CLEAN registry contains data 

from 16 centers distributed across The Netherlands. The current study is a 

retrospective report on patients included in the MR CLEAN Registry between 

March 2014 and June 2016 with intracranial proximal occlusions of the 

anterior arterial circulation  (internal carotid artery  (ICA) or internal carotid 

artery terminus  (ICA-T), middle  (M1/M2) or anterior  (A1/A2) cerebral 

artery); aged ≥18 years; and treated in a MR CLEAN trial center. Patients 

were treated with intravenous thrombolysis  (IVT) prior to EVT, if eligible. 

The central medical ethics committee of the Erasmus Medical Centre 

Rotterdam, the Netherlands, evaluated the study protocol and granted 
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permission  (MEC-2014–235) to carry out the data collection as a registry. 

(6) The procedures followed were in accordance with institutional guidelines. 

Patients provided permission for study participation through an opt-out 

procedure. The data can be made available upon reasonable request from the 

MR CLEAN Registry committee  (mrclean@erasmusmc.nl).All code used 

for the development of the models and data analysis is available at: 

https://github.com/L-Ramos/MrClean_Poor. 

All imaging was assessed by an independent core laboratory, composed of 21 

observers  (20 interventional neuro- and/or interventional radiologists and one 

interventional neurologist) who were blinded to all clinical findings, except 

for symptom side. Assessed baseline imaging modalities were non-contrast 

CT  (dense vessel sign, ASPECTS, hemorrhage, old infarcts, leukoaraiosis), 

CT angiography  (CTA; occlusion location, clot burden score, collateral 

grade), and digital subtraction angiography  (DSA; successful reperfusion, 

defined as extended thrombolysis in infarction score 2B-3). Other imaging 

variables that have proven to be predictive for outcome such as stroke lesion 

shape and size, are difficult to observe on CT scans and were therefore, not 

included in our models  (14). 

Study variables, Outcome, Missing data  
Provided the correct methodoloy is used, ML methods allow the analysis of 

a large number of features. Therefore, we analyzed all 51 patient variables 

collected at baseline before treatment. Ordinal variables such as pre-stroke 

mRS, collaterals, ASPECTS, NIHSS, clot burden score, and Glasgow Coma 

Scale were treated as linear continuous scores. Some variables like time to 

groin puncture, despite not being readily available at baseline, can be 

estimated. If groin puncture is estimated to be possible within 6 hours, 

patients can be treated within the regular EVT time window. In addition, 

achievable door-groin time of <60 minutes is currently used as inclusion 

criterion for several acute stroke trials  (such as MR CLEAN-NO IV; 

ISRCTN80619088). More details about the included variables, distributions 

and how they were included in the models are listed in Supplemental Table I.  

The outcome measure of interest of this study was as poor functional 

outcome, defined as a modified Rankin Scale  (mRS) score of ≥5 at 90 days 



Chapter 6 

140 

 

after stroke. Data on the mRS were collected by the MR CLEAN Registry 

hospitals as part of usual care. (6)  

Missing baseline and outcome data  (mRS, n=125 [8%])  were imputed using 

two approaches: a multiple imputation approach using Multiple Imputation 

by Chained Equations  (MICE)  (15), which is the most commonly used in 

literature  (and the standard for MR CLEAN Registry-based studies) and a 

single imputation approach using Random-Forest Imputation  (RFI)  (16), 

which is a more recent, state-of-the-art imputation method. Variables with 

more than 40% missing were excluded from the analysis. 

Machine learning methods 
We applied the following ML methods:  

Random forest classifier  (RFC) (17), an ensemble classifier that combines 

many decision trees trained individually. Each decision tree is trained on 

random samples from the dataset, which reduces the variance of the 

prediction without increasing the bias; 

Support vector machine  (SVM) (18), which separates classes by constructing 

hyperplanes and maximizing the margin in a multidimensional space; 

Artificial neural networks  (NN) (19), which is composed of many 

interconnected nodes arranged in layers, where information is propagated 

from the first input layer up to a final output layer that delivers a prediction; 

and 

Gradient boosting  (XGB) (20), which is also an ensemble classifier that uses 

decision trees, but instead of training the trees individually, Gradient Boosting 

trains the trees sequentially, gradually improving them based on the previous 

ones. 

Logistic regression  (LR), which models the probability of a binary outcome 

using a linear function of the predictor variables; 

Since there are many ML methods described in the literature, for which 

learning occurs in very different ways, we selected models that differ in 

learning procedure to increase the chance of developing models that 

generalize well  (21). These methods have shown state-of-the-art results in 
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several stroke-related applications. (10,22,23) For the Gradient Boosting 

method, we used the implementation from https://github.com/dmlc/xgboost. 

(20)  For all the other methods, we used the implementations from Scikit 

Learn toolkit version 0.21.3. (24)  

Machine learning pipeline 
We used a nested cross-validation  (CV) strategy for model optimization and 

evaluation. In the outer CV loop, the dataset was split into ten equally sized 

folds. For each CV iteration, nine folds were used as training set and one was 

used as test set. In the inner CV loop, the training set was again divided into 

five folds  (four used for training and one for validation), used for training the 

RFI imputer and determining the best hyper-parameters for all ML models. 

Hyper-parameters are parameters specific to each ML method. Their values 

cannot be automatically learned by the methods. The hyper-parameters were 

optimized using the random grid search function available on Scikit Learn  

(24),  for maximizing the AUC. A list of the hyper-parameters used can be 

found in Supplemental Table II, together with a description of the 

optimization procedure and choice of values.  

For the LR models, we used feature selection using LASSO to define a subset 

of relevant variables. Creating a subset avoids diluting the coefficients of the 

model, which can form a challenge in interpreting variable importance. (25) 

Since the outcome variable was slightly imbalanced, and class imbalance can 

bias some classifiers, we applied balanced class weights during training of all 

models  (24,26). Class weights change the way the loss is calculated. The 

individual errors are multiplied by a sample weight, which shifts the 

minimum of the loss function. This way, when the error is high for a sample 

from a less prominent class, its impact will be higher in the loss, leading to a 

larger penalization in the whole model We chose this approach since it has 

shown to work well even when class imbalanced in severe  (up to thousands 

of times fewer samples from a given class). (26) 

Model performance 
Model performance was evaluated on the testing sets.. We evaluated model 

performance using AUC, sensitivity  (poor outcome patients correctly 

classified as poor outcome), specificity  (percentage of non-poor outcome 
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patients correctly classified as non-poor outcome), positive predictive value  

(PPV)  (predicted poor outcome patients actually having poor outcome), 

negative predictive value  (NPV)  (predicted non-poor outcome patients 

actually having non-poor outcome), Matthews Correlation Coefficient  

(MCC)  (correlation coefficient between the observed and predicted classes 

that is robust to class imbalance)  (27), and the Area under the Precision 

Recall curve  (AUPRC). A high AUPRC relates to high precision  (low false 

positive rate) and recall  (low false negative rate), and is also a robust measure 

for class imbalance.  (24) We built ten models for each ML method 

through cross-validation. Therefore, the measures were averaged over all 

iterations and 95% confidence intervals  (CI) were computed. To limit the 

number of false positives  (and, consequently, the risk of withholding 

treatment from patients who may still have good functional outcome), we 

optimized the predictions from the models  (probability of poor outcome) to 

maximize specificity; above or equal to 0.95, 0.98 and 1.00, using the 

validation dataset to determine a threshold for the probabilities. This 

threshold was determined based on incremental search, by continuously 

increasing the threshold in 0.01 units until specificity was equal or higher than 

0.95. 

To assess model performance, we used Grotta bars to visualize the mRS 

distribution of patients that were classified by the models into poor outcome 

versus non-poor outcome. Per ML method, three Grotta bars were computed 

for a specificity threshold of 0.95, 0.98 and 1.00, to assess the impact of 

reducing the number of false positive predictions.  Finally, we investigated 

the variables with the most predictive value for the best performing models  

(high PPV and small number of FP) using odds ratio for LR and permutation 

feature importance. (28) In permutation feature importance, each variable is 

individually shuffled before training and the decrease in accuracy  (or in our 

case, AUC) is computed. The more the AUC decreases, the more important 

the variable is for the model.  
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Results 
Study population 
A total of 1526 patients were included  (Supplemental Figure I). Mean age 

was 71 years, median baseline NIHSS was 14  (Table 6.1). Successful 

reperfusion was achieved in 863/1505 patients  (57%), and 753/1092  (69%) 

of patients with complete post-EVT DSA runs available. At 90 days, 480  

(31%) patients had a poor functional outcome  (mRS 5-6), whereas 921  

(61%) did not  (outcome missing in n=125 [8%]). 

Table 6.1. Baseline characteristics; overall compared to mRS 5-6 versus 0-4 

Characteristics Total study 

sample  

N=1526 

mRS 5 – 6  

N=480 

mRS 0 – 4  

N=921 

Age  (years) – median  (IQR) 71  

(60-79) 

77  

(69-84) 

67  

(55-75) 

Male sex – n  (%) 809 (53.0) 245 (51.0) 502 (54.5) 

Diabetes – n  (%) 145 (13.9) 117 (24.4) 262 (17.2) 

Pre-stroke mRS - n  (%) 

0-2 1327 (86.9) 370 (77.1) 957 (91.5) 

3-5 172 (11.3) 95 (19.8) 77 (7.4) 

NIHSS at baseline – median  (IQR) 14  

(9-18) 

16  

(12-20) 

13 

 (8-16) 

Systolic blood pressure  (mmHg) – 

mean  (SD) 

150 (24.6) 154 (25.8) 147(23.7) 

Glucose level before EVT median  

(IQR) 

6.7  

(8.0-5.9) 

7.2  

(8.8-6.1) 

6.6  

(7.8-5.8) 

Intravenous alteplase – n  (%) 1170  (76.7) 327 (68.1) 743 (80.7) 

Onset to groin puncture time  

(minutes) – median  (IQR) 

210  

(160-270) 

219  

(170-273) 

200  

(155-266) 

Hyperdense artery sign- n  (%) 773 (50.7) 248 (51.7) 459 (49.8) 

ASPECTS subgroups-n  (%) 

0-4 95 (6.2) 39 (8.13) 51 (5.5) 

5-7  351 (23.0) 120 (25.0) 198 (21.5) 

8-10 1013 (66.4) 292 (60.8) 639 (69.4) 

Occlusion location – n  (%)    

ICA-T 322 (21.1) 128 (26.7) 194 (18.6) 

M1 842 (55.2) 242 (50.4) 600 (57.4) 

M2 181 (11.9) 52 (10.8) 129 (12.3) 

Intracranial ICA 85 (5.6) 21 (4.4) 64 (6.2) 

Other  (M3 or anterior) 19 (1.3) 6 (1.3) 13 (1.2) 

Clot Burden Score-median  (IQR) 6 (4-8) 6 (4-8) 6 (4-8) 

Collateral score-n  (%) 

0 98 (6.4) 57 (11.9) 35 (3.8) 

1 467 (30.6) 188 (39.2) 246 (26.7) 

2 547 (35.8) 135 (28.1) 361 (39.2) 

3 305 (20.0) 61 (12.7) 218 (23.7) 
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IQR, interquartile range; mRS, modified Rankin Scale; NIHSS, National Institutes of Health stroke 

scale; SD, standard deviation. 

Prediction accuracy  
For all models trained the best average AUC was 0.81  (Table 6.2) for NN, 

and the best AUPRC was 0.69 for the SVM. In the test sets, the highest PPV 

was 0.69 for the NN and the highest NPV was 0.87 for SVM: from all non-

poor outcome predictions, 79% of the patients indeed had a non-poor 

outcome. All models but the SVM showed higher values of specificity than 

sensitivity,  with 0.89 being the highest specificity  (for the NN). The NN 

showed also the highest MCC  (0.45) and LR the highest balanced accuracy  

(0.73)  (Supplemental Table III). 

Table 6.2. Evaluation measures in validation data for all poor outcome prediction 

models, trained to maximize the AUC. The average of 10 cross validation iterations 

is presented 

Method Specificity Sensitivity PPV NPV AUC AUPRC 

RFC 
0.84 

(0.81-0.86) 

0.56 

(0.51-0.62) 

0.62 

(0.56-0.68) 

0.80 

(0.78-0.83) 

0.80 

(0.77-0.82) 

0.66 

(0.61-0.72) 

SVM 
0.67 

(0.61-0.72) 

0.78 

(0.75-0.81) 

0.53 

(0.48-0.57) 

0.87 

(0.84-0.89) 

0.77 

(0.74-0.76) 

0.69 

(0.65-0.74) 

NN 
0.89 

(0.87-0.90) 

0.53 

(0.49-0.57) 

0.69 

(0.65-0.74) 

0.80 

(0.78-0.83) 

0.81 

(0.79-0.83) 

0.68 

(0.64-0.73) 

XGB 
0.79 

(0.76-0.83) 

0.63 

(0.60-0.67) 

0.59 

(0.54-0.65) 

0.82 

(0.80-0.84) 

0.78 

(0.76-0.81) 

0.64 

(0.59-0.69) 

LR 
0.75 

(0.73-0.78) 

0.71 

(0.68-0.73) 

0.57 

(0.53-0.62) 

0.85 

(0.83-0.86) 

0.80 

(0.78-0.82) 

0.68 

(0.63-0.74) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient 

boosting; NN, neural networks. AUC, area under the curve; NPV, negative predictive value; PPV, 

positive predictive value. 

Supplemental Table IV the results for the probability threshold of 95% 

specificity are shown. Note that since the specificity is based on the training 

set, the actual specificity in the validation set is somewhat lower than 0.95. 

Since the probability thresholds were optimized for high specificity, values 

for sensitivity were low  (highest 0.34 for NN), indicating a relatively high 

number of false negatives  (poor outcome patients classified as non-poor).  

NN, was considered the most accurate model, since it showed the highest PPV 

values  (Table 6.2). For the probability threshold of 95% specificity, NN, 

XGB and LR showed the best PPV results, and NN and LR showed the 

highest AUPRC results  (Supplemental Table IV). They also had the highest 
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NPV values among the other models. We did not find any difference between 

single imputation using Random Forest and multiple imputation using MICE, 

therefore we used Random Forest imputation as default. The results for the 

MICE imputation approach are shown in Supplemental Table V. 

Model performance 
Figures 6.1, 6.2 and 6.3 show the mRS distribution outcome of patients 

classified as poor outcome and non-poor outcome in the testing data, for 

different specificity thresholds. For each ML method on the y-axis, we show 

how many patients were classified as poor and as non-poor outcome along 

the y-axis. Along the x-axis, the percentage of patients per mRS value is 

presented. In each graph, the black bar separates mRS 0-4  (non-poor 

outcome) from 5-6  (poor outcome). In Figure 6.1, the probability threshold 

was optimized to reach 95% specificity, and for some classifiers the rate of 

correct poor outcome prediction was higher than 80%. This is the case for 

LR, where from all poor outcome predictions, the total of mRS 0-4 patients 

is lower than 20%. However, all models still mistakenly predicted some mRS 

0-4 patients as poor outcome  (27 patients for the best model; less than 3% of 

all mRS 0-4 patients; Table 6.3). More patients were classified as non-poor 

outcome than poor outcome. For the NN model for example  (Supplemental 

Figure II), 11%  (163/1526) of all patients were classified as poor outcome, 

whereas 31% actually had a poor outcome. 
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Figure 6.1. Distribution of mRS for the predictions of each model as poor vs non-

poor outcome with 95% specificity threshold. Along the y axis, the various ML 

method are presented including the number of patients that were classified as poor 

and non-poor outcome. Along the x axis, the percentage of patients per mRS value 

is presented. In each graph, the black bar separates mRS 0-4 from 5. RFC, random 

forest classifier; SVM, support vector machine; LR, logistic regression; NN, neural 

network; XGB, gradient boosting. mRS, modified Rankin Scale. Numbers in bars 

represent absolute number of patients. 
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Table 6.3. Number of false positives  (mRS 0-4 classified as poor) and true positives  

(mRS 5-6 classified as poor) per specificity threshold for each ML method 

Method Optimized 

specificity 

True positives 

mRS 5-6 patients classified 

as poor of total mRS 5-6 

patients  (n=480) 

False positives 

mRS 0-4 patients classified 

as poor of total mRS 0-4 

patients  (n=921) 

RFC 95% 145  (30.2%) 52  (5.6%) 

98% 91  (19.0%) 20  (2.2%) 

100% 39  (8.1%) 8  (0.9%) 

SVM 95% 136  (28.3%) 61  (6.2%) 

98% 62  (12.9%) 28  (3.0%) 

100% 33  (6.9%) 10  (1.1%) 

NN 95% 163  (34.0%) 41  (4.5%) 

98% 92  (19.2%) 10  (1.1%) 

100% 21  (4.4%) 2  (0.2%) 

XGB 95% 99  (20.6%) 27  (2.8%) 

98% 63  (13.1%) 12  (1.3%) 

100% 21  (4.4%) 6  (0.7%) 

LR 95% 147  (30.6%) 35  (3.8%) 

98% 92  (19.2%) 10  (1.1%) 

100% 23  (4.8%) 1  (0.1%) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; NN, neural 

network; XGB, gradient boosting. mRS, modified Rankin Scale. 

Figure 6.2 shows mRS distributions for the probability threshold optimized 

to98% specificity. The numbers of both correct and incorrect poor outcome 

predictions were reduced compared to the 95% threshold. Ten  (1.1%) of mRS 

0-4 patients were still misclassified as poor in the best-performing models  

(NN and LR); 92 poor outcome patients were correctly classified  

(Supplemental Figure III). Different colors are shown for each specificity 

value. 
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Figure 6.2. Distribution of mRS for the predictions of each model as poor vs non-

poor outcome with 98% specificity threshold. Along the y axis, the various ML 

method are presented including the number of patients that were classified as poor 

and non-poor outcome. Along the x axis, the percentage of patients per mRS value 

is presented. In each graph, the black bar separates mRS 0-4 from 5-6. RFC, 

random forest classifier; SVM, support vector machine; LR, logistic regression; 

mRS, modified Rankin Scale; NN, neural network; XGB, gradient boosting. 

Numbers in bars represent absolute number of patients. 

Figure 6.3 shows the mRS distribution of patients that were classified as poor 

outcome versus non-poor outcome in the validation data, for the probability 

threshold optimized to reach 100% specificity. Again, both correct and 

incorrect poor outcome predictions were reduced compared to the 95% and 

98% thresholds. One  (0.1%) patient was misclassified as poor outcome by 

LR, and two  (0.2%) by NN  (Supplemental Figure IV). However, the ability 

to correctly identify poor outcome patients was reduced with 8.1%  (n=39) of 

poor outcome patients being correctly identified  (RFC). 
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Figure 6.3. Distribution of mRS for the predictions of each model as poor vs non-

poor outcome with 100% specificity threshold. Along the y axis, the various ML 

method are presented including the number of patients that were classified as poor 

and non-poor outcome. Along the x axis, the percentage of patients per mRS value 

is presented. In each graph, the black bar separates mRS 0-4 from 5-6.  RFC, 

random forest classifier; SVM, support vector machine; LR, logistic regression; 

NN, neural network; XGB, gradient boosting. mRS, modified Ranking Scale. 

Numbers in bars represent absolute number of patients. 

Table 6.4 shows the odds ratios for each variable included in the LR model. 

Baseline NIHSS, glucose level before EVT, age, 50% or more atherosclerotic 

stenosis at symptomatic carotid bifurcation on CTA, pre-stroke mRS, 

collateral score, leukoaraiosis, atrial fibrillation, and Glasgow coma scale 

were significantly associated with poor outcome. 
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Table 6.4. Odds ratio of each variable included in the logistic regression model 

Variable Odds Ratio  (95% CI) 

Age  (years) 1.05  (1.04 - 1.06) 

Pre-stroke mRS 1.35  (1.21 – 1.50) 

Atrial fibrillation 1.37  (1.01 - 1.85) 

NIHSS at baseline 1.06  (1.03 - 1.09) 

Glucose level 1.16  (1.10 - 1.22) 

Glasgow coma scale 0.90  (0. 84 - 0.97) 

Time: onset to groin puncture 1.00  (1.00 - 1.01) 

50% or more atherosclerotic stenosis at symptomatic carotid 

bifurcation on CTA 
0.61  (0.38 - 0.99) 

ASPECTS on baseline NCCT 0.94  (0.88 - 1.01) 

Leukoaraiosis 1.69  (1.28 - 2.24) 

Collaterals 0.60  (0.51 - 0.70) 
CI, confidence interval; CTA, CT angiography; mRS, modified Rankin Scale; NIHSS, National 

Institutes of Health stroke scale; NCCT,non-contrast CT. 

For the ML models, we show the permutation feature importance for the 

models with the least number of FP  (LR and NN – Table 6.3) in Figures 6.4 

and 6.5. Permutation feature importance for the remaining ML methods is 

shown in Supplemental Figures V-VII. Age consistently shows the highest 

impact on the average AUC in all ML models. For both LR and NN, Age, 

collaterals, glucose level, NIHSS and pre-stroke mRS are ranked in the top 5 

of the most important variables. In addition, RR diastolic at baseline and time 

from onset to first hospital were important variables for in other ML models. 

Figure 6.4. Permutation feature importance for the Neural Network models. 
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Average impact on the AUC. *50% or more atherosclerotic stenosis at 

symptomatic carotid bifurcation on CTA baseline. ASPECTS, Alberta Stroke 

Programme Early CT Score; CRP, C-reactive protein; mRS, modified Rankin 

Scale; NIHSS, National Institutes of Health stroke scale. 

 

Figure 6.5. Permutation feature importance for the Logistic Regression models. 

Average impact on the AUC. mRS, modified Rankin Scale; NIHSS, National 

Institutes of Health stroke scale; RR, blood pressure  (Riva-Rocci) 

Discussion 
We have shown that poor outcome for acute ischemic stroke patients who 

were treated with EVT from the MR CLEAN Registry can be predicted with 

a high specificity. Although the models were optimized for high AUC and the 

thresholds optimized to high specificity , all models still classified some non-

poor outcome patients as poor outcome, suggesting that these models are not 

yet accurate enough to be included in clinical practice. 

 To our knowledge, this is the first study to use multiple ML models and a 

large dataset for the prediction of poor functional outcome in acute ischemic 

stroke patients. Besides, our study included a larger number of variables than 

most stroke prediction models to date, so our study can be considered quite 

extensive  (29). The presented accuracy was similar to the results of studies 

focusing on good functional outcome prediction, though a different cut-off 
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for dichotomization could have impacted prediction accuracy and relevance 

of variables. (10,11)  

All models showed similar performance in terms of AUC and AUPRC, 

though NN was the method with the highest PPV and Specificity and was 

deemed the best performing model in multiple experiments. ML models can  

also be compared in terms of complexity  (training time, number of hyper-

parameters and interpretability). (30) However, this was beyond the scope of 

this study. Regarding the number of hyper-parameters, training time and 

interpretability, LR is the best method, being simpler to handle while showing 

accuracies similar to the other more complex models. In  (30), it was shown 

that ML methods can greatly outperform each other in different datasets, 

though this was not the case in our study.  

 The most important features in our models were: age  (in all models), 

collaterals, glucose level, baseline NIHSS, onset-to-first hospital time, and 

pre-stroke mRS  (in LR and NN, the models with the lowest false-positive 

rates). Recent studies that used the MR CLEAN Registry dataset found 

similar variables with the highest relevance for functional outcome using 

logistic regression  (mRS ≤2): age, NIHSS, diabetes, and time from stroke 

onset to treatment.  (9,10,13)  Interestingly, these studies also identified 

ASPECTS, location of occlusion, smoking, and hypertension as relevant, 

which were less frequently marked as important in our study.  (9,10,13)  This 

may be related to the different dichotomization of mRS we used. 

Alternatively, it may have to do with the manual selection of variables for 

these logistic regression models, as opposed to the selection of included 

variables by the ML methods we used. Despite none of the currently known 

prognostic factors being selective enough to base any EVT exclusion decision 

on, the more or less intuitive importance of age, baseline stroke severity, and 

workflow times for a patient’s outcome is confirmed in both our data and the 

mentioned previous studies. 

Regarding poor outcome prediction, some studies have identified groups of 

patients that show poor outcome after IVT regardless of reperfusion using 

diffusion-weighted MRI and CT perfusion respectively. (31,32)  
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Strengths and limitations 
Strengths of our study include the large sample size and heterogeneity  

(coming from multi-centers)of the data, which includes patients from all over 

the Netherlands. One of the possible downsides of a heterogeneous dataset is 

that the models could learn the differences between centers instead of 

focusing on the task at hand  (predicting poor outcome). Nevertheless, we 

made sure that no variables related to the individual centers were included 

and shuffled the dataset to prevent pre-determined patient clusters. Despite 

this downside, the benefits of having a heterogeneous dataset outweigh this 

risk since we aim to develop models on data that is closer to the clinical 

practice setting. 

 Furthermore, we explored distinct state-of-the-art ML methods and 

optimized their hyper-parameters using an inner CV loop, while testing the 

optimized model on the test sets in the outer CV, which helps to prevent 

overoptimistic results, increasing stability and reliability. We did not separate 

a unique test set due to risk of, by change, separating a dataset with easier or 

harder samples.  We used several evaluation measures that allow the models 

to be assessed from different points of view, highlighting their differences. 

Our results show that there is little difference in AUC values between models. 

By using other measures, such as PPV, differences in performance between 

models became clearer.  

Some limitations to the current study should be noted. Even though we used 

imputation to account for missing data, a bias in the imputed values can never 

fully be excluded, since the estimates are always based on the available data. 

No difference between imputation using Random Forest and imputation using 

MICE was found. This can be due to the fact that the disadvantages of single 

imputation are mostly relevant in small datasets  (with less than 100 events), 

which is not the case in the MR CLEAN Registry. (33) Despite MICE being 

a more common imputation approach, RFI imputation is often more efficient 

than MICE as shown in previous studies  (34), and we therefore, only present 

the results for this approach. The large number of variables included can also 

be a limitation since some of the variables are not readily available or easily 

assessed and its assessment may delay treatment decision. However, all 

variables included can be derived before treatment decision  (either by local 
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radiologists or automated tooling). Another limitation lies in the models’ 

performance. The number of patients classified as poor outcome became very 

low when specificity was set to a very high value, and models still had false 

positives. Furthermore, we used class-weights to deal with data imbalance, 

since other approaches, such as under-sampling, would lead to a distribution 

that is not realistic when compared to the real-life scenario of acute ischemic 

stroke. Finally, we did not use test sets during cross-validation or imputation, 

preventing information leakage between datasets, which could lead to 

overoptimistic results.  

Part of the goals of this study was to study to what extent the ratio of correctly 

and falsely classified patients was with ML models. In the prediction of poor 

outcome, high specificity and PPV are important to avoid withholding 

treatment from patients that may still have a non-poor outcome after EVT. 

The ML models investigated in the current study had relatively high AUC, 

PPV, and specificity, although not all patients were correctly classified, even 

with a specificity threshold of 100%.  

 The ML methods applied in this study highlighted the relevance of several 

baseline factors in the prediction of poor functional outcome. For future 

research datasets, inclusion of variables such as glucose level should be 

considered. In daily practice, knowledge of the relevance of these variables 

could support decision making by clinicians, when combined with other 

relevant factors such as time from symptom onset and the patient’s or family’s 

wishes. Although the prognostic models included many baseline 

characteristics, other data of prognostic relevance derived from CTP imaging 

were not included because these were not commonly available in the data 

from the MR CLEAN Registry. The inclusion of these parameters have the 

potential to improve prediction in future studies. Besides, the more extensive 

follow-up NIHSS could be used to define poor functional outcome in future 

studies. Furthermore, for future research, ML models could be created using 

the raw imaging data  (CT or CT angiography or both) and combined with the 

models created in this study  (35–38). However, the large number of data 

points has to be taken into account when developing such approaches, since 

imaging data is often of high dimensionality, and medical datasets have often 

a very limited number of samples. 
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 Finally, we used poor outcome as our primary outcome. Poor functional 

outcome could be a valuable outcome measure for further studies, since the 

certainty of death or severe disability even after EVT could, to our 

expectations, form a relatively solid, ethically justifiable ground to refrain 

from EVT. That way, rates of futile treatment could be lowered. Poor outcome 

prediction may be useful as an outcome measure as an addition to the 

prediction of EVT benefit  (mRS shift), since it does not require data from 

randomized trials, and can hence be used to train models on future new data.  

Conclusion 
Poor outcome can be predicted with high specificity, though all of the 

prediction models incorrectly classified some patients as poor outcome. The 

percentage of misclassified non-poor outcome patients was low, while more 

than one third of the poor-outcome patients were correctly identified. 

However, lowering false-positive rates came at the cost of decreased 

sensitivity. It has to be studied further whether these accuracies are 

reproducible before implementation in clinical practice could be considered, 

or could be improved further. Age, NIHSS, baseline glucose levels, pre-stroke 

mRS and collaterals were consistently ranked as important variables in all 

prediction methods. 
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Supplemental material 
Supplemental Table I. Details of included variables 

Name 
Occurrence (%) 

N=1526 

Missing 

n (%) 

Analyzed 

as 

Previous stroke  9 (1) cat 

0 – no 1264 (83)   

1 – yes  253 (17)   

Myocardial infarction  31 (2) cat 

0 – no  1262 (83)   

1 – yes  233 (15)   

Peripheral arterial disease  30 (2) 

0 – no  1358 (89)   

1 – yes  138 (9)   

Diabetes  9 (1) cat 

0 – no  1255 (82)   

1 – yes 262 (17)   

Hypertension  19 (1) cat 

1 – yes  765 (50)   

0 – no  742 (49)   

Atrial fibrillation  22 (1) cat 

0 – no  1169 (77)   

1 – yes  335 (22)   

Hypercholesterolemia  49 (3) cat 

0 – no  1035 (68)   

1 – yes  442 (29)   

Antiplatelet use  19 (1) cat 

0 – no  1001 (66)   

1 – yes  506 (33)   

DOAC use  26 (2) cat 

0 – no  1463 (96)   

1 – yes  37 (2)   

Coumarin use  11 (1) cat 

0 – no  1321 (87)   

1 – yes  194 (13)   

Heparin use  19 (1) cat 

0 – no  1452 (95)   

1 – yes  55 (4)   

Blood pressure medication  28 (2) 

1 – yes  781 (51)   

0 – no  717 (47)   
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Supplemental Table I (continued) 

Statin use  32 (2) cat 

0 – no  958 (63)   

1 – yes  536 (35)   

HAS on baseline NCCT  87 (6) cat 

1 – yes  773 (51)   

0 – no  666 (44)   

Relevant (new) ischemia / hypodensity  113 (7) 

1 – yes  928 (61)   

0 – no  485 (32)   

Hemorrhagic transformation  95 (6) 

0 – no  1400 (92)   

1 – yes  31 (2)   

Leukoariosis  87 (6) cat 

0 – no 941 (62)   

1 – yes  498 (33)   

Old infarcts in same ASPECTS region?  76 (5) 

0 – no  1247 (82)   

1 – yes  203 (13)   

Intracranial atherosclerosis on CTA scored by 

core lab  91 (6) 

1 – yes 853 (56)   

0 – no  582 (38)   

Sex   cat 

Male 809 (53)   

Female 717 (47)   

Most proximal occlusion segment on CTA scored 

by core lab, based on CBS   68 (4) 

Distal M1 471 (31)   

Proximal M1 371 (24)   

ICA-T 322 (21)   

M2 181 (12)   

Intracranial ICA 85 (6)   

None 13 (1)   

M3 9 (1)   

A2 3 (0)   

A1 3 (0)   

Smoking  348 (23) cat 

0 – no  827 (54)   

1 – yes  351 (23)   

Inclusion on weekday or weekend   

0 – weekday 1133 (74)   
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Supplemental Table I (continued) 

1 – weekend  393 (26)   

Admission between 17.00-08-00 (weekday)/ 

weekend or holiday. Based on ER time.   

1 – office hours 982 (64)   

0 – outside office hours 544 (36)   

Transfer from other hospital   

1 – transfer  822 (54)   

0 – no transfer 704 (46)   

Intravenous alteplase treatment  3 (0) 

1 – yes  1170 (77)   

0 – no  353 (23)   

No abnormalities at symptomatic carotid 

bifurcation on CTA baseline by core  264 (17) 

0 – no abnormalities 943 (62)   

1 – any abnormalities 319 (21)   

50% or more atherosclerotic stenosis at 

symptomatic carotid bifurcation on CTA baseline  264 (17) 

0 – no  1140 (75)   

1 – yes  122 (8)   

Atherosclerotic occlusion at symptomatic carotid 

bifurcation on CTA baseline by core lab  264 (17) 

0 – no  1132 (74)   

1 – yes  130 (9)   

Floating thrombus at symptomatic carotid 

bifurcation on CTA baseline by core lab  264 (17) 

0 – no  1241 (81)   

1 – yes  21 (1)   

Pseudo-occlusion at symptomatic carotid 

bifurcation on CTA baseline by core lab  264 (17) 

0 – no  1180 (77)   

1 – yes  82 (5)   

Carotid dissection at symptomatic carotid 

bifurcation on CTA baseline by core lab  264 (17) 

0 – no  1206 (79)   

1 – yes  56 (4)   

Occlusion side on CTA scored by core lab   

Left hemisphere 820 (54)   

Right hemisphere 694 (45)   

Neither 12 (1)   

In-hospital stroke  525 (34) cat 



Chapter 6 

162 

 

Supplemental Table I (continued) 

0 – no  857 (56)   

1 – yes  144 (9)   

Contraindications for IVT  12 (1) 

0 – no 1178 (77)   

1 – yes  336 (22)   

Second occlusion in other territory present on 

CTA scored by core lab  479 (31) 

0 – no  822 (54)   

1 – yes  225 (15)   

Collateral score on CTA 

scored by core lab  109 (7) cont 

100% of occluded area 305 (20)   

>50% but less <100% 547 (36)   

filling <50%  467 (31)   

Absent collaterals 98 (6)   

Pre-stroke mRS  27 (2) cont 

0 1017 (67)   

1 195 (13)   

2 115 (8)   

3 98 (6)   

4 62 (4)   

5 12 (1)   

90-day mRS  125 (8) cat 

6 407 (27)   

2 270 (18)   

3 200 (13)   

4 188 (12)   

1 179 (12)   

0 84 (6)   

5 73 (5)   

ASPECTS baseline 

scored by core lab – 

median (IQR) 9 (7 - 10) 67 (4) cont 

CBS at baseline – 

median (IQR) 6 (4 -   8) 255 (17) cont 

NIHSS at baseline – 

median (IQR) 16 (11 - 20) 30 (2) cont 

Glucose level at baseline 

– median (IQR) 7 (6 -   8) 173 (11) cont 
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Supplemental Table I (continued) 

RR systolic at baseline – 

median (IQR) 150 (131 - 165) 43 (3) cont 

RR diastolic at baseline – 

median (IQR) 80 (70 - 91) 48 (3) cont 

INR at baseline – median 

(IQR) 1 (1 -   1) 276 (18) cont 

Thrombocyte count at 

baseline – median (IQR) 236 (194 - 290) 189 (12) cont 

CRP level at baseline – 

median (IQR) 5 (2 - 11) 307 (20) cont 

Age – median (IQR) 71 (60 - 79) 0 (0) cont 

A1, first segment of anterior cerebral artery; ASPECTS, Alberta stroke programme early CT score; cat, 

categorical; CBS, clot burden score; cont, continuous; CRP, C-reactive protein; CTA, CT angiography; 

DOAC, direct oral anticoagulant; ER, emergency room; HAS, hyperdense artery sign; IQR, 

interquartile range; M1/M2/M3, first/second/third segment of middle cerebral artery; mRS, modified 

Rankin Scale; NCCT, non-contrast CT; NIHSS, National Institutes of Health stroke scale; RR, blood 

pressure (Riva-Rocci). 

Hyper-parameter optimization 
In Supplemental Table II, we present the range of values used for hyper-parameter 

optimization. We strived to include the largest range of values possible for all hyper-

parameters while keeping the search computationally efficient. For example, for the 

neural network architecture, we started with a small number of hidden layers with 

fewer nodes and gradually increased to deeper networks with more nodes per layers. 

We selected this approach since (1), has shown that random grid search outperforms 

normal grid search and manual search, and to make the results between models more 

comparable since they went through the same optimization pipeline.  

Values in bold were the ones selected during grid search. Some chosen values, like 

the number of trees in a Random Forest (RFC), are in the extreme of the range. For 

the number of trees, since the Random Forest is an ensemble classifier, the more 

trees the higher the accuracy. However, the benefit becomes smaller as the number 

of trees grows, while the computation time continuously increases. The chosen 

number of trees is already quite extreme, and the gain from adding more trees is 

minimum, especially because many of the trees will be quite similar given the limited 

number of samples available. For tree depth in the Gradient boosting (XGB), the 

deeper the tree, the higher the risk of overfitting, therefore we set a maximum of 10 

to prevent overfitting. (2,3) 
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Supplemental Table II. Hyper-parameters used for optimizing the Machine 

Learning models using grid-search 

Classifier Parameter Name Parameter Value 

RFC Number of Trees [100,200,400,600,800,1000,1200,1400] 

Max features for split auto, sqrt and log2 

Max depth of trees [10,20,30,40, 50, 60, 70, 80, 90, 100, 

None] 

Quality of split Gini or Entropy 

Minimum number of samples 

required to split an internal node 

[2,4,6,8] 

Minimum number of samples 

required to be at a leaf node 

[2,4,6,8,10] 

SVM Kernel type Linear, Radial basis function, 

Polynomial 

Penalty parameter C [0.001, 0.01, 0.1, 1, 10, 100] 

Kernel coefficient γ (gamma) [1, 0.1, 0.01, 0.001, 0.0001] 

Degree of the Polynomial kernel [1,2,3,4,5,6] 

LR Regularization [0.001, 0.01, 0.1, 1, 10, 100] 

Optimization algorithm [newton-cg, lbfgs, liblinear, sag, saga] 

NN Hidden Layer sizes [90,180,90], [90,120,90], [90,90], 

[90,180], [90], [180] 

Activation ReLU, logistic 

Regularization parameter [0.1, 0.01, 0.001, 0.0001] 

Batch size [32, 64, 128]   

Learning rate [0.01, 0.001, 0.005] 

Optimization algorithm Adam 

XGB Learning rate [0.1, 0.01, 0.001, 0.005] 

Minimum sum of instance 

weight (hessian) needed in a 

child 

[1, 5, 10] 

Minimum loss reduction 

required to make a further 

partition on a leaf node of the 

tree 

[0, 0.5, 1, 1.5, 2, 5] 

Subsample ratio of the training 

instances 

[0.7, 0.8, 0.9, 1.0] 

 Parameters for subsampling the 

columns 

[0.3,0.4,0.5,0.6,0.7,0.8] 

Maximum depth of a tree [3, 5, 7, 9, 10] 

Values in bold indicate hyper-parameters chosen by the best model. 
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Supplemental Table III. Extra evaluation measures in the testing data for all poor 

outcome prediction models, trained to maximize the AUC. The average of 10 cross 

validation iterations is presented.  

Method Balanced Accuracy MCC 

RFC 0.70 (0.68-0.72) 0.41 (0.37-0.45) 

SVM 0.72 (0.70-0.74) 0.42 (0.38-0.46) 

NN 0.71 (0.69-0.73) 0.45 (0.41-0.50) 

XGB 0.71 (0.69-0.73) 0.42 (0.37-0.46) 

LR 0.73 (0.71-0.75) 0.44 (0.40-0.48) 
RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient 

boosting; NN, neural networks. AUC, area under the curve; NPV, negative predictive value; PPV, 

positive predictive value. 

 

 

Supplemental Table IV. Evaluation measures in the testing data for all poor 

outcome prediction models, with the probability threshold optimized to 95% 

specificity. The average of 10 cross validation iterations is presented.  

Method Specificity Sensitivity PPV NPV Balanced 

Accuracy 

MCC AUPRC 

RFC 0.95 

(0.93-

0.96) 

0.31 

(0.23-

0.39) 

0.71 

(0.63-

0.79) 

0.74 

(0.71-

0.78) 

0.63 

(0.59-

0.67) 

0.34 

(0.25-

0.42) 

0.62 

(0.56-

0.68) 

SVM 0.93 

(0.89-

0.97) 

0.27 

(0.20-

0.42) 

0.63 

(0.57-

0.66) 

0.73 

(0.69-

0.77) 

0.56 

(0.51-

0.61) 

0.16 

(0.07 -

0.26) 

0.61 

(0.53 -

0.69) 

NN 0.95 

(0.94-

0.97) 

0.34 

(0.29-

0.39) 

0.77 

(0.70-

0.84) 

0.77 

(0.70-

0.84) 

0.65 

(0.62-

0.67) 

0.39 

(0.34-

0.44) 

0.66 

(0.62-

0.70) 

XGB 0.97 

(0.95-

0.99) 

0.21 

(0.16-

0.26) 

0.79 

(0.71-

0.87) 

0.79 

(0.71-

0.87) 

0.59 

(0.58-

0.61) 

0.30 

(0.27-

0.33) 

0.63 

(0.59-

0.66) 

LR 0.96 

(0.94-

0.97) 

0.31 

(0.26-

0.37) 

0.78 

(0.71-

0.86) 

0.78 

(0.71-

0.86) 

0.63 

(0.61-

0.66) 

0.38 

(0.33-

0.42) 

0.66 

(0.62-

0.70) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient 

boosting; NN, neural networks. AUC, area under the curve; NPV, negative predictive value; PPV, 

positive predictive value. 
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Supplemental Table V. Evaluation measures in the testing data for all poor outcome 

prediction models, using the RFI and MICE imputation approaches. The average of 

10 cross validation iterations is presented 

Method AUC Specificity Sensitivity PPV NPV MCC AUPRC 

RFC - 

RFI 

0.80 

(0.77-

0.82) 

0.84 

(0.81-

0.86) 

0.56 

(0.51-

0.62) 

0.62 

(0.56-

0.68) 

0.80 

(0.78-

0.83) 

0.41 

(0.37-

0.45) 

0.66 

(0.61-

0.72) 

RFC - 

MICE  

0.80 

(0.77-

0.82) 

0.81 

(0.80-

0.83) 

0.64 

(0.61-

0.68) 

0.63 

(0.59-

0.67) 

0.82 

(0.80-

0.84) 

0.41 

(0.37-

0.45) 

0.67 

(0.63-

0.72) 

SVM- 

RFI 

0.77 

(0.74-

0.76) 

0.67 

(0.61-

0.72) 

0.78 

(0.75-

0.81) 

0.53 

(0.48-

0.57) 

0.87 

(0.84-

0.89) 

0.42 

(0.38-

0.46) 

0.69 

(0.65-

0.74) 

SVM - 

MICE 

0.78 

(0.76-

0.80) 

0.67 

(0.59-

0.75) 

0.77 

(0.73-

0.81) 

0.55 

(0.48-

0.60) 

0.85 

(0.83-

0.87) 

0.42 

(0.37-

0.47) 

0.69 

(0.65-

0.73) 

NN - 

RFI 

0.81 

(0.79-

0.83) 

0.89 

(0.87-

0.90) 

0.53 

(0.49-

0.57) 

0.69 

(0.65-

0.74) 

0.80 

(0.78-

0.83) 

0.45 

(0.41-

0.50) 

0.68 

(0.64-

0.73) 

NN - 

MICE 

0.81 

(0.78-

0.83) 

0.88 

(0.85-

0.90) 

0.55 

(0.50-

0.60) 

0.69 

(0.64-

0.74) 

0.80 

(0.77-

0.83) 

0.46 

(0.41-

0.50) 

0.68 

(0.64-

0.72) 

XGB- 

RFI 

0.78 

(0.76-

0.81) 

0.79 

(0.76-

0.83) 

0.63 

(0.60-

0.67) 

0.59 

(0.54-

0.65) 

0.82 

(0.80-

0.84) 

0.42 

(0.37-

0.46) 

0.64 

(0.59-

0.69) 

XGB - 

MICE 

0.79 

(0.77-

0.81) 

0.75 

(0.73-

0.77) 

0.69 

(0.65-

0.73) 

0.58 

(0.54-

0.62) 

0.83 

(0.81-

0.85) 

0.43 

(0.39-

0.46) 

0.65 

(0.61-

0.69) 

LR -  

RFI 

0.80 

(0.78-

0.82) 

0.7 

(0.73-

0.78) 

0.71 

(0.68-

0.73) 

0.57 

(0.53-

0.62) 

0.85 

(0.83-

0.86) 

0.44 

(0.40-

0.48) 

0.68 

(0.63-

0.74) 

LR - 

MICE 

0.80 

(0.78-

0.82) 

0.73 

(0.70-

0.76) 

0.72 

(0.69-

0.76) 

0.57 

(0.54-

0.60) 

0.84 

(0.82-

0.87) 

0.43 

(0.39-

0.48) 

0.68 

(0.63-

0.72) 

RFC, random forest classifier; SVM, support vector machine; LR, logistic regression; XGB, gradient 

boosting; NN, neural networks. AUC, area under the curve; NPV, negative predictive value; PPV, 

positive predictive value, RFI: random forest imputation, MICE: multiple imputation by chained 

equations. 
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Supplemental Figure I. Patient inclusion flowchart. N denotes number of patients. 

EVT, endovascular treatment; MR CLEAN, multicenter randomized clinical trial 

for endovascular treatment of acute ischemic stroke in the Netherlands. 

 

Supplemental Figure II. Performance of poor outcome prediction neural network 

model trained for 95% specificity, in validation data. Numbers in bars represent 

absolute number of patients. 
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Supplemental Figure III. Performance of poor outcome prediction neural network 

model trained for 98% specificity, in validation data. Numbers in bars represent 

absolute number of patients.

Supplemental Figure IV. Performance of poor outcome prediction neural network 

model trained for 100% specificity, in validation data. Numbers in bars represent 

absolute number of patients. 
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Supplemental Figure VII. Permutation feature importance for the Random Forest 

models. Average impact on the AUC. CRP, C-reactive protein; mRS, modified 

Rankin Scale; NIHSS, National Institutes of Health stroke scale; RR, blood 

pressure (Riva-Rocci). 
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Supplemental Figure VIII. Permutation feature importance for the Support 

Vector Machine models. Average impact on the AUC. ASPECTS, Alberta Stroke 

Programme Early CT Score; CRP, C-reactive protein; mRS, modified Rankin 

Scale; NIHSS, National Institutes of Health stroke scale; RR, blood pressure (Riva-

Rocci). 
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Supplemental Figure IX. Permutation feature importance for the Gradient 

Boosting models. Average impact on the AUC. mRS, modified Rankin Scale; 

NIHSS, National Institutes of Health stroke scale. 
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Abstract 
Background: Phospholamban  (PLN) p.Arg14del mutation carriers are known 

to develop dilated and/or arrhythmogenic cardiomyopathy and typical 

electrocardiographic  (ECG) features have been identified for diagnosis. 

Machine learning is a powerful tool used in ECG analysis and has shown to 

outperform cardiologists.  

Objective: We aimed to develop machine learning and deep learning models 

to diagnose PLN p.Arg14del cardiomyopathy using ECGs and evaluate their 

accuracy compared to an expert cardiologist.  

Methods: We included 155 adult PLN mutation carriers and 155 age- and sex 

matched control subjects. 21  (13.4%) PLN mutation carriers were classified 

as symptomatic  (symptoms of heart failure or malignant ventricular 

arrhythmias). The dataset was split into training and testing sets using 4-fold 

cross-validation. Multiple models were developed to discriminate between 

PLN mutation carrier or control subject. For comparison, expert cardiologists 

classified the same dataset. The best performing models were validated using 

an external PLN p.Arg14del mutation carriers dataset from Murcia, Spain  

(n= 50). We applied occlusion maps to visualize the most contributing ECG 

regions.  

Results: In terms of specificity, the expert cardiologists  (0.99) outperformed 

all models  (range 0.53-0.81). In terms of accuracy and sensitivity the experts  

(0.28 and 0.64) was outperformed by all models  (sensitivity range 0.65-0.81). 

T-wave morphology was most important for classification of PLN 

p.Arg14del. External validation showed comparable results, with the best 

model outperforming the experts.  

Conclusion: This study shows that ML can outperform experienced 

cardiologists in the diagnosis of PLN p.Arg14del cardiomyopathy and 

suggests that the shape of the T-wave is of added importance to this diagnosis. 
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Introduction  
Phospholamban  (PLN) is a transmembrane sarcoplasmic reticulum 

phosphoprotein and is a major regulator of calcium homeostasis in 

cardiomyocytes. Mutations in the gene encoding this protein are known to 

cause cardiomyopathy, including arrhythmogenic cardiomyopathy and 

dilated cardiomyopathy.1 Carriers of mutations in PLN are at increased risk 

of developing malignant ventricular arrhythmias and end-stage heart failure, 

leading to high mortality.2–4 

Low QRS voltages have been reported as the ECG hallmark in PLN mutation 

carriers.5 Two large Dutch cohort studies reported low voltage ECGs in 46% 

and 41% in respectively 52  (van der Zwaag et al.1) and 295 patients  (van 

Rijsingen et al.2). Additionally, repolarization changes on the ECG, in 

particular T wave inversions in the lateral leads, are frequently seen in PLN 

p.Arg14del mutation carriers. Van Rijsingen et al.2 reported T-wave inversion 

in 40%, while van der Zwaag et al1. reported T-wave inversions in 57%. A 

Canadian cohort study by Cheung et al.6 reported 53% in 50 patients. 

Additionally PLN is known to cause ARVC and one of the diagnostic criteria 

for ARVC in frequent ventricular extrasystoles  (>500/24hours).7 This was 

present in 48% of the carriers in the van Rijsingen cohort2 and in 65% of the 

Holter that were evaluated by van der Zwaag et al.1  

PLN p.Arg14del cardiomyopathy is a rare disease, with a prevalence of 

0.08% to 0.38% in selected cardiomyopathy cohorts.8 Other PLN gene 

mutations have been described, mostly in case reports and small cohorts, 

while Hof et al.8 reported data of over a thousand p.Arg14del mutation 

carriers in the Netherlands alone, making p.Arg14del the most common PLN 

mutation in literature to this date.4 Most general cardiologists do not routinely 

see patients with PLN cardiomyopathy, and consequently may not recognize 

the ECG features associated with this disease. The standard for diagnosing a 

PLN p.Arg14del mutation is genetic testing. However, when a patient is 

suspected of having a gene mutation causing structural heart disease, the 

electrocardiogram can increase  (or decrease) the probability of having a 

mutation, assisting the clinician in early decision making regarding the 

diagnosis and possible therapy. Early diagnosis is of major importance, 
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because PLN associated cardiomyopathy is among the most malignant 

cardiomyopathies necessitating early ICD implants.2,7  

In the past few years, the use of machine learning  (ML) and, more specific, 

deep learning  (DL) methods in medicine has increased significantly.9 An 

advantage of DL is that it can automatically learn features from raw data, 

allowing the discovery of previously unknown relationships.10 Within 

cardiology, DL is used for detection of a variety of cardiac arrhythmias, such 

as atrial fibrillation, in which the models outperform cardiologists, thereby 

positioning DL as a powerful tool for ECG analysis.9,11 The increased 

accuracy of DL models often comes with the downside of lack of 

interpretability. However, new techniques have been developed, making it 

possible to visualize the features a deep learning model uses, and thus can be 

used to identify new features.12,13 

In this study we aimed to develop ML and DL models and study their 

accuracy compared to an expert cardiologist in diagnosing PLN p.Arg14del 

cardiomyopathy on an ECG. We aimed to present a proof-of-concept to show 

how ML enabled ECG analysis is of added value, specifically when it 

concerns a very rare disease which is often missed simply because it is rarely 

seen. 

Moreover, we aimed to identify specific regions ECG that could give insights 

for improving diagnosis of this disease and be used for better understanding 

of PLN mutation cardiomyopathy in general.  

Methods 
Data collection and labelling 
We collected ECGs from all patients which were stored in the ECG database  

(MUSE, GE Healthcare) of the Amsterdam University Medical Centers  

(UMC), location Academic Medical Center  (AMC), during the period from 

1998 up to and including 2018. To minimize the amount of non-PLN 

mutation related cardiovascular pathology which could potentially influence 

the ECG, we included only ECGs from patients aged 18 to 60 years old. From 

this database, we extracted all patients known to have a PLN p.Arg14del 

mutation. A mutation carrier was defined as symptomatic when they suffered 
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from either an arrhythmic event  (sustained ventricular tachycardia or 

ventricular fibrillation) or symptomatic episode caused by heart failure  (New 

York Heart Association  (NYHA) class 2 or higher, as defined by clinical 

staff). This information was provided by the national PLN registry, and 

informed consent for re-use of patient information has been obtained. ECGs 

were excluded if they were made on the emergency ward or during 

hospitalization on a clinical ward, to exclude the possible effect of acute 

pathology on the ECG. As a control group, we selected ECGs from patients 

between 18 and 60 years of age who underwent general, non-cardiovascular 

pre-operative screening at the out-patient clinic of the Amsterdam UMC, 

location AMC, after which we randomly selected a subgroup to match the 

PLN population according to age and sex, to ensure the same distribution for 

each group. For both groups, only the first recorded ECG for each patient was 

used. Figure 7.1 contains a diagram with the PLN and control group selection 

process. 



Chapter 7 

178 

 

 

Figure 7.1. Data cleaning process from patient selection to model development. 

We excluded all ECGs that were considered technically inadequate according 

to an experienced investigator  (HB)  (limb lead reversal, loss of signal on one 

or more leads and high amount of noise of two or more leads, making analysis 

impossible), or which had any other rhythm than sinus rhythm. ECGs were 
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labelled as “PLN” or “control” based on the presence of a PLN Arg14.del 

gene mutation. This dataset was named the Amsterdam Dataset, to 

discriminate from the external validation set. External validation was 

performed on a population of PLN p.Arg14del mutation carriers from the 

Virgen de Arrixaca Hospital in Murcia, Spain. From the local ECG database, 

a random set of non-PLN mutation carriers in this hospital was selected as a 

control group. This external validation set was named the Murcia Dataset.  

The study was approved and the requirement for informed consent was 

waived by the Medical Ethics Commission of the Amsterdam UMC on 22-

11-2018  (registration number W18_371#18.425). 

Evaluation by expert cardiologists 
All ECGs included were anonymized and visually evaluated separately by 

two cardiologists with expertise PLN cardiomyopathy  (A.A.M.W and 

W.E.M.K). The experts classified the ECGs in PLN or non-PLN and were not 

informed of the ratio between carriers and non-carriers. For ECG 

classification they used known ECG features, as described in the introduction  

(low QRS voltages, T-wave inversion and frequent extrasystoles).  

Data pre-processing and development of ML models 
To increase the amount of training data, we extracted all beats from each 10-

second ECG available and used them as individual samples during training. 

Details about the data pre-processing are shown in Supplemental Methods I 

and Supplemental Figure I. The patients were randomly split into training, 

validation and testing sets using 4-fold cross validation stratified for carriers 

and controls. Initially, 3 folds are separate for training and 1 is left aside for 

testing. From the 3 folds used for training, 20% is separated as validation set 

to be used to assess network performance during training and hyper-

parameter optimization. All heartbeats from each individual patient were kept 

either in the training or the test set in the initial split, to prevent data leakage. 

For testing, only one beat was used per patient as reference. We did not 

choose a beat on one of the edges of the ECG, due to high probability of it 

containing noise. For creating the models we followed two approaches, 

defined below. 
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Our first approach, the wavelet-ML based approach, consisted of applying a 

wavelet transform for each individual beat, since wavelets have been broadly 

and successfully used in multiple ECG applications.14,15 More details about 

wavelets and their implementation can be found in the Supplemental Methods 

II.  The output of the wavelet transformation  (of size  (64x8)) was flattened 

and used as input to train Machine Learning classifiers: Logistic Regression  

(LR), Support Vector Machine  (SVM), Multilayer Perceptron  (MLP) , 

Random Forest  (RF), and Gradient Boosting XGB), following the approach 

of Kumar et al.15 

In our second, DL-based approach, we implemented 1 and 2D Convolutional 

Neural Networks  (CNN) and Long Short-Term Memory  (LSTM) networks, 

using the R to R peak as input. For each type of network  (CNN and LSTM), 

we implemented two approaches  (using 1 and 2D convolutions), namely 

approach A and B. Details about these approaches and their implementations 

are available in the Supplemental Methods III. 

Statistical Analysis  
For model evaluation we reported the average accuracy, sensitivity, 

specificity and the area under the receiver operating characteristic curve  

(AUC). We deemed the best performing models the ones with the highest 

accuracy and sensitivity due to greater importance of missing true positive  

(PLN) patients. We used the McNemar's test to check if the difference 

between the models and the experts was statistically significant.16 

Visualization of ECG features  
For our best performing model, we created visualization plots to visualize the 

parts of the ECG that were most relevant for classification of PLN patients in 

our deep learning model, we used ‘occlusion maps’ for this purpose.17 We 

generated occlusion maps by systematically occluding parts of the heart-beat 

signal. We split the  (8x256) input signal into 16 parts of  (8x16) and occluded 

a region by setting all its values to zero. Then we applied the trained model 

to the signal with the occluded region and evaluated the loss in model 

performance. The higher the loss in performance, the more important the 

occluded region is.  
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Reproducibility and Open Access 
Given its sensitive nature, the data used in this study is not publicly available. 

All the code used in this paper, however, is available at the following GitHub 

page: https://github.com/L-Ramos/CardiologyAI  

Results 
From the 297 known PLN p.Arg14del mutations carriers in the Amsterdam 

UMC, 155 were eligible for inclusion in this study  (see Figure 7.1 for a flow 

diagram). From the PLN carriers, 13.5% were symptomatic at the time the 

ECG was made. The mean age in this group was 39 years  (IQR 28-50) and 

63  (41%) were male. Baseline ECG characteristics are shown in Table 7.1.  

Table 7.1. Description of the Amsterdam Data 

Variable Name PLN n=155 Control n=155 

Age * 39  (28–50) 39  (28–50) 

Sex  (Male %)* 63  (41) 63  (41) 

Ventricular Rate  (bpm) 68  (60–75) 65  (57–73) 

Atrial Rate  (bpm) 68  ( 60–75) 66  (57–73) 

QRS Duration  (ms) 86  ( 80–94) 94  (84–104) 

QT Interval  (ms) 388  (368–406) 400  (374–426) 

QT Corrected  (ms) 407  (394–424) 410  (401–429) 

P wave axis 55  (37–66) 48  (33–61) 

R wave axis 48  (2–75) 34  (3–63) 

T wave axis 46  ( 1–63) 38  (20–58) 
Values shown represent the median and interquartile range, unless stated otherwise. Variables with * 

were used to match samples from the control group. 

Performance of ML and DL models compared to expert 

cardiologists 
In Table 7.2A, the results for both the experts, ML and DL models averaged 

over the 4 folds are displayed. Expert 1 and 2 had an accuracy of 0.65 and 

0.63 respectively, a sensitivity of 0.32 and 0.27, and a specificity of 0.97 and 

0.99  (Table 7.2A). Despite showing slightly higher accuracy, Expert 1 had 

also larger standard deviation when compared to Expert 2. Figure 7.2 shows 

receiver operating curves for a selection of the best performing models and 

the results of the best performing expert, the ROCs for the other models are 

shown in the Supplemental Figure II. Figure 7.3 shows an example of an ECG 

correctly classified as PLN by both the 1D CNN and the experts. For 

accessing inter-rater reliability between the two cardiologists we computed 
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the Cohen’s Kappa score18 which was κ=0.65 for the Amsterdam database, 

indicating a substantial agreement between the experts. For the Murcia 

dataset, κ was 0.27, which indicates a fair agreement between the experts. 

Table 7.2A. Performance  (in terms of accuracy, sensitivity and specificity) of the 

experts, ML and DL models in the Amsterdam data 

Model Sensitivity Specificity Accuracy AUC 

Expert 1 0.32±0.01 0.97±0.02 0.65±0.06 0.65±0.06 

Expert 2 0.25±0.05 1.0±0.00 0.63±0.03 0.63±0.02 

1D CNN-Approach A 0.65±0.02 0.67±0.07 0.65±0.04 0.74±0.03 

2D CNN-Approach B 0.77±0.03 0.67±0.09 0.72±0.03 0.78±0.03 

1D LSTM-Approach A 0.65±0.13 0.59±0.18 0.62±0.05 0.72±0.09  

2D LSTM-Approach B 0.81±0.08 0.53±0.12 0.67±0.08 0.74±0.09 

Wavelet–MLP 0.70±0.05 0.76±0.03 0.73±0.02 0.78±0.02 

Wavelet–SVM 0.71±0.05 0.81±0.06 0.76±0.05 0.80±0.06 

Wavelet–LR 0.72±0.07 0.79±0.06 0.76±0.05 0.80±0.06 

Wavelet–KNN 0.69±0.05 0.77±0.07 0.74 ±0.06 0.76±0.06 

Wavelet–RFC 0.69±0.5 0.80±0.07 0.75±0.06 0.83±0.03 

Wavelet–XGB 0.69±0.03 0.81±0.00 0.75±0.02 0.82±0.02 

The value shown is the average over 4 folds. CNN=Convolutional Neural Network, LSTM=Long 

Short-Term Memory network, MLP=Multilayer Perceptron, SVM=Support Vector Machine, 

LR=Logistic Regression, KNN=K-Nearest Neighbors, RFC=Random Forest Classifier, 

XGB=Gradient Boosting. 

Table 7.2B. External Validation in the Murcia Data 

Model Sensitivity  

(%) 

Specificity  

(%) 

Accuracy  

(%) 

AUC 

 (%) 

Expert 1 0.55 0.75 0.65 0.65 

Expert 2 0.18 0.91 0.56 0.55 

2D CNN–Approach B 0.64 0.72 0.68 0.70 

Wavelet–LR  0.96 0.20 0.58 0.58 

Wavelet–SVM 0.96 0.20 0.58 0.58 

2D LSTM–Approach B 0.48 0.68 0.58 0.63 
The value shown is the average over 4 folds. CNN=Convolutional Neural Network, LSTM=Long 

Short-Term Memory network, , SVM=Support Vector Machine, LR=Logistic Regression. 
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Figure 7.2. Repeater operating curves  (ROC) for the best performing expert and 

the four best performing models on the Amsterdam Data. 
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Figure 7.3. Example of an ECG which both the experts and the CNN labelled 

correctly as ‘PLN’. This example shows the typical ECG features which both the 

expert use to detect PLN: low QRS voltages on the limb leads and T-wave 

inversion in leads V3-V6. 

Machine learning based approach 
The different wavelet-ML models showed comparable results. The Wavelet 

SVM  (accuracy 0.76) and Wavelet LR  (accuracy 0.76) can be marked as the 

two best performing models. In terms of sensitivity, wavelet-ML also 

outperformed the cardiologist  (0.72 versus 0.31). In terms of specificity, the 

cardiologist outperformed the wavelet-ML  (0.99 versus 0.81).    

Deep learning based approach 
The DL model performing best on test data was the  2D CNN with approach 

B, with an accuracy of 0.72, outperforming both the expert cardiologists, with 

a standard deviation comparable to the experts. In terms of sensitivity, this 

CNN also outperformed both experts  (0.77 versus 0.31 of the expert with 

highest sensitivity). In terms of specificity, the experts outperformed the 

CNNs  (0.99 versus 0.67). Using the McNemar's test, we compared the best 
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performing model  (CNN with approach B) with the expert with the highest 

accuracy. The chi-square statistic was 2.125 and p-value=0.145 for the 

Amsterdam dataset.  

Since ML and DL models have multiple hyper-parameters to be optimized, 

we report in Supplemental Table I all the parameters used.  

External validation on the Murcia Data 
Results of the external validation for the expert cardiologists, the two best 

performing Wavelet-ML and the two best performing DL models can be 

found in Table 7.2B  (standard deviation is not available since the trained 

models were used for inference in the whole set). In terms of accuracy the 

CNN with approach B performed slightly better on the Murcia Dataset, 

compared to expert with highest accuracy  (0.68 versus 0.65). Our Wavelet 

based ML models showed the highest sensitivity  (0.96) versus the CNN and 

the LTSM  (0.64 and 0.48), however both Wavelet ML models showed poor 

specificity  (0.20). A comparison between the ROC of the best performing 

expert and the best ML/DL approaches for the Murcia dataset is presented in 

Supplemental Figure III. Using the McNemar’s test for comparison of CNN 

with approach B and expert 1, the chi-square statistic was 4.114, p-

value=0.043. 

Visualization of ECG features 
Figure 7.4 shows four examples of the ECG regions the model extracted 

features from to classify the specific ECG sample in either PLN or control 

patients. In 63% of the true positives, our results showed that the T-wave was 

the most important part for the model, an example is shown in Figure 7.4A. 

In 14,2% the model did not use a specific part of the signal but used the whole 

signal  (see Figure 7.4B). For the majority of the True Negatives  (TN), the 

model used the whole signal for classification  (56%) and in only 3%, the T-

wave was the most prominent ECG feature. An overview of the ECG features 

used, is shown in Supplemental Table II.   
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Figure 7.4. Examples of visualization of ECG features which the CNN used for 

clasification using Occlusion Maps on unique ECGs. A + B are PLN ECGs 

correctly classified by the model as PLN. C + D are ECG form control while were 

correctly classified as non PLN. The red highlighted areas are the parts of the 

signal which the model used to classify. If no specific area was highlighted, this 

means the model used the whole signal for classification. 
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Discussion 
From all of our models, the 2D CNN approach B, outperformed the expert 

cardiologists in accuracy and sensitivity, both on the Amsterdam and the 

Murcia data. In terms of specificity, the cardiologists were superior in the 

identification of PLN mutation carriers on ECG. This suggests neither using 

ML/DL nor the assessment of an expert cardiologist for the diagnosis of PLN 

p.Arg14del mutation on ECG is superior to each other. 

Performance of the models 
On the Amsterdam data, the Wavelet based SVM showed the highest 

accuracy  (0.76), whilst the  2D CNN approach B, which had an accuracy of 

0.72 on the Amsterdam data, performed best on the Murcia Dataset, with an 

accuracy of 0.68, compared to 0.58 from the Wavelet based SVM. It is clear 

from our results that the wavelet based models did not generalize well for a 

different population, which might indicate that the features extracted by the 

discrete wavelet transform might not be informative enough across different 

datasets. 2D CNN approach B resulted in the best DL models, where the 

learned convolutional kernels were shared among all leads, instead of 

learning individual kernels per lead  (approach A). The standard deviation for 

accuracy and sensitivity for the 2D CNN approach B was also one of the 

lowest, showing that the model generalized well across different folds.  

Comparison with previous studies 
This study is the first study to evaluate the diagnosis of PLN p.Arg14del 

mutation by solely using the ECG. Also, our study is the first to use both 

machine – and deep learning to prove this concept. In the field of 

cardiogenetics and ECG analysis, Hermans et al.19 recently added T-wave 

morphology characterizations to age, gender and QTc in an SVM and 

improved the diagnosis of Long-QT syndrome on ECG. In the Amsterdam 

Dataset of our study, Wavelet based ML models also proved to perform with 

the highest accuracy. However, Hermans et al.19 did not use a deep learning 

approach, in which the model learns features by itself. 

A recent study from the Mayo Clinic developed a ML model to diagnose 

hypertrophic cardiomyopathy.20 Their model outperform ours, however their 

dataset is much larger and furthermore, hypertrophic cardiomyopathy is a 
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diagnosis based on a  (for example) echocardiographic phenotype, and not 

solely based on the prevalence of a gene mutation.21 Therefore, to our 

knowledge, this study is the first to use deep learning to detect a genetically 

proven structural heart disease by solely looking at the ECG in a dataset 

including asymptomatic mutation carriers.  

Several studies have used ML or DL based ECG analysis to diagnose cardiac 

arrhythmia, with a higher accuracy than our ML models. An example is the 

DL model of Hannun et al.11 which is a neural network for the automatic 

detection of cardiac arrhythmia on ECG, and which was trained on a much 

higher number of ECGs than we used in our study. PLN is a rare disease 

worldwide, and it would be impossible to reach the same number of patients 

as they have included.   

Visualization of ECG features in the deep learning model 
Many techniques have been developed to interpret these models and give 

insight into their decision process. To our knowledge we are the first to use a 

DL based approach to identify ECG features associated with genetic 

structural heart disease. In the majority of our correctly classified PLN ECGs, 

the model used the T-wave as its most important ECG feature. Although low 

QRS voltages are seen as the main ECG feature, T-wave inversions are also 

common in PLN p.Arg14del mutation carriers.1,2,5,6 More focused research 

will be needed to further elaborate these findings and to identify more specific 

and potentially new ECG features.  

Clinical interpretation 
To implement our models in a clinical setting, first their performance has to 

increase. The golden standard for diagnosis of a PLN p.Arg14del mutation is 

genetic testing. Models like ours are unlikely to replace genetic testing as a 

whole, but can serve as a risk stratification tool to predict which patients do 

need genetic testing. This is currently done by  (expert) physicians, and, now 

that our models have shown to outperform the sensitivity of expert 

cardiologists, our results could contribute to improved and earlier diagnosis 

of this progressive genetic cardiomyopathy. Because sensitivity of our models 

is higher than that of the experts, the models are better at diagnosing PLN 

mutation carriers, compared with the assessment of the expert cardiologist, in 

the current setting. When looking at specificity it is the other way around, the 
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experts outperform the models, with almost a maximum specificity, therefore 

often correctly classifying an ECG as a PLN p.Arg14del mutation carrier.   

PLN is not the only genetic heart disease which has a “typical” phenotype on 

ECG. Other diseases like the Long QT syndrome , hypertrophic 

cardiomyopathy and Brugada syndrome, are only a few examples of 

syndromes in which a gene mutation can lead to a clinically severe and life 

threatening syndrome. This study suggests that a ML/DL based approach 

could also be used for the diagnosis of these inherited cardiac syndromes.   

Limitations 
This study is performed on a  (relatively) small dataset. It is known that deep 

learning is a technique which is highly dependent of the amount of data it is 

trained on. Because PLN cardiomyopathy is a rare disease, it is difficult to 

bring together a much larger number of PLN patients. We augmented our data 

by using multiple beats from a single ECG as individual samples. Moreover, 

we decided to first only use the patients from our own center, to prove the 

concept that it is possible to predict carrier status of a specific mutation 

leading to heart disease using ML/DL based ECG analysis.  

Also, for this analysis we chose to evaluate genetically proven carriers of the 

PLN p.Arg14del mutation, which were either symptomatic or asymptomatic. 

This was done to identify possible ECG features which are present in both 

these groups and not only in symptomatic patients.  

The main goal of this study was to evaluate the predictive value of ECG for 

the diagnosis of PLN cardiomyopathy. Therefore, we did not included basic 

demographics to like age and gender, especially due to the risk of bias given 

these parameters could influence the ECG by itself.22  

Conclusion 
In conclusion, this study has shown that ML and DL can improve diagnosis 

of PLN p.Arg14del cardiomyopathy and our results find regions of the surface 

ECG that are related to PLN p.Arg14del mutation and therefore suggest that 

the T-wave is of added importance to diagnosing PLN mutation caused heart 

disease, even before they become symptomatic. 
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Supplemental material 
Supplemental Methods 

I - Data pre-processing  
To increase the amount of training data, we extracted all beats from each 10-second 

ECG available and used them as individual samples during training The number of 

beats per scan ranged from 3 to 13. To extract the beats from each ECG signal we 

used the Python BioSPPY, a toolbox developed to process biological signals.1 We 

interpolated each beat to the standard size of 256 data points. Therefore, the final 

input to the models of size (8x256), eight leads of 256 data points for each patient 

(Supplemental Figure I).2,3 

II - Wavelets 
The wavelet transform is a technique used to extract information from signals since 

it provides information in both time and frequency domain. In our case we used the 

multilevel 1D discrete wavelet transform following the approach from Martis et al.4 

For this we used the PyWavelets library.5 

III - Deep learning 
The main different between approach A and B is the way the convolutional kernels 

are used. In Approach A, the CNN learns an individual kernel per lead, while in 

approach B, one kernel is learned and shared for all leads. 

We explored two approaches, in the first one, named approach A, each lead was used 

as a channel in the following order (I, II, V1-V6) , with an input of size 256x8 (256 

data points for 8 different channels). The second approach, named approach B, the 

leads were placed one under the other, with an input of size (8x256x1). In approach 

B we used a 2D CNN, but set one of the dimensions of the kernels to one, to prevent 

the convolution of including more than one lead per operation.. Finally, since the 

ECG signal is a time-series, we developed recurrent models using Long Short-Term 

Memory (LSTM) networks. The LSTM models were developed using approach A 

and B, using the libraries Keras and Pytorch.6  We used three subsequent R to R beats 

as input to the LSTM models. We picked three since that was the minimum number 

of heartbeats found in some ECGs. Therefore, the final input size for the LSTM 

models was (3x256x8).   
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Supplemental Figures and Tables 

 

Supplemental Figure I. Example of the input (8x256) used to develop the 

models. Each plot corresponds to one of the 8 channels. 
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Supplemental Figure II. Repeater operating curves (ROC) for the best performing 

expert compared to other DL and ML approaches on the Amsterdam Data. 
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Supplemental Figure III. Repeater operating curves (ROC) for the best 

performing expert and the best performing models on the Murcia Data. 
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Supplemental Table I. Hyper-parameters used during model optimization. Values 

in bold resulted in the best validation results and were used to develop the final 

model.  

Method Hyper-parameter Value range 

CNN/LSTM Number of convolutional layers 

followed by max pooling 

(3,4) 

Number of filters [16,32,64], [16,16,32], [16,16,32,64] 

Size of convolutional kernels [1,32], [1,36] 

Size of pooling kernel [0], [1,2] 

Number of dense layers (1,2) 

Activation ReLU 

Dropout [0.2,0.2,0.2,0.5], [0.3,0.3,0.3,0.6], 

[0.2,0.2,0.2,0.2] 

Nodes in dense layer [128],[256],[128,256] 

Epochs [50,100,150] 

Learning rate [0.00001, 0.0005, 0.0001, 0.001] 

Mini batch size [64,128] 

RFC Number of Trees [50, 100, 400, 800] 

Max depth of trees [2,5,10] 

Quality of split Gini or Entropy 

Minimum number of samples 

required to split an internal node 

[2,4,6,8] 

Minimum number of samples 

required to be at a leaf node 

[2,4,6,8,10] 

SVM Kernel type Linear, Radial basis function, Polynomial 

Penalty parameter C [0.001, 0.01, 0.1, 1, 10, 100] 

Kernel coefficient γ (gamma) [1, 0.1, 0.01, 0.001, 0.0001] 

Degree of the Polynomial kernel [2,3,4,5] 

LR Regularization [0.001, 0.01, 0.1, 1, 10, 100] 

Optimization algorithm [newton-cg, lbfgs, liblinear, sag, saga] 

NN Hidden Layer sizes [25], [25,25], [25,25,25], [50], [50,50], 

[50,50,50], 

[100], [100,100], [100,100,100], 

Activation ReLU 

Regularization parameter [0.1, 0.01, 0.001, 0.0001] 

Batch size [32, 64, 128]   

Learning rate [0.01, 0.001, 0.005, 0.0001] 

Optimization algorithm Adam 

XGB Learning rate [0.1, 0.01, 0.001, 0.005] 

Minimum sum of instance weight 

(hessian) needed in a child 

[1, 5, 10] 

Minimum loss reduction required to 

make a further partition on a leaf 

node of the tree 

[0, 0.5, 1, 1.5, 2, 5] 
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Subsample ratio of the training 

instances 

[0.7, 0.8, 0.9, 1.0] 

 Parameters for subsampling the 

columns 

[0.7,0.9] 

Maximum depth of a tree [3,  7, 13] 

KNN Number of neighbors [1, 2, 3, 4, 5] 

Weight function [uniform, distance] 

Leaf size [1, 10, 20 ,30] 

 

Supplemental Table II. ECG features visualized by occlusion maps for the True 

Positives (TP) and True Negatives (TN). 

True positives True negatives 

Feature N % Feature N % 

T-wave 67 63% T-wave 3 3% 

Whole signal 15 14% Whole signal 59 53% 

Other/random 24 23% Other/random 49 44% 

Total 106 100% Total 111 100% 
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Quantitative analysis of EEG reactivity for neurological 

prognostication after cardiac arrest 
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Abstract 
Objective: To test whether 1) quantitative analysis of EEG reactivity  (EEG-

R) using machine learning  (ML) is superior to visual analysis, and 2) 

combining quantitative analyses of EEG-R and EEG background pattern 

increases prognostic value for prediction of poor outcome after cardiac arrest  

(CA). 

Methods: ML models were trained with twelve quantitative features derived 

from EEG-R and EEG background data of 134 adult CA patients. Poor 

outcome was a Cerebral Performance Category score of 3-5 within 6 months. 

Results: A random forest classifier trained on EEG-R data was most accurate 

and predicted poor outcome with 46% sensitivity  (95%-CI 40-51) and 89% 

specificity  (95%-CI 86-92). Visual analysis of EEG-R had 80% sensitivity 

and 65% specificity. A random forest classifier with EEG background data at 

24h after CA showed 62% sensitivity  (95%-CI 57-67) and 84% specificity  

(95%-CI 79-88). Combining both classifiers reduced the number of false 

positives. 

Conclusions: Quantitative analysis using ML on EEG-R data predicts poor 

outcome with higher specificity, but lower sensitivity compared to visual 

analysis, and is of some additional value to ML on EEG background data. 

Significance: Quantitative EEG-R using ML is a promising alternative to 

visual analysis and of some added value to ML on EEG background data. 
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Introduction 
Reliable prognostication is one of the major challenges in patients admitted 

to the intensive care unit after cardiac arrest  (CA)  (Rossetti et al. 2016). 

Hypoxic-ischemic brain injury is the main determinant of neurological 

outcome  (Lemiale et al. 2013). Accurate outcome prediction can reduce 

unnecessary treatment in patients without a chance of recovery and avoid 

inappropriate withdrawal of life sustaining treatment. Recent studies have 

shown that electroencephalography  (EEG) contains information that can be 

used to predict patient outcome with high accuracy  (Hofmeijer et al. 2015; 

Sivaraju et al. 2015; Westhall et al. 2016; Rossetti et al. 2017; Ruijter et al. 

2019). A continuous normal voltage EEG background in the first 12 h post 

CA predicts a good outcome  (Hofmeijer et al. 2015; Ruijter et al. 2019). A 

low voltage EEG background or generalized periodic discharges on a 

suppressed background when present at 24 h after CA, or presence of identical 

bursts at any time after CA are strongly associated with a poor outcome.  

(Hofmeijer et al. 2015; Sivaraju et al. 2015; Westhall et al. 2016; Rossetti et 

al. 2017; Ruijter et al. 2019). 

Another marker for prognostication of a poor outcome is the absence of EEG 

reactivity  (Sandroni et al. 2014; Rossetti et al. 2017; Azabou et al. 2018). 

However, prognostic value of visual analysis of EEG-R varies widely with 

sensitivity reported between 60% and 96% and specificity between 67% and 

100%  (Rossetti et al. 2010; 2012; Alvarez et al. 2013; Noirhomme et al. 2014; 

Oddo and Rossetti 2014; Suys et al. 2014; Sivaraju et al. 2015; Amorim et al. 

2016; Fantaneanu et al. 2016; Rossetti et al. 2017; Tsetsou et al. 2018; 

Benghanem et al. 2019).  

Quantitative analysis utilizing a Machine Learning  (ML) approach has the 

potential to improve the prognostic value of EEG-R by overcoming the 

subjective nature of the visual assessment. Machine Learning methods have 

been extensively used with EEG data in the clinical setting for diverse tasks, 

such as the prediction of epileptic seizures and outcome after postanoxic 

coma  (Usman et al. 2017; Tjepkema-Cloostermans et al. 2019). Most studies 

regarding consciousness disorders focus on group level classification 

approaches  (Noirhomme et al. 2017). Machine Learning methods are often 

able to use data more effectively, by modelling the interactions between 
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features, including non-linearities, and focus on individual level predictions  

(Noirhomme et al. 2017). Also, a fully automated approach would allow for 

faster and easier interpretation. 

In this study, we aimed to investigate the prognostic value for prediction of 

poor outcome after CA of ML methods trained on quantitative features 

extracted from EEG-R data and compared it to the prognostic value of visual 

analysis of EEG-R. Since it is currently unknown whether ML using EEG-R 

data is superior to ML using EEG background data for prediction of poor 

outcome, we also aimed to compare and combine their prognostic values.. We 

hypothesized 1) that ML classifiers trained on quantitative features from 

EEG-R data can predict poor outcome more accurately than visual analysis 

of EEG-R, and 2) that combining ML classifiers of both EEG-R and EEG 

background increases prognostic value for prediction of poor outcome. 

Methods 
Participants 
In this post-hoc analysis, cEEG registrations of 138 adult CA patients were 

available from a prospective cohort  (Admiraal et al. 2019). In brief, between 

April 2015 and February 2018, consecutive comatose adult CA patients, 

admitted to the intensive cares of two university hospitals and one large 

teaching hospital in The Netherlands, where cEEG monitoring was started 

within 24 hours after CA, were included. Patients were treated according to 

the local hospital protocol including 24 hours of targeted temperature 

management with sedation. Decisions for withdrawal of life sustaining 

treatment were guided by the Dutch recommendations for prognostication 

after cardiac arrest, which included neurological examination after clearance 

of sedative drugs, subsequent SSEP testing, and EEG background after 72h 

post CA  (Nederlandse Vereniging voor NeurologieNederlandse Vereniging 

voor Intensive Care 2011). Recommendations at the time did not include 

EEG-R in any form, nor EEG background patterns within 72 h after CA. The 

Medical Ethical Committee of the Amsterdam University Medical Centers, 

location AMC, waived the need for informed consent. The original trial was 

registered at trialregister.nl  (identifier: NTR6231). 
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EEG recordings 
CEEG was recorded with nine electrodes, placed according to the 

international 10-20 system. Additionally, a ground and reference electrode 

were placed in the midline. EEGs were recorded with a Viasys Nicolet  

(CareFusion, Middleton, WI) or a BrainQuick ICU  (Micromed, Mogliano 

Veneto, Italy). 

During cEEG monitoring, EEG-R was tested twice a day according to a strict 

protocol, consisting of five different stimuli: clapping, calling out the 

patient’s name, passive eye opening, nasal tickling, and sternal rub. Each 

stimulus was applied three times, with a duration of five seconds and inter-

stimulus interval of 30 seconds. Synchronized with the start of each stimulus, 

an annotation was placed in the EEG recording to enable offline reviewing. 

For each patient, the EEG-R assessment of 15 stimuli closest to 24 hours after 

CA  (limited to 12-36 hours, median 23 hours; IQR 19-25) was selected. We 

did not exclude patients based on the EEG background. Results of visual 

analysis of EEG-R and EEG background were available  (see Table 8.1). 

Methods of the visual analysis have been described elsewhere  (Admiraal et 

al. 2019) and are summarized in Table 8.2.  

Feature extraction 
EEG data were resampled to 256 Hz to ensure equal sampling rate in all 

recordings. Epochs of five seconds immediately before and after each 

stimulation were exported. Also, a 5-minute artefact free EEG background 

clip at 24 hours after CA was extracted and divided into 5-second epochs. 

Epochs were preprocessed with a bipolar montage and band-pass filtered with 

a third order Butterworth filter between 0.5 and 30 Hz.  

Quantitative features from three domains were extracted from the EEG data: 

time domain  (standard deviation), frequency domain  (total power  (1-25 Hz), 

delta power  (0.5-4 Hz), theta power  (4-8 Hz), alpha power  (8-13Hz), beta 

power  (13-25 Hz), alpha/delta ratio, spectral edge frequency, and peak 

frequency), and information theory  (approximate entropy, Shannon entropy  

(Shannon 1948) and Higuchi fractal dimension  (Higuchi 1987)). Power 

spectra were estimated using a Welch periodogram with a Hamming window 

and 50% overlap. Features were calculated and averaged over all EEG 

channels. We selected these features since they have shown to be among the 
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most relevant features for neurologic prognostication  (Bai et al. 2017; 

Amorim et al. 2019; Rizal and Estananto 2019). 

From EEG-R data, features from the epochs before and after each stimulation 

were subtracted to highlight the EEG changes. Preprocessing and feature 

extraction were done using Matlab 2017a  (Natick, MA, USA). Outliers were 

excluded based on the upper limit of boxplots  (interquartile range) of the 

feature values. We excluded outliers per patient, to make the comparison 

between stimuli more fair and trustworthy and to guarantee that the 

differences between results were due to stimulus type and not differences in 

the population. 

All code used to pre-process the data and develop the models can be found 

in: https://github.com/L-Ramos/EEG_reactivity  

Outcome assessment 
Outcome was assessed as the best score on the Cerebral Performance 

Category  (CPC) scale within six months after CA  (Booth et al. 2004). Scores 

were dichotomized as poor  (CPC 3-5: moderate cerebral impairment, 

vegetative stage, or death, N=54  (39%)) and good neurological outcome  

(CPC 1-2: nor or mild cerebral impairment, N=84  (61%)). See Table 8.1 for 

demographic details. 

Machine learning 
We selected the following ML methods: Logistic Regression  (LR), Support 

Vector Machine  (SVM)  (Cortes and Vapnik 1995), Random Forest  (RF)  

(Breiman 2001), Neural Networks  (NN)  (Bishop 1995), and Gradient Tree 

Boosting  (GTB)  (Chen and Guestrin 2016). We included these classifiers 

since for each one of them, learning occurs in a very different way, with linear 

and non-linear interactions between variables and to explore the best possible 

learning setup  (Fernández-Delgado et al.). For all classifiers we used 

implementations available in the Scikit-learn toolkit  (Pedregosa et al. 2011). 

Parameters used for optimization are presented in the online supplement  

(Supplemental Tables I and II). 
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Figure 8.1 shows an overview of the workflow. Firstly, we split the dataset 

into training and testing sets using 5-fold cross validation, preserving the 

percentage of samples for each outcome class and complete patient data sets 

in each fold  (Figure 8.1, stage 1 and 2). Then, the training set was split into 

training and validation using 3-fold cross-validation to optimize the hyper-

parameters of all models  (Figure 8.1, stage 3). The hyper-parameters that 

generated the best performing model over all iterations  (highest mean area 

under of the receiver operator curve, AUC) were used to create the final 

model  (Figure 8.1, stage 4). The final model was applied to the testing set, 

and the evaluation measures were computed  (Figure 8.1, stage 5). This 

experimental setup was executed 10 times to obtain more reliable 

performance estimates  (Lemm et al. 2011). To prevent inappropriate 

withdrawal of life sustaining care, cut-off for the probabilities resulting from 

the classifier was determined at ≥95% specificity in the training set. In total, 

250 models using EEG-R data  (50 for each stimulus type) and 50 models 

using EEG background data were generated. 
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Figure 8.1. Machine Learning Workflow. All five stimulus types were evaluated 

separately  (the type is denoted X in the second stage). In total, 50 models from 

EEG reactivity data were generated, 10 for each stimulus type  (using 5-fold cross 

validation). The same was done with EEG background data at 24 hours after 

cardiac arrest, generating 10 models. 

To further assess whether the models created with features from EEG-R and 

EEG background data differ in their predictions, we compared the predictions 

in a patient-wise comparison, using the results from 5-fold cross-validation. 

Furthermore, we created an ensemble classifier to check whether by 

combining both a classifier training on EEG-R and EEG background, we 



Quantitative analysis of EEG reactivity for neurological prognostication after… 

207 

 

could reduce the number of miss-classified patients.  For the combination, the 

probabilities of the best performing models using EEG-R and EEG 

background data were combined by computing the average of each patient-

wise prediction. 

Performance assessment 
To assess the performance of ML using quantitative features from EEG-R and 

EEG background data, sensitivity, specificity, positive prediction value  

(PPV), false positive rate  (FPR) and AUC were obtained for each ML 

classifier on the test set. To estimate the uncertainty introduced by random 

variations in the data,  the average and 95%-CI are computed for all measures  

(Noirhomme et al. 2017). The difference between models was considered 

statistically significant if the CI of the AUCs were non-overlapping. We also 

present the confusion matrices for the leave-one-out experiments. 

Results 
Demographics and visual analysis 
Of 138 patients, an EEG-R assessment between 12 and 36 h after CA was 

available. Based on outlier inspection of the feature values, four more patients 

were excluded  (two with good outcome). Visual inspection of the EEG 

recordings of those four patients showed muscle artifacts in two patients, 

burst-suppression EEG in one patient and no clear artifacts in the fourth 

excluded patient. Demographics and EEG characteristics of included patients 

can be found in Table 8.1.  
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Table 8.1. Demographics and EEG characteristics of included patients 
 

Poor 

outcome 

n = 60 

Good 

outcome 

n = 74 

p-

Value 

Demographics    

Age 66  (52-74) 62  (49-69) 0.19 

Sex  (male) 43/60  (72%) 61/74  (82%) 0.15 

OHCA 52/60  (87%) 68/74  (92%) 0.40 

Witnessed arrest 42/59  (71%) 62/72  (86%) 0.05 

Time to ROSC  (min) 22  (15-32) 12  (9-17) <0.001 

Initial rhythm shockable 32/58  (55%) 64/69  (93%) <0.001 

Cardiac etiology 32/53  (60%) 60/69  (87%) 0.001 

EEG characteristics    

Time of EEG reactivity assessment  (in h since 

CA) 

24  (20-25) 23  (19-24) 0.25 

EEG reactive on visual analysis 16/60  (27%) 48/74  (65%) <0.001 

EEG background pattern at 24h after CA 

   Continuous normal voltage 

   Discontinuous normal voltage 

   Burst-suppression without identical bursts 

   Burst-suppression with identical bursts 

   Low voltage/suppressed 

 

25/57  (44%) 

9/57  (16%) 

4/57  (7%) 

3/57  (5%) 

16/57  (28%) 

 

59/71  (83%) 

10/71  (14%) 

2/71  (3%) 

 

<0.001 

Data presented as median  (interquartile range) or n/total  (%). OHCA: out of hospital cardiac arrest, 

ROSC: return of spontaneous circulation. 

Table 8.2. Details of the visual analysis of EEG reactivity and EEG background 

 EEG-R EEG background 

Timepoint 

of 

assessment 

Closest to 24h after CA 

 (limited to 12-36h, 

median 23h; IQR 19-25) 

24h after CA 

Raters 3 fully blinded raters 3 fully blinded raters 

Categories - Present 

- Absent 

 (uncertain classified as 

present) 

According to ACNS criteria  (Hirsch et al. 

2013): 

- Continuous normal voltage 

- Discontinuous normal voltage 

- Burst-suppression without identical bursts 

- Burst-suppression with identical bursts 

- Low voltage/suppressed 

Inter-rater 

reliability 

ICC 0.85  (95% CI 0.82-0.88) 

 (Admiraal et al. 2019) 
EEG-R: EEG reactivity, CA: cardiac arrest, IQR: inter quartile range, ACNS: American Clinical 

Neurophysiology Society, ICC: Intra-class correlation coefficient. 
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Results of visual analysis of EEG-R were available from our previous study  

(Admiraal et al. 2019). In the currently analysed patient selection, absence of 

EEG-R showed 80% sensitivity  (95%-CI 66-89) and 65% specificity  (95%-

CI 54-76) for poor outcome. Burst-suppression with identical bursts, low 

voltage, or suppressed EEG background at 24 hours after CA on visual 

analysis predicted poor outcome with 35% sensitivity  (95%-CI 22-49) and 

100% specificity  (95%-CI 95-100). 

Quantitative analysis - EEG reactivity data 
The highest average AUC for ML using quantitative features from EEG-R 

data was obtained with the RF classifier and the passive eye opening stimulus 

AUC: 0.83  (95%-CI 0.80-0.86) with 46% sensitivity  (95%-CI 40-51) and 

89% specificity  (95%-CI 86-92), the highest PPV: 86%  (95%-CI 83-90), 

and lowest FPR 11  (95%-CI 8-14) see Table 8.3. The difference in accuracy 

between the various stimulus types was not statistically significant. The 

results obtained with the other classifiers are presented in Supplemental Table 

III and the standard deviation of the measures is shown in the Supplemental 

Table IV. To enable the interpretability of the RF model, the average feature 

importance for the best performing stimulus  (the passive eye opening) was 

extracted and shown in Figure 8.2  (in green). 
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Table 8.3. Performance for prediction of poor outcome of the RF models based on 

features extracted from EEG-R data of each stimulus type, and EEG background 

data at 24 hours after CA  (24 hours EEG) 

 AUC 

 (95%-CI) 

Sensitivity 

 (95%-CI) 

Specificity 

 (95%-CI) 

PPV 

 (95%-CI) 

FPR 

 (95%-CI) 

Clapping 0.78 

 (0.76-0.81) 

0.41 

(0.35-0.48) 

0.88 

(0.84-0.92) 

0.83 

 (0.77-0.88) 

0.12 

 (0.08-0.16) 

Calling out 

patient’s 

name 

0.78 

 (0.76-0.81) 

0.46 

(0.40-0.51) 

0.86 

(0.82-0.90) 

0.81 

 (0.76-0.87) 

0.14 

 (0.10-0.18) 

Passive eye 

opening 

0.83 

 (0.80-0.86) 

0.46 

(0.40-0.51) 

0.89 

(0.86-0.92) 

0.86 

 (0.83-0.90) 

0.11 

 (0.08-0.14) 

Nasal 

tickle 

0.81 

 (0.79-0.83) 

0.45 

(0.38-0.52) 

0.87 

(0.83-0.92) 

0.80 

 (0.73-0.87) 

0.13 

 (0.08-0.17) 

Sternal 

rub 

0.76 

 (0.73-0.79) 

0.30 

(0.23-0.36) 

0.88 

(0.84-0.92) 

0.73 

 (0.64-0.81) 

0.12 

 (0.08-0.16) 

24h EEG 0.85 

 (0.83-0.88) 

0.62 

(0.57-0.67) 

0.84 

(0.79-0.88) 

0.85 

 (0.81-0.89) 

0.16 

 (0.12-0.21) 
Sensitivity and specificity are optimized for prediction of poor outcome with the probability threshold 

shifted towards high specificity. 

 

Figure 8.2. Average importance of the twelve features included in the random 

forest classifier extracted from EEG reactivity data and from EEG background data 

at 24 hours after cardiac arrest. 

Quantitative analysis - EEG background data 
The highest average AUC for the EEG background data at 24 hours resulted 

from the RF classifier, with an  AUC of 0.85  (95%-CI 0.83-0.88). Sensitivity 

was 62%  (95%-CI 57-67) with a specificity of 84%  (95%-CI 79-88). Despite 
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showing a high PPV value 85%  (95%-CI 81 - 89), the EEG background had 

worse FPR 16%  (95%-CI 12 - 21) when compared to EEG reactivity. The 

results obtained with the other classifiers are available in Supplemental Table 

III. The average feature importance is shown in Figure 8.2  (in blue). 

Quantitative analysis - Patient-wise comparison 
In the patient-wise comparison, FP and FN predictions of ML models of 

EEG-R data from the passive eye opening stimulus and EEG background data 

at 24 h after CA, were compared.  (Figure 8.3). The FP predictions  (Figure 

8.3a) show an overlap of 11%  (1 patient) and FN predictions  (Figure 8.3b) 

45%  (22 patients) For both predictions there is no complete overlap, showing 

additional value. 

 

Figure 8.3. Venn diagram for random forest classifier predictions built with 

quantitative features extracted from EEG reactivity data and EEG background data. 

A) False positive predictions and B) False negative predictions. 

In Figure 8.4, we show the confusion matrices of the RF models based on 

EEG-R data  (a) from the passive eye opening stimulus, EEG background 

data at 24 hours and their combination using the averaged probabilities. The 

combination of probabilities of the RF models using EEG-R and EEG 

background data resulted in an AUC of 85%, 41% sensitivity and 96% 

specificity.  The combination reduced the number of FP from 7  (EEG-R) and 

5  (EEG background) to 2. 
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Figure 8.4. Confusion matrix of the averaged probabilities of the two random 

forest classifier models based on EEG-R data from the nasal tickle stimulus and 

EEG background data at 24 hours. Labels are good  (CPC 1-2) and poor 

neurological outcome  (CPC 3-5). 

Discussion 
This post-hoc analysis of a prospective cohort study on the prognostic value 

of EEG-R after CA showed that ML models trained on quantitative features 

extracted from EEG-R data can predict poor neurological outcome with 

higher specificity than visual analysis of EEG-R data. ML on EEG 

background data at 24 hours after CA outperformed ML with EEG-R data in 

this cohort with promising prognostic values. We also found that combining 

probabilities resulting from ML models using EEG-R and EEG background 

data slightly improved the number of FP in outcome prediction. 



Quantitative analysis of EEG reactivity for neurological prognostication after… 

213 

 

EEG-R is widely used and visual evaluation of EEG-R is restricted to highly 

trained personnel and time consuming. Quantitative analysis of EEG-R has 

major advantages over visual analysis: It is faster, it is not subjected to inter-

rater variability, and it can be fully automated. A few other studies have 

described quantitative analysis of EEG-R data. These studies indicate that this 

approach is at least as good as visual analysis, even though methodologies 

vary widely  (Noirhomme et al. 2014; Hermans et al. 2015; Liu et al. 2016; 

Duez et al. 2018). Several studies calibrated the quantitative algorithm to 

obtain the highest concordance with EEG-R as determined by visual analysis, 

not to patient outcome  (Noirhomme et al. 2014; Hermans et al. 2015). They 

found substantial agreement of quantitative analysis with visual analysis by 

EEG-certified neurologists. Prediction of poor outcome using quantitative 

analysis compared to outcome prediction using visual EEG-R analysis was 

reported to have 100% specificity for poor outcome  (Duez et al. 2018). This 

study used only one feature as quantitative analysis and did not perform 

separate training and testing, nor performed cross-validation  (Duez et al. 

2018). A recent article by  (Amorim et al. 2019) described a ML model similar 

to ours for prediction of good outcome after cardiac arrest with good results. 

All these results indicate that quantitative EEG-R analysis is a tool which 

could substitute visual analysis of EEG-R in hypoxic-ischemic 

encephalopathy.  

Besides EEG-R, the already available EEG background pattern is known to 

predict neurological outcome in postanoxic coma with high accuracy, using 

both visual and quantitative analysis  (Hofmeijer et al. 2015; Sivaraju et al. 

2015; Spalletti et al. 2016; Westhall et al. 2016; Asgari 2018; Ruijter et al. 

2019; Tjepkema-Cloostermans et al. 2019). A substantial number of studies 

on quantitative analysis of EEG background for prognostication after CA 

report similar prognostic value as visual analysis. Again, studies vary widely 

in methodology  (Asgari 2018). A recent study by Nagaraj et al.  (Nagaraj et 

al. 2018) with very similar methodology to our study reported 60% sensitivity 

and 100% specificity for prediction of poor outcome at 24 hours after CA, 

whereas we found 72% sensitivity and 84% specificity. Major differences 

from our study are a much larger number of investigated features  (44 vs. 12) 

and a much larger sample size  (551 vs. 138). 
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The limited number of samples in our study did not allow us to assess a large 

number of features, since the accuracy of ML methods may be reduced when 

the number of training samples is small compared to the number of features 

This is also known as the curse of dimensionality  (Duda et al. 2001). We 

accounted for this by extracting only well-known EEG features available in 

the literature  (Bao et al. 2011). These features also largely overlaped with the 

features most often selected by the random forest model in the study on 

quantitative EEG-R by  (Amorim et al. 2019). The limited sample size could 

also have made our study more prone to outliers. However, we expect that the 

effect would have been similar for quantitative analyses of both EEG-R and 

EEG background and not disproportionally at the expense of EEG-R.  

 Despite optimizing a probability threshold to ≥95% specificity, the 

specificity of some models was still lower than our threshold. Since our 

current dataset is relatively small, there is a possibility that the specificity 

threshold found with our validation set did not generalize well for the testing 

set. Nevertheless, estimating a threshold using the validation set is a essential 

to prevent overoptimistic results and to keep our development setting as close 

to clinical practice as possible, where prior knowledge about the “testing” 

patients is not available. 

In our study we opted for a multi-subject approach. We trained a model in a 

population of multiple patients which can later be applied to a single patient. 

One of the main advantages over the individualized approach the robustness 

to bias, since features are combined in a multivariate and non-linear way, 

which can highlight previously undetected information  (Noirhomme et al. 

2017). 

One of our aims was to investigate whether a certain stimulus could be more 

predictive than others. Therefore, we did not combine all stimulus types into 

one single dataset. Moreover, in case a certain stimulus type was less 

predictive than others, that could lead to negative effects in learning. 

Furthermore, most machine learning methods  (like the SVM and NN) assume 

that the data is independently and identically distributed  (IID)  (Dundar et al. 

2007), and combining all stimulus types could severely hurt this principle. 
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Our study is the first to compare and combine quantitative analysis of EEG-

R and EEG background to predict poor outcome. Since EEG-R is an 

additional test during EEG registration, EEG background is always available, 

irrespectively whether EEG-R is tested or not. We found a small increase in 

prognostic accuracy when classifiers based on EEG-R and EEG background 

data were combined. This is in line with findings by Kustermann et al. where 

spectral analysis of the EEG background combined with visual analysis of 

EEG reactivity led to a higher prognostic value than spectral analysis of the 

EEG background alone  (Kustermann et al. 2019).  Although, in our study, 

EEG-R and EEG background were not tested exactly at the same time after 

CA  (EEG-R between 12-36h vs EEG background at 24h), we do not assume 

that this was of major influence on the results at the expense of EEG-R. Most 

EEG-R assessments were in fact very close to 24 hours after CA as shown by 

the narrow inter-quartile ranges. 

Major strengths of our study are: a prospective data set with standardized 

EEG-R testing, selection of multiple ML classifiers that have shown state-of-

the-art results in many studies, follow-up data collected until six months to 

allow for patient recovery, leading to a more reliable label, and the number of 

cross-validation iterations, enabling a fair assessment of potential generality 

of the method. Since EEG reactivity and EEG background in any form were 

not part of decisions to withdraw life sustaining treatment, we assume our 

results are not biased by a self-fulfilling prophecy. As EEG-R was tested 

relatively early, most patients received sedative medication during the 

recording. In our previous publication we found no difference in sedation 

between reactive and unreactive patients  (Admiraal et al. 2019). Also, EEG-

R was more often seen in EEGs recorded during sedation. Therefore, we 

assume this is not a confounding factor in the current investigation. 

Conclusion 
Our results indicate that ML using quantitative features extracted from EEG-

R data predicts poor outcome after cardiac arrest with higher specificity than 

visual analysis of EEG-R and is therefore a promising alternative to visual 

analysis. ML using quantitative features from EEG background at 24 hours 

after CA outperforms ML using features from EEG-R data. Combined 
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probabilities of the models resulted in a decrease in false positives, showing 

some additional value of EEG-R for prediction of poor outcome. The value 

for prediction of good outcome, however, should be subject of future 

research. 
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Supplemental material 
Supplemental Table I. Hyper-parameters used for SVM (Support Vector Machine) 

Classifier Kernel Type Penalty 

parameter C 

Kernel 

coefficient γ 

Degree of the 

Polynomial kernel 

SVM Linear [0.001, 0.01, 0.1, 

1, 10, 100] 

n.a. n.a. 

 Radial basis 

function 

[0.001, 0.01, 0.1, 

1, 10, 100] 

[1, 0.1, 0.01, 

0.001, 0.0001] 

n.a. 

 Polynomial [0.001, 0.01, 0.1, 

1, 10, 100] 

[1, 0.1, 0.01, 

0.001, 0.0001] 

[1,2,3,4] 

 

Supplemental Table II. Hyper-parameters used for optimizing RFC (Random 

Forest Classifier), NN (Neural Network), LR (Logistic Regression) and GTB 

(Gradient Tree Boosting) 

Classifier Parameter Name Parameter Value 

RFC Number of Trees [50,100,200,400,500,600,800,1000] 

 Max features for split auto, sqrt and log2,1,2,4,7 

 Quality of split Gini or Entropy 

 Max Depth 10, 20, 30 

 Minimum number of samples per leaf 2, 3, 4, 5, 6, 7 

 Minimum number of samples required to split 

an internal node 

2, 3, 4, 5, 6, 7 

NN Hidden Layer sizes  [12], [24], [36] , [24,12], [24,36,12] 

 Regularization  [0.1, 0.01, 0.001, 0.0001] 

 Batch size [32, 64]   

 Learning rate [0.01, 0.001, 0.0001] 

 Optimizer SGD, Adam 

 Activation Relu, Logistic 

LR Regularization  0.001, 0.01, 0.1, 1, 10, 100 

 Optimization Algorithm newton-cg, lbfgs, liblinear, sag, saga 

GTB Learning rate 0.1, 0.01, 0.001 

 Minimum sum of instance weight needed in a 

child 

1, 5, 10 

 Regularization  0, 0.5, 1, 1.5, 2, 5 

 Subsample ratio of the training instances 0.7, 0.8, 0.9, 1.0 

 Subsample ratio of columns when 

constructing each tree 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8 

 Maximum depth of a tree 3, 5, 7, 9, 10 

 

 

 



Quantitative analysis of EEG reactivity for neurological prognostication after… 

221 

 

Supplemental Table III. Performance for prediction of poor outcome (average and 

95% confidence interval) of the support vector machine (SVM), linear regression 

(LR), gradient tree boosting (GTB), and neuronal network (NN) models based on 

features extracted from EEG-R data of each stimulus type, and EEG background 

data at 24 h after CA (24 h EEG). Sensitivity and specificity are optimized for 

prediction of poor outcome with the probability threshold shifted towards high 

specificity. 

 AUC 

(95%-CI) 

Sensitivity 

(95%-CI) 

Specificity 

(95%-CI) 

PPV 

(95% - CI) 

FPR 

(95% -CI) 

Clapping  

   

RFC 

0.78 

(0.76 - 0.81) 

0.41 

(0.35 - 0.48) 

0.88 

(0.84 - 0.92) 

0.83 

(0.77 - 0.88) 

0.12 

(0.08 - 0.16) 

   

SVM 

0.75 

(0.72 - 0.78) 

0.55 

(0.45 - 0.65) 

0.66 

(0.55 - 0.77) 

0.73 

(0.66 - 0.80) 

0.34 

(0.23 - 0.45) 

  

LR 

0.77 

(0.74 - 0.80) 

0.39 

(0.33 - 0.45) 

0.89 

(0.86 - 0.92) 

0.74 

(0.66 - 0.82) 

0.11 

(0.08 - 0.14) 

   

GTB 

0.76 

(0.74 - 0.79) 

0.3 

 (0.28 - 0.43) 

0.89 

(0.85 - 0.92) 

0.73 

(0.64 - 0.82) 

0.11 

(0.08 - 0.15) 

  

NN 

0.75 

(0.72 - 0.77) 

0.49 

(0.41 - 0.57) 

0.77 

(0.67 - 0.86) 

0.79 

(0.73 - 0.84) 

0.23 

(0.14 - 0.33) 

Calling out patient’s name 

   

RFC 

0.78 

(0.76 - 0.81) 

0.46 

(0.40 - 0.51) 

0.86 

(0.82 - 0.90) 

0.81 

(0.76 - 0.87) 

0.14 

 (0.10 - 0.18) 

   

SVM 

0.80 

(0.78 - 0.83) 

0.52 

(0.44 - 0.60) 

0.77 

(0.68 - 0.85) 

0.79 

(0.74 - 0.85) 

0.23 

(0.15 - 0.32) 

 

LR 

0.78 

(0.75 - 0.80) 

0.45 

(0.39 - 0.50) 

0.85 

(0.81 - 0.89) 

0.81 

(0.75 - 0.86) 

0.15 

(0.11 - 0.19) 

   

GTB 

0.77 

(0.75 - 0.80) 

0.42 

(0.36 - 0.48) 

0.86 

(0.82 - 0.89) 

0.80 

(0.74 - 0.85) 

0.14 

(0.11 - 0.18) 

  

NN 

0.78 

(0.75 - 0.81) 

0.52 

(0.45 - 0.59) 

0.77 

 (0.69 - 0.85) 

0.79 

(0.74 - 0.84) 

0.23 

(0.15 - 0.31) 

Passive eye opening 

   

RFC 

0.83 

(0.80 - 0.86) 

0.46 

(0.40 - 0.51) 

0.89 

(0.86 - 0.92) 

0.86 

(0.83 - 0.90) 

0.11 

(0.08 - 0.14) 

   

SVM 

0.75 

(0.72 - 0.78) 

0.49 

(0.41 - 0.56) 

0.84 

(0.76 - 0.92) 

0.86 

(0.81 - 0.90) 

0.16 

(0.08 - 0.24) 

 

LR 

0.76 

(0.72 - 0.79) 

0.30 

(0.23 - 0.37) 

0.88 

(0.83 - 0.93) 

0.68 

(0.58 - 0.78) 

0.12 

(0.07 - 0.17) 

   

GTB 

0.80 

(0.78 - 0.83) 

0.47 

(0.41 - 0.53) 

0.87 

(0.83 - 0.90) 

0.82 

(0.77 - 0.87) 

0.13 

(0.10 - 0.17) 

  

NN 

0.73 

(0.70 - 0.76) 

0.62 

(0.52 - 0.73) 

0.53 

(0.40 - 0.66) 

0.65 

(0.57 - 0.73) 

0.47 

(0.34 - 0.60) 

Nasal tickle 

   

RFC 

0.81 

(0.79 - 0.83) 

0.45 

(0.38 - 0.52) 

0.87 

(0.83 - 0.92) 

0.80 

(0.73 - 0.87) 

0.13 

(0.08 - 0.17) 

   

SVM 

0.77 

(0.75 - 0.80) 

0.46 

(0.39 - 0.54) 

0.79 

(0.72 - 0.86) 

0.78 

(0.73 - 0.83) 

0.21 

(0.14 - 0.28) 

  

LR 

0.75 

(0.72 - 0.78) 

0.35 

(0.27 - 0.43) 

0.84 

(0.78 - 0.90) 

0.59 

(0.49 - 0.69) 

0.16 

(0.10 - 0.22) 
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GTB 

0.79 

(0.76 - 0.81) 

0.42 

(0.35 - 0.49) 

0.86 

(0.83 - 0.90) 

0.76 

(0.68 - 0.83) 

0.14 

(0.10 - 0.17) 

  

NN 

0.74 

(0.71 - 0.77) 

0.61 

(0.51 - 0.70) 

0.54 

(0.42 - 0.67) 

0.66 

(0.59 - 0.72) 

0.46 

(0.33 - 0.58) 

Sternal rub  

   

RFC 

0.76 

(0.73 - 0.79) 

0.30 

(0.23 - 0.36) 

0.88 

(0.84 - 0.92) 

0.73 

(0.64 - 0.81) 

0.12 

(0.08 - 0.16) 

   

SVM 

0.67 

(0.64 - 0.70) 

0.56 

(0.45 - 0.66) 

0.59 

(0.48 - 0.70) 

0.69 

(0.62 - 0.76) 

0.41 

(0.30 - 0.52) 

  

LR 

0.71 

(0.67 - 0.74) 

0.28 

(0.20 - 0.37) 

0.80 

(0.72 - 0.87) 

0.54 

(0.44 - 0.64) 

0.20 

(0.13 - 0.28) 

   

GTB 

0.74 

(0.71 - 0.77) 

0.21 

(0.14 - 0.27) 

0.90 

(0.86 - 0.94) 

0.46 

(0.35 - 0.57) 

0.10 

(0.06 - 0.14) 

 

NN 

0.71 

(0.68 - 0.74) 

0.40 

(0.28 - 0.52) 

0.67 

(0.56 - 0.79) 

0.43 

(0.33 - 0.54) 

0.33 

(0.21 - 0.44) 

24 h EEG  

   

RFC 

0.85 

(0.83 - 0.88) 

0.62 

(0.57 - 0.67) 

0.84 

(0.79 - 0.88) 

0.85 

(0.81 - 0.89) 

0.16 

(0.12 - 0.21) 

   

SVM 

0.85  

(0.82 - 0.87) 

0.72 

(0.65 - 0.79) 

0.72 

(0.63 - 0.80) 

0.82 

(0.78 - 0.87) 

0.28 

(0.20 - 0.37) 

  

LR 

0.86 

(0.83 - 0.88) 

0.58 

(0.50 - 0.65) 

0.88 

(0.85 - 0.92) 

0.80 

(0.72 - 0.88) 

0.12 

(0.08 - 0.15) 

   

GTB 

0.86 

(0.83 - 0.88) 

0.63 

(0.57 - 0.69) 

0.85 

(0.81 - 0.89) 

0.86 

(0.82 - 0.89) 

0.15 

(0.11 - 0.19) 

  

NN 

0.86 

(0.84 - 0.88) 

0.66 

(0.58 - 0.73) 

0.77 

(0.69 - 0.85) 

0.78 

(0.71 - 0.85) 

0.23 

(0.15 - 0.31) 
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Supplemental Table IV. Performance for prediction of poor outcome (average and 

standard deviation) of the random forest (RFC), support vector machine (SVM), 

linear regression (LR), gradient tree boosting (GTB), and neuronal network (NN) 

models based on features extracted from EEG-R data of each stimulus type, and EEG 

background data at 24 h after CA (24 h EEG). Sensitivity and specificity are 

optimized for prediction of poor outcome with the probability threshold shifted 

towards high specificity. 

 AUC 

(95%-CI) 

Sensitivity 

(95%-CI) 

Specificity 

(95%-CI) 

PPV 

(95% - CI) 

FPR 

(95% -CI) 

Clapping    

   RFC 0.78 ± (0.09) 0.41 ± (0.23) 0.88 ± (0.14) 0.84 ± (0.15) 0.12 ± (0.14) 

   SVM 0.75 ± (0.11) 0.55 ± (0.34) 0.66 ± (0.37) 0.73 ± (0.24) 0.34 ± (0.37) 

   LR 0.77 ± (0.10) 0.39 ± (0.21) 0.89 ± (0.10) 0.79 ± (0.21) 0.11 ± (0.10) 

   GTB 0.76 ± (0.09) 0.36 ± (0.26) 0.89 ± (0.13) 0.83 ± (0.17) 0.11 ± (0.13) 

   NN 0.75 ± (0.09) 0.49 ± (0.26) 0.77 ± (0.32) 0.79 ± (0.18) 0.23 ± (0.32) 

Calling out patient’s name    

   RFC 0.78 ± (0.09) 0.46 ± (0.20) 0.86 ± (0.13) 0.83 ± (0.15) 0.14 ± (0.13) 

   SVM 0.80 ± (0.10) 0.52 ± (0.28) 0.77 ± (0.30) 0.79 ± (0.20) 0.23 ± (0.30) 

   LR 0.78 ± (0.10) 0.45 ± (0.20) 0.85 ± (0.14) 0.81 ± (0.20) 0.15 ± (0.14) 

   GTB 0.77 ± (0.09) 0.42 ± (0.21) 0.86 ± (0.12) 0.81 ± (0.15) 0.14 ± (0.12) 

   NN 0.78 ± (0.09) 0.52 ± (0.24) 0.77 ± (0.27) 0.79 ± (0.17) 0.23 ± (0.27) 

Passive eye opening    

   RFC 0.83 ± (0.09) 0.46 ± (0.19) 0.89 ± (0.11) 0.86 ± (0.13) 0.11 ± (0.11) 

   SVM 0.75 ± (0.11) 0.49 ± (0.26) 0.84 ± (0.27) 0.86 ± (0.15) 0.16 ± (0.27) 

   LR 0.76 ± (0.12) 0.30 ± (0.23) 0.88 ± (0.18) 0.79 ± (0.25) 0.12 ± (0.18) 

   GTB 0.80 ± (0.10) 0.47 ± (0.21) 0.87 ± (0.12) 0.84 ± (0.14) 0.13 ± (0.12) 

   NN 0.73 ± (0.10) 0.62 ± (0.36) 0.53 ± (0.44) 0.72 ± (0.19) 0.47 ± (0.44) 

Nasal tickle    

   RFC 0.81 ± (0.07) 0.45 ± (0.24) 0.87 ± (0.15) 0.86 ± (0.13) 0.13 ± (0.15) 

   SVM 0.77 ± (0.09) 0.46 ± (0.27) 0.79 ± (0.24) 0.78 ± (0.16) 0.21 ± (0.24) 

   LR 0.75 ± (0.11) 0.35 ± (0.27) 0.84 ± (0.20) 0.71 ± (0.25) 0.16 ± (0.20) 

   GTB 0.79 ± (0.08) 0.42 ± (0.24) 0.86 ± (0.14) 0.80 ± (0.19) 0.14 ± (0.14) 

   NN 0.74 ± (0.10) 0.61 ± (0.33) 0.54 ± (0.42) 0.70 ± (0.17) 0.46 ± (0.42) 

Sternal rub    

   RFC 0.76 ± (0.10) 0.30 ± (0.23) 0.88 ± (0.13) 0.77 ± (0.24) 0.12 ± (0.13) 

   SVM 0.67 ± (0.11) 0.56 ± (0.37) 0.59 ± (0.38) 0.69 ± (0.23) 0.41 ± (0.38) 

   LR 0.71 ± (0.12) 0.28 ± (0.28) 0.80 ± (0.27) 0.66 ± (0.28) 0.20 ± (0.27) 

   GTB 0.74 ± (0.11) 0.21 ± (0.22) 0.90 ± (0.13) 0.70 ± (0.27) 0.10 ± (0.13) 

   NN 0.71 ± (0.11) 0.40 ± (0.41) 0.67 ± (0.41) 0.63 ± (0.25) 0.33 ± (0.41) 

24 h EEG    

   RFC 0.85 ± (0.08) 0.62 ± (0.18) 0.84 ± (0.15) 0.85 ± (0.13) 0.16 ± (0.15) 

   SVM 0.85 ± (0.09) 0.72 ± (0.23) 0.72 ± (0.30) 0.82 ± (0.16) 0.28 ± (0.30) 

   LR 0.86 ± (0.09) 0.58 ± (0.26) 0.88 ± (0.13) 0.87 ± (0.17) 0.12 ± (0.13) 

   GTB 0.86 ± (0.08) 0.63 ± (0.21) 0.85 ± (0.13) 0.86 ± (0.12) 0.15 ± (0.13) 

   NN 0.86 ± (0.08) 0.66 ± (0.25) 0.77 ± (0.29) 0.83 ± (0.15) 0.23 ± (0.29) 
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General Discussion 
Artificial intelligence has been broadly applied in many clinical applications  

(1–8). These applications experienced a significant increase in performance 

when compared to classical computer vision and modelling approaches due 

to the learning capabilities offered by machine/deep learning models. Despite 

improved performance, machine/deep learning models are often hard to 

interpret, which can raise doubts about their trustworthiness for 

implementation in clinical practice  (9). Moreover, given the large amount of 

data generated during patient care, it is challenging to develop models that 

can include all this information into account in a safe and trustworthy manner. 

This thesis focused on applications of machine/deep learning to 

cardiovascular diseases that, when applicable, combine multiple types of data 

and their role in the prediction task, while striving to make the models 

interpretable and transparent.  

Stroke 
In this thesis, multiple models were developed and evaluated for various 

stroke-related tasks. The prediction of functional outcome at 3 months, 

represented by the modified Ranking Scale  (mRS), was assessed in chapters 

3 to 6. While prediction of functional outcome was often addressed  in the 

literature  (10–12), we explored a significantly larger number of variables 

using a large and heterogeneous dataset, the MR CLEAN registry, which 

contains data from patients from multiple hospitals all over the Netherlands  

(13). Moreover, we developed extensive and robust training and validation 

pipelines to prevent overoptimistic or biased results, and, when possible, 

externally validated the models. Despite the large number of variables 

included and the use of state-of-the-art machine learning models, the 

performance was similar to models developed using only a smaller number 

of  known clinical predictors  (10). We also showed that prediction models 

for good and poor mRS prediction have similar performance and can be 

optimized to greatly reduce the number of false positives, which can be useful 

in some clinical scenarios  (14,15). Finally, by using various model 

visualization techniques we identified various variables that are associated 

with patient outcome, such as: age, collaterals, glucose level, baseline NIHSS, 

Glasgow Coma Scale, time from onset-to-groin, time from onset-to-first 
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hospital, pre-stroke mRS, among others  (16,17). Despite many of these 

variables already had been identified in previous stroke research, this shows 

that our models were often using clinically relevant variables for prediction, 

increasing the trustworthiness of our results. 

We also explored other tasks related to stroke, such as the prediction of brain 

tissue reperfusion, represented by the dichotomized modified Thrombolysis 

In Cerebral Infarction score  (m-TICI) in patients with acute ischemic stroke, 

and Delayed Cerebral Ischemia  (DCI) for patients with hemorrhagic stroke. 

For both tasks, although prediction accuracy from machine learning models 

was generally intermediate, our approaches involving deep learning often led 

to a significant improvement in prediction accuracy compared to baseline 

models, especially when automatically generated image features were taken 

into account during model development  (chapters 2, 4 and 5). The increase 

in prediction accuracy compared to baseline models and traditional 

approaches was even more evident in the case of DCI, since the random forest 

models performed significantly better than logistic regression. Such increase 

in accuracy for DCI prediction suggests that, in some applications, the 

nonlinearities supported by machine learning methods can have a positive 

impact. Therefore, we suggest that future reperfusion and DCI prediction 

models should consider such machine learning approaches and automatic 

image features.  

Heterogeneous Data Combination 
In this thesis, it was shown that the combination of multiple types of data, 

such as imaging, patient demographics and clinical scores, can lead to 

improvements in prediction accuracy and the discovery of new insights. We 

proposed multiple approaches for the combination of image and clinical data 

in chapters 2, 4 and 5. In chapter 2, we trained an auto-encoder on non-

contrast CT images and used the output features from the encoding part as a 

feature generator for the scans. This approach greatly reduced the number of 

features in the images, reducing the risk of overfitting while keeping the most 

relevant features. Auto-encoder is an unsupervised method and does not 

require annotations, making it more feasible for application to large datasets. 
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Moreover, this unsupervised technique does not depend on any labels for 

training, making it more adapTable to new datasets and less biased.   

We further studied the predictive value of image features in chapter 4, where 

we developed Residual Neural Networks  (ResNets) and Structured Receptive 

Fields  (RFNN) models, and compared the predictive value of models trained 

on CT angiography  (CTA) scans with radiological scores  (18,19). While 

models trained on CTA were as good as models trained on the 

manually/visual scores for the prediction of functional outcome, relevant 

image regions could be identified through model visualization using GRAD-

CAM. For example, GRAD-CAM visualizations showed that the deep 

learning models focused mostly on the vessel occlusion location. Moreover, 

many brain regions that were considered relevant for outcome and reperfusion 

prediction in previous studies  (20) were also deemed important in our 

machine learning approaches  (chapter 5). In future work, other image 

modalities could be considered for combination, such as non-contrast CT and 

CT perfusion, since scores  (such as ASPECTS) computed using these image 

modalities are associated with patient outcome  (21).  

Another promising field in deep learning is multi-task learning, where 

multiple tasks can be learned simultaneously to reduce the need for individual 

models per task and may subsequently significantly improve performance  

(22). The positive influence of multi-task learning has been shown by 

multiple studies. For example, the combination of four ICU-related prediction 

tasks using recurrent models was proposed in  (23), and multi-task learning 

significantly outperformed the same models trained on the tasks individually. 

Mortality prediction at different moments using multi-task learning was 

addressed in  (24), and again, significant improvements were found when 

compared to training of single tasks. Therefore, such approach could be 

extended to predict multiple stroke outcomes at once, incorporating multi 

image modalities in one model, and/or predicting genetic mutations such as 

phospholamban  (PLN) and Long QT syndrome  (LQTS)  (25,26).  

Phospholamban 
Regarding the identification of patient with the phospholamban  (PLN) 

p.Arg14del gene mutation in ECG signals, we successfully developed 
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machine and deep learning models to classify PLN. Our models were able to 

identify patients even before they started showing symptoms, and the models 

performed better than experienced cardiologists in different PLN datasets. 

Furthermore, we assessed the robustness of our models by externally 

validating them in a dataset from Spain. Through this external validation, we 

found that a wavelet approach, despite performing well during internal 

validation, did not generalize well to the external dataset, which highlights 

the importance of external validation. Finally, through model visualization, 

we identified the T-wave to be the most important ECG region for PLN 

identification  (26,27).  In the future, provided that more data is available, 

models could be trained using the whole ECG signals instead of single heart-

beats, which could lead to the discovery of new relevant ECG features.  

Cardiac Arrest 
We compared the predictive value of EEG reactivity with EEG background 

for predicting poor outcome at 6 months after cardiac arrest and found that 

EEG background at 24 hours was the most predictive signal. Moreover, we 

evaluated multiple types of stimuli in EEG reactivity and found that passive 

eye opening was the most predictive stimulus. We showed that, when data is 

limited, feature engineering is a feasible option that can yield state-of-the-art 

results that are comparable to visual analysis by an expert. Future work should 

focus on a broader range of EEG features to be included in the model, as well 

as their combination with patient demographics.  

Limitations 
There are some limitations shared among the studies in this thesis. Despite 

some models showing high AUC values in many chapters, currently there is 

no agreement about the minimum AUC value for a model to be considered 

for use in clinical practice, since different tasks may have different accuracy 

requirements  (28). In our studies, we often included a large number of clinical 

variables in the prediction models, which often led to improvements in 

performance. A disadvantage of prediction models with so many variables is 

that all these variables have to be computed and available at baseline, which 

can be problematic in some cases because their assessment often requires 

specialized knowledge. 
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Since machine learning models are often deemed hard to interpret, we applied 

multiple model visualization techniques to make our models more transparent 

and trustworthy  (16,17). Nevertheless, the results of such techniques are still 

not always easily interpreTable and generalizable to the whole patient 

population, and further improvements are still necessary. Communication 

between data scientists and clinicians is of utmost importance to ensure that 

the models developed are robust and can offer interesting insights in daily 

use. Finally, despite the development of extensive training and validation 

pipelines, the applied internal validation approach does not replace the need 

of external validation. External validation was not possible in some studies 

due to the sensitive nature of data and patient privacy.  

Conclusion 
In this thesis, we investigated the added value of machine/deep learning 

approaches for prediction modelling in multiple cardiovascular related 

conditions. It was shown that such approaches can lead to significant 

improvements in prognosis and diagnosis, provided that they are properly 

implemented and validated. Despite the controversy regarding 

interpretability, machine learning tools are slowly becoming more common 

in clinical research and practice thanks to model visualization techniques. 

Finally, the role of machine learning tools is often only of guidance and 

assistance, and the specialists should be the ones responsible for decision 

making. 
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Artificial intelligence in the prognostication and 

classification of cardiovascular diseases 
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In this thesis, I presented multiple applications of Artificial Intelligence in the 

field of cardiovascular-related diseases. Medical care for stroke patients 

involves multiple decisions that range from quick diagnosis and treatment 

selection, to proper monitoring for possible complications. A large amount of 

data is generated during stroke care such as signals, scores, patient 

characteristics, medical history, and images. Given the magnitude of medical 

data, it is possible that a lot of valuable information lies hidden in such data. 

I explored the predictive value of such data in chapters 2-6. I used various 

machine/deep learning methods to predict patient and treatment outcome as 

well as complications after ischemic and hemorrhagic stroke. 

Delayed cerebral ischemia is a severe complication, which might occur after 

hemorrhagic stroke and is considered very difficult to predict. In Chapter 2, 

I explored the prediction of delayed cerebral ischemia using a combination of 

patient demographics, image scores and non-contrast CT features 

automatically extracted using deep/machine learning methods. I found that 

machine/deep learning can significantly improve prediction accuracy, 

especially when image features are taken into account.  

I explored the prediction of functional outcome for patients who suffered a 

ischemic stroke in chapters 3-6.  

Chapter 3 is about the potential value of machine learning compared to other 

models from the literature. I developed models using a significantly larger 

number of variables than previous works, extensively validated multiple 

machine learning models and identified previously known and unknown 

predictive biomarkers.  

Chapter 4 describes a study about the predictive value of CT angiography 

for predicting functional outcome and reperfusion using deep learning 

approaches. I explored residual networks, structured receptive fields and 

unsupervised transfer learning using auto-encoders. I trained all models using 

the maximum intensity projection of the CT angiography scans. In many 

cases, I found a significant improvement in pre-training with auto-encoders 

and using structured receptive fields. I also identified relevant predictive 

regions in the brain using a state-of-the-art model visualization technique. 
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Chapter 5 shows the predictive value of combining CT angiography with 

patient demographics and medical history to predict functional outcome and 

reperfusion. I focused on deep learning approaches that could take into 

account the 3D nature of the CT scans and explored the effect of attention (to 

direct focus during network training) using squeeze and excitation modules 

in our networks. I also investigated transfer learning from other medical 

related tasks and used Shapley additive explanations to visualize our models 

and increase transparency. I found a significant improvement in prediction 

for reperfusion when image data was combined with patient demographics, 

medical history and image derived scores. However, this improvement was 

not observed for predicting functional outcome. I also found that transfer 

learning can significantly improve accuracy and assist in training such large 

models when data is not abundant as it can be in other domains. Moreover, 

model visualization assisted in interpreting and validating our models. 

Chapter 6 focused on the prediction of poor functional outcome in. The 

accurate prediction of poor outcome could be used to prevent futile treatment, 

reducing the risks for complications and enabling a more efficient use of 

resources. I included all variables available at baseline and developed and 

validated multiple machine learning models. Despite achieving high areas 

under the curve and specificity, all models still presented a small number of 

false positives (non-poor outcome predicted as poor), which can hamper their 

use in clinical practice.  

Chapter 7 shifted focus to the identification of the cardiac genetic mutation 

Phospholamban. I developed deep/machine learning models to identify this 

mutation in asymptomatic patients and explored multiple approaches using 

1D and 2D convolutional neural networks, recurrent models and wavelets 

transformations. The results were compared against multiple experts and 

externally validated in data from another center. I found that our models 

outperformed all specialists for most measures and that the approaches using 

convolutional neural networks generalized well in the external dataset.  

Finally, in Chapter 8 I investigated electroencephalograms for predicting 

outcome of patients in comatose after suffering of cardiac arrest. Multiple 

stimuli were applied to the patients to assess responsiveness. Therefore, I 

explored the predictive value of stimuli versus background signal using a 
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machine learning approach. I further compared our models to the visual 

analysis by experts. Feature engineering was applied to extract relevant 

information from the signals and to train multiple models. The results 

suggested that the background signal has more predictive value than the 

stimuli-related signals and that the models performed as good as visual 

analysis by experts.   

To conclude, this thesis showed that machine/deep learning can be 

successfully applied to multiple prediction and classification tasks in the field 

of cardiovascular diseases and can lead to significant improvements in 

prognosis accuracy. In many studies, various sources of relevant information 

is not included in the prediction models due to the complex nature of data. If 

such information is properly pre-processed and included in a modelling 

pipeline, it can have a significant impact in  model performance and lead to 

the discovery of new insights.  Despite machine/deep learning models often 

being referred as “black box”, I also showed that various techniques can be 

applied to interpret their decision process and to increase transparency.  
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In deze thesis rapporteer ik over meerdere toepassingen van artificiële 

intelligentie die kunnen bijdragen aan een betere behandeling van beroerte. 

Tijdens de medische behandeling van patiënten met een beroerte worden er 

meerdere beslissingen gemaakt: van een snelle diagnose en 

behandelingskeuze tot aan de juiste monitoring van mogelijke complicaties 

na behandeling. Daarbij wordt er zeer veel data gecreëerd, waaronder 

fysiologische signalen, scores, patiënt karakteristieken, medische 

geschiedenis en medische beelden. Gegeven de hoeveelheid data, is het 

mogelijk dat er veel waardevolle informatie in deze data verborgen ligt. 

Daarom onderzocht ik de voorspellende waarde van deze data in 

hoofdstukken 2 t/m 6. Ik heb meerdere machine/deep learning methoden 

gebruikt voor het voorspellen van zowel de behandeluitkomst als de 

complicaties na herseninfarct of hersenbloeding. 

Vertraagde cerebrale ischemie is een zware complicatie die mogelijk 

plaatsvindt na een hersenbloeding en moeilijk te voorspellen is. In hoofdstuk 

2 heb ik onderzocht of vertraagde cerebrale ischemie te voorspellen is door 

het combineren van patiënt demografie, scores van beeldvorming en 

kenmerken van CT-beelden. De resultaten laten zien dat machine/deep 

learning de nauwkeurigheid van het voorspellen van vertraagde cerebrale 

ischemie significant verbetert, vooral wanneer de beeldkenmerken zijn 

meegenomen. 

In de hoofdstukken 3 t/m 6 heb ik onderzocht of ik de functionele uitkomst 

na de behandeling van patiënten met een herseninfarct kan voorspellen.  

In hoofdstuk 3 gaat over de potentiële waarde van machine learning 

vergeleken met die van andere modellen uit de literatuur. Ik heb modellen 

ontwikkeld die gebruik maken van een aanzienlijk groter aantal variabelen 

dan eerder beschreven in de literatuur. Ook heb ik al bekende, maar ook 

onbekende voorspellende biomarkers geïdentificeerd.  

Hoofdstuk 4 beschrijft een studie naar de waarde van CT-angiografie voor 

het voorspellen van functionele uitkomst en reperfusie, gebruik makend van 

deep learning methodes. Hiervoor heb ik ‘residual networks’, ‘structured 

receptive fields’ en ‘auto-encoders’ die getraind zijn met behulp van 

‘unsupervised tranfer learning’ gebruikt. Deze 4 verschillende modellen zijn 
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getraind op basis van de maximale intensiteit projectie van CT-scans. Voor 

de ‘structured receptive fields’en de ‘auto-encoders’ vond ik in veel gevallen 

een significante verbetering in de voor-training. Ook heb ik met behulp van 

state-of-the-art visualisatie technieken relevante gebieden in de hersenen met 

voorspellende waarde geïdentificeerd. 

Hoofdstuk 5 behandelt de voorspellende waarde van het combineren van CT-

angiografie met de demografie en medische geschiedenis van de patiënt voor 

het voorspellen van functionele uitkomst en reperfusie. Hierbij heb ik me 

gefocust op deep learning methodes die de 3D informatie van CT-scans 

kunnen meenemen. Binnen deze netwerken heb ik de ‘effects of attention’ 

onderzocht met behulp van squeeze’ en ‘excitation’ modules, om hiermee het 

netwerk direct tijdens trainen te focussen op belangrijke features. Ook heb ik 

‘tranfer learning’ toegepast op basis van andere medisch gerelateerde taken 

en ‘Shapely additive explanations’ toegepast om de modellen te visualiseren 

en daarmee transparant te maken. De resultaten lieten een significante 

verbetering zien van het voorspellen van reperfusie wanneer de beelden 

werden gecombineerd met de demografie en medische geschiedenis van de 

patiënt en medische scores op basis van de beeldvorming. De resultaten lieten 

geen verbetering zien voor het voorspellen van functionele uitkomst. Ook zag 

ik dat ‘transfer learning’ de nauwkeurigheid van voorspellingen significant 

kan verbeteren en daarmee kan bijdragen in het trainen van grote modellen 

zoals in deze studie, wanneer data niet overvloedig is zoals in andere 

domeinen. Verder assisteerde de visualisatie van de modellen in het 

interpreteren en valideren van onze modellen. 

Hoofdstuk 6 gaat over het voospellen van slechte functionele uitkomst. Het 

nauwkeurig voorspellen van slechte uitkomst kan gebruikt worden om 

overbodige behandeling te voorkomen, waarbij het risico van complicaties 

kan worden verminderd en medische middelen efficiënter kunnen worden 

gebruikt. Ik heb alle beschikbare baseline variabelen geïncludeerd en 

meerdere machine learning modellen gevalideerd. Ondanks dat ik hoge ‘area 

under de curve’ en specificiteit van de resultaten heb bereikt, lieten de 

modellen nog steeds een klein aantal vals positieven zien (geen slechte 

uitkomst wordt als slechte uitkomst voorspeld), wat de medische toepassing 

kan belemmeren. 
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Hoofdstuk 7 verplaatst de focus naar het hart, specifiek het identificeren van 

de genetische cardiale mutatie ‘Phospholamban’. Ik heb deep/machine 

learning modellen ontwikkeld die deze mutatie identificeert in 

asymptomatische patiënten en onderzochten meerdere 1D en 2D 

‘convolutional neural networks’, ‘recurrent models’ en ‘wavelets 

transformations’. De resultaten werden vergeleken met meerdere experts en 

extern gevalideerd op data uit een ander centrum. De resultaten lieten zien dat 

onze modellen voor de meeste maten beter presteerden dan de experts en dat 

de ‘convolutional neural networks’ goed generaliseerden in de externe 

dataset. 

Als laatste, in hoofdstuk 8, werden electroencefalogrammen onderzocht voor 

het voorspellen van de uitkomst van patiënten die in coma zijn geraakt na een 

hartstilstand. De patiënten ondergingen meerdere stimuli om hun 

responsiviteit te bepalen. Ik heb de voorspellende waarde van het signaal ten 

tijde van de stimuli vergeleken met het achtergrond signaal. ik heb de 

modellen vergeleken met de visuele beoordeling van experts. Ik past ‘feature 

engineering’ toe om relevante informatie van de signalen te extraheren en heb 

meerdere modellen getraind. De resultaten lieten zien dat het achtergrond 

signaal een hogere voorspellende waarde heeft vergeleken met de stimulus-

gerelateerde signalen en dat de modellen net zo goed presteerden als de 

experts in de beoordeling. 

Concluderend, het onderzoek in deze thesis laat zien dat machine/deep 

learning succesvol kan worden toegepast in verschillende voorspellingen en 

classificatie taken binnen cardiovasculaire ziektes en daarmee een 

significante verbetering kan geven in de prognostische nauwkeurigheid. In 

veel studies wordt veel relevante informatie niet meegenomen in predictie 

modellen door de complexe aard van de data. Als informatie op een juiste 

wijze wordt voorbewerkt en wordt meegenomen in een model, kan dit een 

significante impact hebben op de prestatie van een model en resulteren in 

nieuwe inzichten. Ondanks dat machine/deep learning modellen vaak als 

‘black box’ wordt gezien, heb ik ook laten zien dat technieken toegepast 

kunnen worden om modellen te interpreteren en hun keuzeproces inzichtelijk 

te maken. 
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AE 

AI 

AOL 

aSAH  

ASPECTS 

AUC 

AUPRC 

CA 

CBS 

cEEG 

CNN 

CNTK 

CRP 

CT 

CTA 

DCI 

DL 

DSA 

ECG  

EEG  

EEG-R  

EVT 

GCS 

GPUs 

Grad-CAM 

GTB 

GWGBP 

ICA 

ICA-T 

ICU 

INR 

IV 

LASSO 

LIME 

LPBA40 

Auto-Encoders  

Artificial intelligence 

Arterial Occlusive Lesion 

Aneurysmal Subarachnoid Hemorrhage  

Alberta Stroke Program Early CT Score 

Area Under the Curve 

Area Under the Precision Recall Curve 

Cardiac Arrest 

Clot Burden Score 

Continuous Electroencephalogram 

Convulational Neural Network 

The Microsoft Cognitive Toolkit 

C-Reactive Protein 

Computed Tomography 

Computed Tomography Angiography 

Delayed Cerebral Ischemia 

Deep Learning 

Digital Subtraction Angiography  

Electrocardiogram 

Electroencephalogram 

Electroencephalogram Reactivity  

Endovascular Treatment 

Glasgow Coma Scale 

Graphical Processing Units 

Gradient-weighted Class Activation Mapping 

Gradient Tree Boosting  

Gradient Weighted Guided Backpropagation 

Internal Carotid Artery 

Internal Carotid Artery Terminus  

Intensive Care Unit 

International Normalized Ratio 

Intravenous Alteplase 

Least Absolute Shrinkage and Selection Operator 

Local Interpretable Model-agnostic Explanations 

Laboratory of Neuro Imaging Probabilistic Brain Atlas 
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LR 

LVO 

MICE 

MLP 

MR 

CLEAN 

 

mRS 

mTICI 

NIHSS 

NN 

PCA 

PLN 

ReLU 

ResNet 

RFC 

RFNN 

ROC 

SAH 

SDCAE 

SE 

SVM 

TBV 

TIA 

ULTRA 

 

WFNS 

XGB 

Logistic Regression 

Large Vessel Occlusion 

Multiple Imputation by Chained Equations 

Multi-layer Perceptron 
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After all this time, it feels weird to finally reach the end of my PhD. I faced many 

challenges since the start, from moving to a new country and adapting to a new 

lifestyle, to working in a different environment. I must say that despite the many 

challenges, I enjoyed every minute of my journey.  

I would not have come this far without the help and influence of many people and I 
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Silvia, I remember very clearly the first day we met since it was my first day of work. 
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put me at ease very quickly. I was happy to have a Brazillian face around during my 

PhD and I’m grateful for everything you taught me about research and The 

Netherlands, but I’m especially grateful for you always pushing me further. 

Koos, I just realized I have no idea why we call you Koos as I see no K’s in Aeilko 

Having Zwinderman. That’s maybe a question I forgot to ask among the many 

questions I had to ask you during my PhD. Something that always impressed me was 

that you were always eager to go to the whiteboard and explain everything from 

scratch, even if it was something I was supposed to know. Thank you especially for 

checking my modeling pipelines, appropriate statistical tests, and everything else. I 

believe you saved me many rejections and rebuttal iterations with reviewers.  

Gustav, I especially enjoyed our monthly updates. Your feedback was always on 

point and I lost count of how many times I entered your office clueless and left with 

a perfect solution for my problems. You were often very positive about my work, 

which I think is something rare in academia, where everyone is so focused on 

critizing and findings flaws. You highlight the positive aspects of our work and was 

responsible for keeping me motivated throughout these years.  
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I must also thank all my colleagues for their support in multiple aspects of my life 

and work.  

Manon Tolhuisen, you pushed me out of my comfort zone right after we met, 

introduced me to other people, and made me feel at home  (quite literally by sharing 

an appartment with me) when I felt completely out of place. I’m glad we share so 

many memories together, and I cherish our friendship a lot. Lauren, I can’t wait for 

us to be able to speak broken dutch together. 

Little Manon, as I sit now to think about what I would like to write, I see how we 

evolved from colleagues to good friends very fast. From sharing an office and rarely 

talking to each other, to working in many projects together, and even bouldering and 

eating out. We always have a good time together. You taught me many things, work 

and non-work related, like how to perform high-quality dance moves like “doing the 
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seemed like such a serious guy, barely talked and so focused on his own work. I have 
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common than I can write here, from childhood experiences to most of our hobbies. 

I’m happy I had you on this journey and I hope we have many gaming days ahead 

of us. Plus Ultra! 

Eva, jij bent een trouwe vriend die altijd bereid is om te helpen. Jij hulpt mij toen ik 

dakloss was, toen werklos was en  nog veel meer. Ik heb geen familie in Nederland, 

maar ik heb het gevoel dat je een lid van my familie bent. Bedankt voor de leuk 

spelletjesavonds en de ik wil weer pizza eten. 

Praneeta, thanks for the long talks, for the fun trips and outings, and for the countless 

pictures. Google photos recognizes you in many of them and has automatically 

created a special folder for you.  

Ricardo, Riaan, and Henk, thanks for the many hours of discussion we had in the 

office, I think your feedback was relevant in many decisions I had to make.  

Marit, Merel, Raquel, Nerea, Haryadi, Bart, Wessel, Marcela, and all the others, 

thank you for the fun trips and parties together.  

Matthan, I enjoyed very much working and teaching with you, and hope we can work 

together again in the future. 

I would also like to thank all my co-authors for their contribution and constant 

feedback. In special, Wessel, Adam, Ricardo, Marjolein, Manon, Hine and Hidde, 

were so closely involved in many of the chapters included in this thesis.  
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Tim, ik moet dit echt in Nederlands schrijven. Jij was de eerste die zei “ik spreek 

geen Engels meer met je” en dat was verschriklijk. Maar, ik heb zoveel geleerd. Nu 

kan ik met mensen praten en voel ik me niet altijd als een buitenlander meer. Ik heb 

ook geleerd dat jij moet altijd opletten met leeuwen in de nederlandse bossen. Jij 

hulp mij mijn doel om Nederlander te worden te bereiken. Je bent beter in 

Nederlands, maar ik ben tenminste beter met boulderen. 

Renan, your experience was very useful during my PhD, and saved me a lot of time 

and stress. But most of all, your friendship helped me the most. I always feel 

energized and motivated after our talks.  

Thank you to my Brazillian friends (Tonho, Firmo and Eduardo) that despite the 
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And last but not least I would like to thank the person who supported me throughout 

this whole PhD. Marcia, leaving everything behind us to start a new life in a new 

country was scary for both of us. Together, we faced our fears and insecurities and 

achieved more than we thought we would ever do. I’m glad I have you to share this 

experience and the many that are to come. Te amo! 
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